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Abstract We present a branch-and-bound (bb) algorithm for the multiple sequence
alignment problem (MSA), one of the most important problems in computational bi-
ology. The upper bound at each bb node is based on a Lagrangian relaxation of an
integer linear programming formulation for MSA. Dualizing certain inequalities, the
Lagrangian subproblem becomes a pairwise alignment problem, which can be solved
efficiently by a dynamic programming approach. Due to a reformulation w.r.t. ad-
ditionally introduced variables prior to relaxation we improve the convergence rate
dramatically while at the same time being able to solve the Lagrangian problem ef-
ficiently. Our experiments show that our implementation, although preliminary, out-
performs all exact algorithms for the multiple sequence alignment problem. Further-
more, the quality of the alignments is among the best computed so far.

Keywords Sequence comparison · Lagrangian relaxation · Branch and bound

1 Introduction

Aligning DNA or protein sequences is one of the most important and predominant
problems in computational molecular biology. Before we motivate this we introduce
the following notation for the multiple sequence alignment problem.

Let S = {s1, s2, . . . , sk} be a set of k strings over an alphabet � and let �̄ = � ∪
{−}, where “−” (dash) is a symbol to represent “gaps” in strings. Given a string s, we
let ‖s‖ denote the number of characters in the string and sl the lth character of s, for
l = 1, . . . ,‖s‖. We will assume that ‖si‖ ≥ 4 for all strings si and let n := ∑k

i=1 ‖si‖.
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Fig. 1 (a) A possible alignment A of the input sequences S = {ABC,AC,BCA}. (b) The gapped align-
ment graph for the sequences in S . The thick edges specify alignment A. (c) The alignment edges can not
be realized at the same time in an alignment. Together with appropriate arcs of AP , they form a mixed
cycle

An alignment A of S is a set S̄ = {s̄1, s̄2, . . . , s̄k} of strings over the alphabet �̄

where each string can be interpreted as a row of a two dimensional alignment matrix.
The set S̄ of strings has to satisfy the following properties: (1) the strings in S̄ all have
the same length, (2) ignoring dashes, string s̄i is identical to string si , and (3) none of
the columns of the alignment matrix is allowed to contain only dashes (see Fig. 1a).

If s̄i
l and s̄

j
l are both different from “−”, the corresponding characters in si and

sj are aligned and thus contribute a weight w(s̄i
l , s̄

j
l ) to the value of A. The pairwise

scoring matrix w over the alphabet � models either costs or benefits, depending on
whether we minimize distance or maximize similarity. In the following, we assume
that we maximize the weight of the alignment. Moreover, a gap in sj with respect
to si is a maximal sequence si

l si
l+1 . . . si

m of characters in si that are aligned with
dashes “−” in row j . Associated with each of these gaps is a cost. In the affine
gap cost model the cost of a single gap of length q is given by the affine function
copen + qcext, i.e. such a gap contributes a weight of −copen − qcext = wopen + qwext
to the total weight of the alignment. The problem calls for an alignment A whose
overall weight is maximized.

Alignment programs still belong to the class of the most important Bioinformat-
ics tools with a large number of applications. Pairwise alignments, for example, are
mostly used to find strings in a database that share certain commonalities with a
query sequence but which might not be known to be biologically related. Multiple
alignments serve a different purpose. Indeed, they can be viewed as solving prob-
lems that are inverse to the ones addressed by pairwise string comparisons (Gusfield
1997). The inverse problem is to infer certain shared patterns from known biological
relationships.

The question remains how a multiple alignment should be scored. The model that
is used most consistently by far is the so called sum of pairs (SP) score. The SP score
of a multiple alignment A is simply the sum of the scores of the pairwise alignments
induced by A (Carrillo and Lipman 1988).

If the number k of sequences is fixed the multiple alignment problem for se-
quences of length n can be solved in time and space O(nk) with (quasi)-affine gap
costs (Gupta et al. 1995; Lermen and Reinert 2000; Reinert et al. 1997, 2000). More



J Comb Optim (2008) 16: 127–154 129

complex gap cost functions add a polylog factor to this complexity (Eppstein 1990;
Larmore and Schieber 1990). However, if the number k of sequences is not fixed,
Elias (2003) proved that multiple alignment with SP score is NP-complete by a
reduction from INDEPENDENT SET in 3-regular graphs (Garey and Johnson 1979).
Hence it is unlikely that polynomial time algorithms exist and, depending on the
problem size, various heuristics are applied to solve the problem approximately (see,
e.g., (Notredame et al. 2000; Delcher et al. 1999; Subramanian et al. 2005)).

Althaus et al. (2002, 2006) propose a branch-and-cut algorithm for the multiple
sequence alignment problem based on an integer linear programming (ILP) formula-
tion. As solving the LP-relaxation is by far the most expensive part of the algorithm
and even not possible for moderately large instances, we propose a Lagrangian ap-
proach to approximate the linear program and utilize the resulting bounds on the op-
timal value in a branch-and-bound framework. We assume that the reader is familiar
with the Lagrangian relaxation approach to approximate linear programs.

The paper is organized as follows. In Sect. 2 we review the ILP formulation of
the multiple sequence alignment problem, whose Lagrangian relaxation is described
in Sect. 3. Our algorithm for solving the resulting problem is introduced in Sect. 4.
Section 5 describes the approximation of the Lagrangian dual problem. Finally, com-
putational experiments on a set of real-world instances are reported in Sect. 6.

2 Previous work

Althaus et al. (2006) use a formulation for the multiple sequence alignment problem
as an ILP given by Reinert (1999).

For ease of notation, they define the gapped alignment graph, a mixed graph
whose node set corresponds to the characters of the strings and whose edge set is
partitioned into undirected alignment edges and directed positioning arcs as follows:
G = (V ,EA ∪ AP ) with V = V i ∪ · · · ∪ V k and V i = {ui

j | 1 ≤ j ≤ ‖si‖}, EA =
{uv | u ∈ V i, v ∈ V j , i �= j} and AP = {(ui

l , u
i
l+1) | 1 ≤ i ≤ k and 1 ≤ l < ‖si‖} (see

Fig. 1b). Furthermore, we denote with G = {(u, v, j) | u,v ∈ V i, j �= i} the set of all
possible gaps.

An edge in EA is realized by an alignment, if its endpoints are placed into the
same column of the alignment matrix, i.e the corresponding characters are aligned.
Accordingly, a gap (ui

l , u
i
m, j) is realized by an alignment, if the substring of si from

position l to position m is aligned to gap characters “−” in string sj , whereas both
si
l−1 and si

m+1 are aligned to characters in sj . Arcs in Ap represent consecutivity of
characters within the same string and are independent of the alignment.

In order to score the alignment, we assign each edge ui
lu

j
m ∈ EA a weight w

ui
lu

j
m

:=
w(si

l , s
j
m) and a gap (ui

l , u
i
m, j) the weight w(ui

l ,u
i
m,j) := wopen + (m − l + 1) · wext,

which represents the benefit of realizing that edge or gap.
We call pairs (E′,G′), for which there exists an alignment A such that E′ and G′

are the set of edges in EA, respectively gaps in G, that are realized by A, gapped
traces. Notice that different alignments might correspond to the same gapped trace
(E′,G′), but all such alignments have the same score

∑
e∈E′ we + ∑

g∈G′ wg .
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The ILP formulation uses a variable for every possible alignment edge e ∈ EA,
denoted by xe, and one variable for every possible gap g ∈ G, denoted by yg . Reinert
(1999) showed that the characteristic vectors of the gapped traces are exactly the
{0,1}-assignments to the variables such that

• (PaiwAl) we have pairwise alignments between every pair of strings,
• (MixedCy) there are no mixed cycles, i.e. in the subgraph of the gapped alignment

graph consisting of the positioning arcs AP and the realized edges {e ∈ EA | xe = 1}
there is no cycle that respects the direction of the arcs of Ap (and uses the edges
of EA in either direction) and contains at least one arc of AP (see Fig. 1c),

• (Trans) transitivity is preserved, i.e. if u is aligned with v and v with w then u is
aligned with w, for u,v,w ∈ V .

These three conditions are easily formulated as linear constraints (see Althaus et
al. 2006). Given weights we associated with variables xe, e ∈ EA, and gap costs wg

associated with variables yg , we denote the problem of finding a gapped trace (a so-
lution satisfying (PaiwAl), (MixedCy) and (Trans)) which has the highest weight as
(P ) and its optimal value as v(P ). As the number of those inequalities is exponential
Althaus et al. use a cutting plane framework to solve the LP relaxation (all inequali-
ties have a polynomial separation algorithm). In their experiments they observed that
the number of iterations in the cutting plane approach can be reduced, if they use
additional variables z(u,v) for u ∈ V i, v ∈ V j , i �= j , with the property that z(u,v) = 1
iff at least one character of the string of u lying (not strictly) right of u is aligned to
a character of the string of v lying (not strictly) left of v, i.e. z

(ui
l ,u

j
m)

= 1, iff there is

l′ ≥ l and m′ ≤ m with x
ui

l′u
j

m′
= 1. This condition is captured by the inequalities

0 ≤ z ≤ 1, z
(ui

‖si‖,u
j
1)

= x
ui

‖si‖u
j
1
,

z
(ui

l ,u
j
m)

≥ z
(ui

l+1,u
j
m)

+ x
ui

l u
j
m

and (1)

z
(ui

l ,u
j
m)

≥ z
(ui

l ,u
j
m−1)

+ x
ui

l u
j
m
.

Notice that indicator variables xe are associated with undirected edges e = uv,
whereas variables ze are associated with directed edges e = (u, v). In the follow-
ing, we describe the inequalities used in Althaus et al. (2006) to enforce (MixedCy).
We refrain from explicitly specifying the inequalities enforcing (PaiwAl) and (Trans),
as they are not crucial for the understanding of our approach.

Using these additional variables, we can define facets that guarantee (MixedCy)
as follows. We model the mixed cycles as introduced above by letting AA = {(u, v) |
u ∈ V i, v ∈ V j , i �= j}, i.e. for each undirected edge uv ∈ EA, we have the two di-
rected arcs (u, v) and (v,u) in AA. Then a cycle M ⊆ AA ∪ AP in (V ,AA ∪ AP )

that contains at least one arc of AP uniquely defines a mixed cycle. Where it is clear
from the context, we therefore resign to distinguish between the term mixed cycle in
its original meaning, namely cycles as defined in (MixedCy) having both undirected
and directed edges, and their corresponding cycles in (V ,AA ∪ AP ), consisting ex-
clusively of directed arcs. The set of all mixed cycles is denoted by M. We show,
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that for a mixed cycle M ∈M the inequality

∑

e∈M∩AA

ze ≤ |M ∩ AA| − 1 (2)

is valid. Assume
∑

e∈M∩AA
ze = |M ∩ AA|. Consider an arbitrary arc (ui

l , u
j
m) ∈

M ∩AA. Since positioning arcs are directed “from left to right”, the arc from AA pre-
ceding (ui

l , u
j
m) on cycle M must terminate in a node ui

l′ with l′ ≤ l. Similarly, the arc

from AA succeeding (ui
l , u

j
m) on cycle M must originate in a node u

j

m′ with m′ ≥ m.
According to the definition of z

(ui
l ,u

j
m)

, there is l′′ ≥ l and m′′ ≤ m with x
ui

l′′u
j

m′′
= 1.

Thus by replacing every arc (ui
l , u

j
m) from AA on M by a (possibly empty) sequence

of positioning arcs (ui
l , u

i
l+1), . . . , (u

i
l′′−1, u

i
l′′), followed by edge ui

l′′u
j

m′′ , followed

by a (possibly empty) sequence of positioning arcs (u
j

m′′ , u
j

m′′+1), . . . , (u
j

m−1, u
j
m),

we can construct a mixed cycle, all of which (undirected) alignment edges can not be
realized at the same time and which thus represents a ordering conflict (see Fig. 1c).
Therefore (2) must hold. These inequalities imply (MixedCy) as z(u,v) ≥ xuv , and are
called (lifted) mixed cycle inequalities. They define facets under appropriate technical
conditions.

Assume a mixed cycle M contains at least two arcs of AP and let (ui
l , u

i
l+1) be one

of them. Let M ′ be the cycle obtained from M by replacing arcs (v,ui
l ), (u

i
l , u

i
l+1),

(ui
l+1,w) (w.l.o.g. assume w �= ui

l+2) by arcs (v,ui
l ) and (ui

l ,w). Then the mixed cy-
cle inequality for M ′ implies the mixed cycle inequality for M as z(ui

l ,w) ≥ z(ui
l+1,w).

In particular, a mixed cycle inequality can only define a facet if there is exactly one
arc of AP in M . The constraints (2) can be formulated similarly without using the
additional z-variables.

3 Outline

Our Lagrangian approach is based on the integer linear program outlined above.
Hence we have three classes of variables, X, Y and Z. Notice that a single variable
xuv , y(u,v,j), or z(u,v) involves exactly two sequences. Let Xi,j , Y i,j , and Zi,j be the
set of variables involving sequences i and j . If we restrict our attention to the vari-
ables in Xi,j , Y i,j and Zi,j , for a specific pair of sequences i, j , a solution of the ILP
yields a description of a pairwise alignment between sequences i and j , along with
appropriate values for the variables in Zi,j . The constraints (MixedCy) and (Trans)
are used to guarantee that all pairwise alignments together form a multiple sequence
alignment. We call an assignment of {0,1}-values to variables in (Xi,j , Y i,j ,Zi,j )

such that (Xi,j , Y i,j ) imposes a pairwise alignment and Zi,j satisfies inequalities
(1), an extended pairwise alignment. Given weights for the variables in Xi,j , Y i,j

and Zi,j , we call the problem of finding an extended pairwise alignment of maxi-
mum weight the extended pairwise alignment problem.

In our Lagrangian approach we dualize the constraints for condition (MixedCy)
(i.e. inequalities (2)) and relax conditions (Trans) (during experiments it turned out
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that relaxing condition (Trans) is more efficient in practice as dualizing them). Hence
our Lagrangian subproblem is an extended pairwise alignment problem. More pre-
cisely, if λM ≥ 0 is the current multiplier for the mixed cycle inequality of M ∈ M,
we have to solve the Lagrangian relaxation problem

(LRλ)
∑

M∈M
λM(|M ∩ AA| − 1)

+ max
∑

e∈EA

wexe +
∑

g∈G
wgyg −

∑

M∈M
λM

∑

e∈M∩AA

ze

s.t. (Xi,j , Y i,j ,Zi,j ) forms an extended pairwise alignment for all i, j .

We denote its optimal value with v(LRλ). As the number of inequalities that we
dualize is exponential, we modify the subgradient method (SM) in a relax-and-cut
fashion, as proposed by Fisher (1994) (see Sect. 5).

4 Solving the extended pairwise alignment problem

Recall how a pairwise alignment with gap cost is computed for two strings s and
t of length ns and nt , respectively (without loss of generality we assume nt ≤ ns ).
By a simple dynamic programming algorithm, we compute for every 1 ≤ l ≤ ns and
every 1 ≤ m ≤ nt the optimal alignment of prefixes s1 . . . sl and t1 . . . tm that aligns
sl and tm and whose score is denoted by D(l,m). This can be done by comparing
all optimal alignments for strings s1 . . . sl′ and t1 . . . tm′ for l′ < l and m′ < m, adding
the appropriate gap cost to the score w(sl, tm) obtained for aligning sl and tm. If the
weight of a gap is an arbitrary function w(q) of its length q , the determination of the
optimal alignment value maxx≤ns ,y≤nt [D(x,y)+w(ns −x)+w(nt −y)], takes time
O(n2

s n
2
t ).

1

In the affine gap weight model we can restrict the dependence of each cell in the
dynamic programming matrix to adjacent entries in the matrix by associating more
than one variable to each entry as follows. Besides computing D(l,m), we compute
the score of the optimal alignment of these substrings that aligns character sl to a char-
acter tk with k < m, denoted by V (l,m), and the one that aligns tm to a character sk
with k < l, denoted by H(l,m). Hence, in a node V (l,m), we have already paid the
opening cost for the gap in t and we can traverse from V (l,m) to V (l,m + 1) by
just adding wext, but not wopen. Each of the terms D(l,m), V (l,m) and H(l,m) can
be evaluated by a constant number of references to previously determined values and
thus the running time reduces to O(nsnt ).

The pairwise alignment problem can be interpreted as a longest path problem in
an acyclic graph, having three nodes D(l,m), V (l,m) and H(l,m) for every pair of
characters sl ∈ s, tm ∈ t , referred to as cell (l,m). We call this graph the dynamic
programming graph. In the further discussion we assume that nodes of a cell (l,m)

1The running time can be reduced to O(n2
s nt ) by distinguishing three different types of alignments

(Sankoff and Kruskal 1983).
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Fig. 2 Three cells of the
dynamic programming matrix,
with four values (nodes)
associated to each of them
describing the type of the
alignment. The forth value
B(i, j) means that neither si is
aligned to a character of t nor tj
is aligned to a character of s.
Note that arcs (dependencies)
are between certain values D,
V , H and B , the target node
determines the type of the
partial alignment

are drawn at coordinates (l,m) in the plane. Furthermore, the term S(l,m), with
S ∈ {D,V,H }, is used interchangeably to refer both to a node in the dynamic pro-
gramming graph and the score of the specific type of alignment it represents.

Each pairwise alignment corresponds to a path through this graph from D(0,0) to
a node of the cell (ns, nt ), with every arc of the path representing a certain kind of
column in the alignment matrix, determined by the type of its target node (Fig. 2).
An alignment arc from an arbitrary node in cell (l − 1,m − 1) to node D(l,m) cor-
responds to an alignment of characters sl and tm. Accordingly, a gap arc has a target
node V (l,m) or H(l,m) and represents a gap opening (source node is D(l,m − 1)

or D(l − 1,m), respectively) or a gap extension (source node is V (l,m − 1) or
H(l − 1,m), respectively). We call gap arcs from a node of a cell (i, j) to a node
of cell (i, j + 1) a horizontal arc, gap arcs from a node of a cell (i, j) to a node of
cell (i + 1, j) a vertical arc, and alignment arcs diagonal arcs.

4.1 Simple algorithm

Now assume some variable z(u,v) is multiplied by a non-zero value in the objective
function, as the arc (u, v) ∈ AA is contained in at least one mixed cycle M , to which
a non-zero Lagrangian multiplier λM is associated. Recall that the multiplier of the
variable z(u,v) in the objective function is −∑

M∈M|(u,v)∈M λM (see (LRλ)). Then
we have to pay the multiplier as soon as our path traverses at least one alignment arc
that enforces z(u,v) = 1. Assume s = si , t = sj , u = ui

l and v = u
j
m. Then z(u,v) = 1,

iff there is l′ ≥ l and m′ ≤ m such that x
ui

l′u
j

m′
= 1 (see definition of variables z(u,v) in

(1)). In the dynamic program graph, this corresponds to alignment arcs whose target
lies in the lower right rectangle from cell (l,m) (i.e. for the target D(l′,m′) it holds
that l′ ≥ l and m′ ≤ m). Analogously, if u lies in string sj and v in string si , this
corresponds to alignment arcs whose target lies in an upper left rectangle. We call
these rectangles blue and red obstacles and denote them by Ob(l,m) and Or (l,m),
respectively. Cell (l,m) is called the origin of the obstacle.

Let the set of all blue and red obstacles be denoted by Ob and Or , respectively,
and let O = Ob ∪ Or . Then the extended pairwise alignment problem is solvable by
a dynamic program in O(n2

s n
2
t |O|) time, following the same approach as above: we

compute the best alignment of all pairs of prefixes s1 . . . sl and t1 . . . tm that aligns sl
and tm, based on all best alignments of strings s1 . . . sl′ and t1 . . . tm′ , for l′ < l and
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m′ < m. We add the appropriate gap weight to w(sl, tm) and subtract all multipliers
that are associated with obstacles that have to be charged when aligning sl and tm but
are not jet charged. This are the red obstacles with origin (i, j) with l ≤ i,m′ < j ≤ m

and the blue obstacles with m ≤ j, l′ < i ≤ l. Notice that the information that sl′ and
tm′ are the last two aligned characters suffices to determine which multipliers we have
to charge additionally when aligning sl and tm.

4.2 Improved algorithm

We reduce the complexity of the dynamic program by again decreasing the align-
ment’s history, necessary to determine the benefit of any possible continuation in
a partial alignment. The determination of the set of obstacles, whose associated
penalty we have to pay when using an alignment arc, poses the major problem. For
that we have to know the last alignment arc that has been used on our path. However,
this arc can not be precomputed in a straightforward way, since the longest path in
this context does not have optimal substructure.

We say that we enter an obstacle with an arc, if the target lies within the obstacle,
but not the source. The key idea is to charge the Lagrangian multipliers as soon as
we enter an obstacle no matter whether we enter it with an alignment arc (in which
case we indeed have to charge the associated multiplier) or with a gap arc (such that
we have to charge the associated multiplier only when using an alignment arc within
the obstacle later). We introduce further nodes and edges which allow us to bypass
obstacles in which we do not use any alignment arc.

When traversing an alignment arc with target D(x,y), we charge the multipliers
of all obstacles we enter, i.e. red obstacles with origin (x′, y) for x′ ≥ x and blue ob-
stacles with origin (x, y′) for y′ ≥ y. When traversing a gap arc we charge only mul-
tipliers of those obstacles we enter, in which we are still able to traverse an alignment
arc (i.e. we do not charge the multiplier if the target of any alignment arc reachable
does not lie in this obstacle). More precisely, for using the gap arc from a node in cell
(x − 1, y) to H(x,y), we charge the multipliers of all blue obstacles having origin
(x, y′) with y′ > y. Similarly, gap arcs from a node in cell (x, y − 1) to V (x, y) are
charged. This motivates the following definition.

Definition 4.1 (Enclosing obstacles) The set of enclosing blue obstacles Qb(p) of
a cell p = (x, y) contains all blue obstacles Ob(l,m) with l ≤ x,m > y. Accordingly,
Qr (p) = {Or (s, t) | s > x, t ≤ y}. Furthermore we define Q(p) = Qb(p) ∪Qr (p).

Hence when using a gap arc, we charge multipliers of all obstacles enclosing the
target but not the source. Notice that the set of obstacles enclosing a cell (x, y) con-
tains exactly those obstacles whose associated multiplier we have to charge when
using an alignment arc a from a node in cell (x, y) to D(x + 1, y + 1), but which are
not taken into account during the traversal of a.

The following simple facts are crucial for the understanding of our proofs.

• Qb((x + 1, y)) \ Qb((x, y)) is the set of obstacles whose associated Lagrangian
multipliers we have to charge when using an arc from a node in cell (x, y) to node
H(x + 1, y).
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• Qb((x, y + 1)) \Qb((x, y)) = ∅.
• For arbitrary cells p,q, r , it holds that {Q(q) \ Q(p)} ∪ {Q(r) \ Q(q)} ⊇ Q(r) \
Q(p).

• Consider l′ < l and m′ < m. Let A be an alignment that aligns sl′ with tm′ and sl
with tm with gaps in between. The set of obstacles whose multipliers have to be
charged for the alignment of sl and tm contains obstacles in Q((l − 1,m − 1)) \
Q((l′,m′)) plus obstacles entered with the alignment arc having target D(l,m).

Again notice that we charge the multiplier of an obstacle at most once (when we
enter the obstacle). Furthermore, we charge at least the multipliers we have to charge
(the last two facts above), but we possibly charge more: we charge the multiplier of
an obstacle o whenever we reach a cell enclosed by o, independent of the arc type.
Hence, we have to ensure that we are able to bypass obstacles we do not have to pay,
i.e. obstacles that are not enclosing any target node of an alignment arc traversed by
the optimal path. We accomplish this by adding new nodes and arcs to the dynamic
programming graph. Additionally we compute, for every pair of characters sl ∈ s,
tm ∈ t , a fourth value B(l,m) denoting the value of the optimal alignment that aligns
either character sl to “–” strictly left from tm or character tm to “–” strictly left from
sl , i.e. we have paid both opening costs. Hence every cell (l,m) contains a fourth
node B(l,m) in the dynamic programming graph.

Before we introduce the new nodes and edges formally, we need some basic defin-
itions. We call a pair of a blue obstacle Ob(l,m) and a red obstacle Or (l

′,m′) conflict-
ing, if l′ ≥ l and m′ ≤ m (Fig. 3a). The base b(Ob(l,m),Or (l

′,m′)) of a pair of con-
flicting obstacles is defined as cell (l − 1,m′ − 1), the tail t(Ob(l,m),Or (l

′,m′)) as
cell (l′,m). We say a cell (l,m) dominates a cell (l′,m′), denoted by (l,m) < (l′,m′),
if l < l′ and m < m′ ((l,m) ≤ (l′,m′), if l ≤ l′ and m ≤ m′). Accordingly, a blue (red)
obstacle Ob(r)(l,m) dominates an obstacle Ob(r)(l

′,m′), iff origin (l,m) dominates
origin (l′,m′) (Fig. 3b). A blue (red) obstacle is minimal in set Ôb ⊆ Ob (Ôr ⊆ Or ),
if it is not dominated by any other obstacle in Ôb (Ôr ). We denote the set of obstacles
that are dominated by a given obstacle o, by D(o).

Given a set E′ ⊆ EA of alignment arcs, we call the set of obstacles we do not have
to charge for using an edge in E′ the forbidden obstacles w.r.t. E′.

Assume that in the optimal extended alignment, (l,m) and (l′ + 1,m′ + 1) with
l < l′ and m < m′ are the targets of two realized alignment edges with gaps in be-
tween. We have to make sure that there is a path from D(l,m) to the appropriate
node of the cell (l′,m′) (e.g. B , if l < l′ and m < l′; H , if l < l′ and m = m′; V , if
l = l′ and m < m′) which doesn’t enter a forbidden obstacle. To achieve this, we try
to proceed in the dynamic programming graph from D(l,m) with gap arcs of either
type until we can’t go further without entering a forbidden obstacle. This motivates
the addition of the B-node into a cell as it allows us to use gap arcs in either sequence
alternatively without paying opening cost twice (see Fig. 3c).

Notice that we can not enter and leave an obstacle using exclusively gap arcs
of one type (e.g. with horizontal arcs, we can enter blue obstacles, but not leave
them). Hence we are able to reach a node of cell (l′,m′) without entering a forbidden
obstacle, if we can reach a node of a cell (l′,m′′) with m′′ < m. Analogously we can
argue that we can reach the cell (l′,m′), if we can reach a node of a cell (l′′,m′) with
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Fig. 3 (a) A pair of conflicting
obstacles, together with its
base b and its tail t . (b) Obstacle
Ob(l0,m0) dominates obstacles
Ob(l1,m1) and Ob(l2,m2).
Obstacle Ob(l1,m1) is minimal
in D(Ob(l0,m0)). (c) We can
bypass the dashed obstacles
within the dp-graph, as they are
not in conflict with any other
obstacle. We can enter the
dotted obstacle, as we have to
subtract the multiplier then
using the alignment arc with
target (l′ + 1,m′ + 1). Hence,
we can reach b1 from (l,m)

within the dp-graph, jump to t2,
and proceed in the dp-graph
to (l′,m′)

(a) Conflicting obstacles

(b) Dominating obstacles

(c) Path construction

l′′ < l′. In particular, we are able to reach the appropriate node of the cell (l′,m′)
within the dynamic programming graph, if the type of the cell is D, H , or V .

Hence we only consider the case where we want to reach the B-node of the cell
(l′,m′) and cannot proceed from a node of the cell (lb,mb) with lb < l′ and mb < m′.
In this case, (lb,mb) is the base of a pair of conflicting forbidden obstacles. More
precisely, lb is the smallest value such that there is a pair of forbidden conflicting
obstacles with base (lb,m

′′). Similarly, mb is the smallest value such that there is a
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base (l′′,mb) of a pair of conflicting forbidden obstacles. Hence (lb,mb) dominates
the base of every pair of forbidden conflicting obstacles.

Analogously, we can argue that there is a tail (lt ,mt ) of a pair of conflicting ob-
stacles from which we can reach B(l′,m′) without entering a forbidden obstacle (if
we are not able to reach the cell (l′,m′) within the dynamic programming graph)
and that (lt ,mt ) dominates (l′,m′). Furthermore the base (lb,mb) dominates the tail
(lt ,mt ), what we can see as follows. Let (ob, or ) be any pair of forbidden conflicting
obstacles. The cell (lb,mb) dominates the base of (ob, or ). This base dominates the
tail of (ob, or ), which again dominates (lt ,mt ).

Therefore, the insertion of arcs from the four nodes of the base of every pair of
conflicting obstacles (ob, or ) to the B-node of the target of every pair (o′

b, o
′
r ) such

that b(ob, or ) ≤ b(o′
b, o

′
r ) and t(ob, or ) ≤ t(o′

b, o
′
r ), would enable us to “jump over”

obstacles that we do not have to pay. The weights for these arcs are determined by
the cost of the gaps leading from b(ob, or ) to t(o′

b, o
′
r ) plus the penalties implied by

obstacles enclosing t(o′
b, o

′
r ), but not b(ob, or ).

As the number of conflicting obstacles is at most |O|2, the number of additional
arcs is at most O(|O|4) and hence the running time is O(nsnt + |O|4).

4.2.1 The bypass graph

To further reduce the number of additional arcs (dependencies) in our dynamic pro-
gramming graph, we introduce the bypass graph, which is correlated to the transitive
reduction of the induced subgraph on the set of newly added arcs.

The nodes of the bypass graph (formal definition below) represent pairs of con-
flicting obstacles. Intuitively, reaching a node v in the bypass graph along a path p,
with b(v) = (l,m) and t(v) = (l′,m′), can be interpreted as having a consecutive run
of alternate gaps sg+1, . . . , sl′ and th+1, . . . , tm′ , with g ≤ l and h ≤ m. In particular,
each node in the bypass graph (bpg) is connected to the B-node of its corresponding
tail via an edge of weight 0. Note that in this case, the last alignment arc on path p

has target node D(g,h).
For cells (i, j) and (l,m) let ‖(i, j) − (l,m)‖1 denote Minkowski’s L1 distance

between points (i, j) and (l,m) in the plane. An outgoing edge (v,w) to another
bpg node w models the extension of a gap in one of the strings by ‖t(w) − t(v)‖1
characters, i.e. by traversing an edge in the bpg the cell of the tail moves vertically
upwards or horizontally to the right. Contrariwise, the cell of the base moves simulta-
neously to the right, respectively upwards. Therefore, the weight of a bpg edge (v,w)

is composed of

• the cost of extending a gap by ‖t(w) − t(v)‖1 characters,
• minus the sum of multipliers associated with obstacles enclosing w but not v,
• the sum of multipliers associated with obstacles that we are leaving when proceed-

ing from t(v) to t(w) and which do not enclose the target node of any alignment
arc on our path.

The third part is based on the fact, that the structure of our overall graph prevents any
path from reentering an already left obstacle and thus the remaining part of path p

going from t(w) to (ns, nt ) cannot traverse an alignment arc whose target node is
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Fig. 4 Assume we traverse an edge of the bypass graph from the node corresponding to the pair of
conflicting obstacles (b1, r) to the pair (b2, r) and we will leave the bypass graph at a node whose target
is at f . The red obstacles whose origin lie in R1 are entered when proceeding from the tail t1 of (b, r1)

to the tail t2 of (b, r2) and hence the corresponding multipliers have to be subtracted. Furthermore, no
blue obstacles are entered. At the same time blue obstacles that originate in area R2 are left. Since the
last alignment arc is “to the left” of base b(b, r1) those obstacles do not enclose any alignment arc and we
therefore add their associated multipliers. We do not add multipliers of any red obstacle. After reaching
node (b, r2) we have to weaken our information about the last alignment arc to be “to the left” of b(b, r1).
As a consequence, we would not be able to decide whether we have to pay for obstacles originating in R3
or not. Hence we must have edges in the bypass graph that enable us to reach f on a path, on which these
regions do not contain any origins of obstacles

enclosed by such an obstacle. As it concerns the determination of whether the part of
path p going from (0,0) to t(w) traverses such an alignment arc, note that the weight
of a bpg edge can incorporate only “local” information. Specifically, we have to deal
with the inexact information that the last alignment arc is “to the lower left” of b(v).
Similarly, when continuing from node w, we must not make any assumptions about
the node from where we reached w and therefore we will have to further weaken our
knowledge about the position of the last alignment arc to that it is to the lower left
of b(w). As a consequence, in the third part only those among the obstacles we are
leaving can be considered, that are not enclosing b(v). This is illustrated in Fig. 4. As
we will see below, the definition of the edge set ensures the there always exists of a
path through the bpg along which this set of obstacles is equal to the set of obstacles
that are not enclosing the target node of any alignment arc lying on the path (compare
third part).

Definition 4.2 (Bypass graph) We define the Bypass Graph (bpg) G = (V,E, l)

with edge set E ⊂ V × V and length function l : E → R as follows. The vertex
set V contains all pairs v of conflicting obstacles. Let vb and vr denote the blue
and red obstacle of v, respectively. E = Eb ∪ Er , where Eb = {(v,w) | vr = wr

and wb is minimal in D(vb)} and Er = {(v,w) | vb = wb and wr is minimal in
D(vr )}. Every edge (v,w) ∈ Eκ , κ ∈ {b, r}, is assigned a length l((v,w)) =
wext · ‖t(w) − t(v)‖1 − ∑

o∈Q−(v,w) λ(o) + ∑
o∈Q+(v,w) λ(o), where Q−(v,w) =
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Q(t(w)) \ Q(t(v)) and Q+(v,w) = {Oκ(i, j) ∈ Qκ(t(v)) \ Qκ(t(w)) | wκ =
Oκ(l,m), i ≥ l, j ≤ m}.

We connect the bypass graph to the dynamic programming graph by arcs as fol-
lows: If (i, j) is the base of a pair of conflicting obstacles with corresponding node
v ∈ V in the bpg we add arcs of all nodes in cell (i, j) to v (recursion formula (8))
and by arcs from all v ∈ V to the B-node of their tail t(v) (formula (7)).

The overall structure of the resulting graph, whose longest path from a dedicated
start node in cell (0,0) to a node in cell (ns, nt ) corresponds to the optimal pairwise
alignment, can be described in terms of the following recurrences (base case omitted):

C(l,m) = max {D(l,m),V (l,m),H(l,m),B(l,m)} (3)

with

D(l,m) = C(l − 1,m − 1) + w(sl, tm) −
∑

o=Or (i,m),i≥l

λ(o) −
∑

o=Ob(l,j),j≥m

λ(o)

(4)

V (l,m) = max

{
D(l,m − 1) + wext + wopen
V (l,m − 1) + wext

}

−
∑

o=Or (i,m),i>l

λ(o) (5)

H(l,m) = max

{
D(l − 1,m) + wext + wopen
H(l − 1,m) + wext

}

−
∑

o=Ob(l,j),j>m

λ(o) (6)

B(l,m) = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maxv∈V :t(v)=(l,m){δ(v)}
B(l − 1,m) + wext − ∑

o=Ob(l,j),j>m λ(o)

B(l,m − 1) + wext − ∑
o=Or (i,m),i>l λ(o)

V (l − 1,m) + wext + wopen − ∑
o=Ob(l,j),j>m λ(o)

H(l,m − 1) + wext + wopen − ∑
o=Or (i,m),i>l λ(o)

(7)

where

δ(v) = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maxu:(u,v)∈E {δ(u) + l((u, v))}⎧
⎪⎪⎨

⎪⎪⎩

D(b(v)) + qwext + 2wopen
V (b(v)) + qwext + wopen
H(b(v)) + qwext + wopen
B(b(v)) + qwext

⎫
⎪⎪⎬

⎪⎪⎭

−
∑

o∈{Q(t(v))\Q(b(v))}
λ(o)

(8)

with q being the Manhattan distance between the tail and the base of node v, i.e. q =
‖t(v) − b(v)‖1.

4.3 Complexity

Obviously there are at most |O|2 conflicting pairs of obstacles and hence the number
of additional nodes |V| is at most |O|2. From Definition 4.2 it follows immediately
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that the number of additional arcs |A| is at most O(|O|3), as an edge of the bypass
graph is defined by three obstacles. Therefore the running time to compute an optimal
solution to the extended pairwise alignment problem is O(nm + |O|3).

We improve the practical performance of our algorithm for solving the extended
pairwise alignment problem by applying an A∗-approach: Notice that the scores
D(l,m),V (l,m),H(l,m) and B(l,m) during an iteration of the subgradient opti-
mization (see Sect. 5) can be at most the scores of the first iteration, i.e. when all
multipliers λ are set to 0. Therefore, the length of a longest path from any node (l,m)

to (ns, nt ) determined in the first iteration provides a heuristic estimate for all other
iterations, which is monotonic and thus the first path found from (0,0) to (ns, nt ) is
optimal.

4.4 Correctness

Let p be a path starting at D(0,0) through the dp-graph and the bypass graph end-
ing at a node D(i, j). Furthermore, let D(l,m) be the last node of type D on p

preceding D(i, j) and let p̂ be the prefix of p up to node D(l,m). If d denotes the
score of the alignment of prefixes s1 . . . sl and t1 . . . tm induced by p̂, the score of
the alignment induced by p is d + w(si, tj ) + wext · ‖(i − 1, j − 1) − (l,m)‖1 + r ·
wopen − ∑

o=Or (i′,j ′)|i≤i′,m<j ′≤j λ(o) − ∑
o=Ob(i

′,j ′)|j≤j ′,l<i′≤i λ(o), where r = 0, if
(i − 1, j − 1) = (l,m), r = 2, if i − 1 > l and j − 1 > m and r = 1 otherwise.

Theorem 4.3 Given strings s and t of length ns and nt , respectively, D(x,y), for
1 ≤ x ≤ ns and 1 ≤ y ≤ nt , is equal to the value of an optimal extended pairwise
alignment of prefixes s1 . . . sx and t1 . . . ty that aligns sx with ty .

Hence the optimal extended pairwise alignment of s and t can be determined by
iterating over all D(x,y), 1 ≤ x ≤ ns and 1 ≤ y ≤ nt , adding the appropriate weight
for the remaining gaps. Alternatively, it can be easily seen that the value of the optimal
extended pairwise alignment of s and t corresponds to the maximum of D(ns,nt ),
V (ns, nt ), H(ns, nt ), and B(ns, nt ).

Proof Consider arbitrary but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m < m′ < nt and
assume that D(l,m) and D(l′ + 1,m′ + 1) are the targets of two realized alignment
edges with gaps in between. We will show in Lemmas 4.5 and 4.6 that

(a) there is a path of length

wext · ‖(l′,m′) − (l,m)‖1 + 2 · wopen −
∑

o∈{Q((l′,m′))\Q((l,m))}
λ(o)

between D(l,m) and B(l′,m′),
(b) any path between D(l,m) and B(l′,m′) that does not traverse any alignment arc

has length at most

wext · ‖(l′,m′) − (l,m)‖1 + 2 · wopen −
∑

o∈{Q((l′,m′))\Q((l,m))}
λ(o).
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Similar assumptions can be made if l = l′ or m = m′, where we pay the gap open-
ing cost at most once and the path ends at a node of type H , V or D.

Using these two facts, we can prove the statement of the theorem by induction
over x and y. For x = 0 and y = 0 there is nothing to show. Consider x, y > 0.

Assume in the optimal extended pairwise alignment that aligns sx and ty the last
alignment arc preceding the one with target D(x,y) has target D(l,m). Using fact
(a) and the induction hypothesis, we obtain, by setting q := ‖(x −1, y −1)− (l,m)‖1
and using r as defined above,

D(x,y) ≥ D(l,m) + q · wext + r · wopen −
∑

o∈{Q((x−1,y−1))\Q((l,m))}
λ(o)

+ w(sx, ty) −
∑

o=Or (i,y),i≥x

λ(o) −
∑

o=Ob(x,j),j≥y

λ(o) (9)

= D(l,m) + q · wext + r · wopen −
∑

o∈{Ôr∪Ôb}
λ(o), (10)

where Ôr = {Or (i, j) | x ≤ i,m < j ≤ y} and Ôb = {Ob(i, j) | y ≤ j, l < i ≤ x}.
This value is equal to the value of the optimal extended pairwise alignment of prefixes
s1 . . . sx and t1 . . . ty that aligns sx and ty .

Now let p be the longest path ending in D(x,y). Notice that the last arc of path p

is an alignment arc. Let D(l,m) be the target of the last alignment arc of p preceding
D(x,y). Using fact (b) and the induction hypothesis, we can simply replace “≥”
in (9) by “≤” to obtain analogously

D(x,y) ≤ D(l,m) + q · wext + r · wopen −
∑

o∈{Ôr∪Ôb}
λ(o), (11)

where q , r , Ôr and Ôr are as defined above. This value corresponds to the value of
the extended pairwise alignment of prefixes s1 . . . sx and t1 . . . ty that aligns sx with ty
and sl with tm. Furthermore, it is based on the optimal extended pairwise alignment
of prefixes s1 . . . sl and t1 . . . tm that aligns sx with ty . Clearly, the score of this specific
alignment is bounded from above by the value of the optimal extended alignment of
prefixes s1 . . . sx and t1 . . . ty that aligns sx with ty . �

It remains to show assumptions (a) and (b) and their modifications for the case
l′ = l or m′ = m used in the proof. If l′ = l and m′ = m, there is nothing to show.
If l′ = l or m′ = m and the other inequality is strict, we exclusively use gap arcs in
one string and we therefore do not leave obstacles that we enter. Hence, we do not
need to enter the bypass graph and can proceed simply in the dp-graph. It remains to
show the facts for the case l′ < l and m′ < m. Fact (a) mainly relies on the existence
of a path through the bypass graph that represents a consecutive run of alternate gaps
in either string and that is penalized only by multipliers assigned to newly entered
obstacles:

Lemma 4.4 Given a node v ∈ V of the bpg, b(v) = (lb ,mb), and a cell (l′,m′)
with t(v) < (l′,m′), there exists a node vn ∈ V and path p through the bpg from
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Fig. 5 Given base (lb ,mb ) and a cell (l′,m′) as in Lemma 4.4. (a) The initial node v0 in the bpg is
determined by the shaded rectangle. Note that ψ(vb

0 ) > ψ(b1). In the example, set Q0
b

contains blue

obstacles b2, b3, b4, but not b5, since b5 encloses (l′,m′). b3 is a leftmost obstacle in Q0
b

(min. prop-

erty) and ψ(b3) > ψ(b2) (max. property) and therefore v1 = (b3, vr
0). (b) An example sequence 〈vi 〉2

0
depicted by the sequence of its tail cells, (v0, v1) ∈ Eb , (v1, v2) ∈ Er . The sequence terminates at v2 as b

encloses (l′,m′)

every source node S(lb ,mb), S ∈ {D,V,H,B}, to the node B(t(vn)) of length
wext · ||t(vn)− b(v)||1 + r ·wopen −∑

o∈{Q(t(vn))\Q(b(v))} λ(o), where r = 2 if S = D,
r = 1 if S ∈ {H,V } and r = 0 if S = B , such that {Q(t(vn))\Q(b(v))} ⊆ Q((l′,m′)),
i.e. obstacles enclosing t(vn) but not b(v) also enclose (l′,m′).

In the following proof of Lemma 4.4 we use functions ξ and ψ that are defined
for an obstacle o = Oκ(l,m) as ξ(o) = l and ψ(o) = m. Furthermore, we denote by
A � B the union of disjoint sets A and B .

Proof We construct a sequence 〈vi〉n0 of pairs of conflicting obstacles as follows
(compare Fig. 5a): We select v0 = (vb

0 , vr
0) with maximal ξ(vr

0) and ψ(vb
0), such

that b(v0) = (lb ,mb) and vb
0 , vr

0 /∈ Q((l′,m′)). Let Qi
b be the set of blue obsta-

cles that enclose the tail of pair vi but neither cell (l′,m′) nor (lb ,mb), i.e. Qi
b =

Qb(t(vi))\ (Qb(b(v0))∪Qb((l
′,m′))). Accordingly, Qi

r = Qr (t(vi))\ {Qr (b(v0))∪
Qr ((l

′,m′))}. Then for i ≥ 1, if Qi−1
b �= ∅, vi is obtained from vi−1 by pick-

ing the uppermost among the leftmost blue obstacles in Qi−1
b while keeping the

red obstacle unchanged, i.e. vi = (Ob(g,h), vr
i−1), with Ob(g,h) ∈ Qi−1

b such that

∀g′, h′,Ob(g
′, h′) ∈ Qi−1

b : g ≤ g′ (min. property) and ∀h′,Ob(g,h′) ∈ Qi−1
b : h > h′

(max. property). Similarly, if Qi−1
b = ∅ but Qi−1

r �= ∅, we retain the blue obstacle and
choose the rightmost among the lowermost red obstacles in Qi−1

r , i.e. we set vi =
(vb

i−1,Or (g,h)), with Or (g,h) ∈ Qi−1
r such that ∀g′, h′,Or (g

′, h′) ∈ Qi−1
r : h′ ≥ h

and ∀g′,Or (g
′, h) ∈ Qi−1

r : g′ < g. The sequence terminates at vn, if Qn
b = Qn

r = ∅
(Fig. 5b).
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Fig. 6 Consider (v0, v1) ∈ Eb

lying on a path p̂ through the
bpg as described in Lemma 4.4.
Nodes v0, v1 are represented by
their corresponding tails and by
obstacles drawn by solid lines.
Obstacles in Q+(v0, v1)

originate in the shaded
rectangle. The existence of
obstacle b1 is in contradiction to
the maximality of ψ(vb

0 ), b2 is
in conflict with the min.
property of ξ(vb

1 ). According to
the definition of an edge in the
bpg, vb

1 is minimal in D(vb
0 ) and

therefore obstacle b3 cannot
exist. It follows
Q+(v0, v1) = Q+(1)

In the following we show that nodes in the bypass graph representing pairs of con-
flicting obstacles in 〈vi〉n0 lie on a path p̂ that can be easily extended to a path p

having the required properties. It can be easily verified that there exists an edge
between nodes corresponding to two consecutive pairs of obstacles in 〈vi〉n0: the
min. and max. properties of our construction of sequence 〈vi〉n0 ensure vb

i ∈ D(vb
i−1)

if Qi−1
b �= ∅, and vr

i ∈ D(vr
i−1) otherwise. Furthermore, the existence of an obsta-

cle v̂κ ∈ D(vκ
i−1) with v̂κ < vκ

i would be in contradiction to the min. property of
vκ
i , meaning vκ

i is minimal in D(vκ
i−1) and thus (vi−1, vi) ∈ Eκ , for all 1 ≤ i ≤ n,

κ ∈ {b, r}.
We will argue by induction on the number of edges k, 1 ≤ k ≤ n, on a prefix of the

path induced by sequence 〈vi〉n0 , that

k∑

i=1

l(vi−1, vi) = wext · ||t(vk) − t(v0)||1 −
∑

o∈Q−(k)

λ(o) +
∑

o∈Q+(k)

λ(o), (12)

with Q−(k) = Q(t(vk)) \Q(t(v0)) and Q+(k) = Q(t(v0)) \ {Q(b(v0)) ∪Q(t(vk))}.
In other words, the length of path p̂, going from v0 to vk , accounts for the extension
cost of gaps between cells t(v0) and t(vk) and is penalized by Lagrangian multipliers
associated with obstacles enclosing t(vk) but not t(v0). Additionally, penalties of ob-
stacles that p̂ leaves are recovered, if they enclose t(v0) but not b(v0). Note that these
obstacles are being paid for when traversing an arc connecting a node in cell b(v0)

of the dynamic programming graph with bpg node v0. Also, the weight of this arc
incorporates any gap opening costs, depending on the type of its source node. Crucial
in this context is, that multipliers assigned to obstacles that p̂ enters along one arc
and leaves along a later arc cancel out each other.

For the base case (k = 1) it suffices to show that Q+(1) = Q+(v0, v1) (compare
(12) for k = 1 with the length of an edge in the bpg, Definition 4.2). W.l.o.g. as-
sume (v0, v1) ∈ Eb (see Fig. 6). Note that for general (vi−1, vi) ∈ Eb every red
obstacle enclosing t(vi−1) also encloses t(vi) (e.g. red obstacle r in Fig. 6)
and thus Q(t(vi−1)) \ Q(t(vi)) ⊆ Ob . For every element o ∈ Q+(v0, v1) it holds
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Fig. 7 (a) Obstacles in Q−(k) are from Or and enclose t(vk+1), see obstacle r1. Therefore Q−(k + 1)

is obtained by simply adding obstacles that enclose t(vk+1), but not t(vk), like obstacle r2. Obstacles in
Q+(k + 1) can be divided into two subsets, depending on whether they enclose t(vk) (obstacle b1) or
not (obstacle b2). The latter one coincides with set Q+(k). The first subset is equal to set Q+(vk, vk+1),
as the min. and max. properties of elements of sequence 〈vi 〉 imply the shaded rectangle to be empty.
(b) Obstacles in Q−(k) must not enclose t(vk+1) (e.g. obstacle b1) and thus have to be removed from
Q−(k) � Q−(vk, vk+1) to obtain Q+(k + 1). Note that no blue obstacle originates in rectangles R1
(an edge in Er is traversed only if there is no outgoing edge in Eb) or R2 (min. and max. proper-
ties of elements of 〈vi 〉). Therefore obstacles enclosing t(vk) but not t(vk+1) do not enclose t(v0) and
Q+(k + 1) =Q+(k) follows (obstacles enclosing t(v0) but not t(vk) do not enclose t(vk+1))

o /∈ Q(b(v0)) and o /∈ Q(t(v1)) by definition, and thus Q+(v0, v1) ⊆ Q+(1). In or-
der to show Q+(v0, v1) ⊇ Q+(1), consider an arbitrary element Ob(g,h) ∈ Q+(1).
From Ob(g,h) /∈ Q(b(v0)) and Ob(g,h) ∈ Q(t(v0)) it follows that g ≥ ξ(vb

0). Fur-
thermore, g = ξ(vb

0) and h = ψ(vb
1) are contradictory to the max. property of vb

0 and
the min. property of vb

1 , respectively (see obstacle b1 and b2 in Fig. 6). At the same
time ξ(vb

0) < g < ξ(vb
1) and ψ(vb

0) < h < ψ(vb
1) are in contradiction to the minimal-

ity of vb
1 in D(vb

0) (obstacle b3 in Fig. 6), from which we conclude g ≥ ξ(vb
1) and

h ≤ ψ(vb
1), and thus Q+(1) ⊆ Q+(v0, v1).

Now assume (12) is true for some k with 1 ≤ k < n. Then the path obtained by
appending edge (vk, vk+1) has length

qkwext −
∑

o∈Q−(k)

λ(o) +
∑

o∈Q+(k)

λ(o) + l(vk, vk+1) (13)

= qk+1wext −
∑

o∈Q−(k)�Q−(vk,vk+1)

λ(o) +
∑

o∈Q+(k)�Q+(vk,vk+1)

λ(o) (14)

where qi = ||t(vi)−t(v0)||1. Now assume (vk, vk+1) ∈ Eb (for (vk, vk+1) ∈ Er a sym-
metric argument applies). Then it is easy to see, that

Q−(k + 1) = Q−(k) �Q−(vk, vk+1) and (15)

Q+(k + 1) = Q+(k) �Q+(vk, vk+1) (16)
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if (vi−1, vi) ∈ Eb, ∀1 ≤ i ≤ k (Fig. 7a), and

Q−(k + 1) = {Q−(k) �Q−(vk, vk+1)} \Q+(vk, vk+1) and (17)

Q+(k + 1) = Q+(k) (18)

otherwise (Fig. 7b). In both cases (12) follows by induction.
Now let again qn = ||t(vn)− t(v0)||1 and q̂n = ||t(vn)− b(v0)||1. Then by extend-

ing path p̂ by an arc from an appropriate base node S(b(v0)), S ∈ {D,H,V,B}, to
bpg node v0 we obtain a path p of desired length

q̂nwext + r · wopen −
∑

o∈{Q(t(vn))\Q(b(v0))}
λ(o), (19)

where the number r of gaps we are opening in cell b(v0) is determined by the type S
of the base node in which path p originates. More precisely, r = 2 if S = D, r = 1 if
S ∈ {H,V } and r = 0 if S = B .

Note that the termination condition of sequence 〈vi〉n0 implies ∀o ∈ {Q(t(vn)) \
Q(b(v0))} : o ∈ Q((l′,m′)) and therefore the claim of the lemma follows. �

Lemma 4.5 Given strings s and t of length ns and nt , respectively, consider arbitrary
but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m < m′ < nt . There is a path of length
wext · ||(l′,m′) − (l,m)||1 + 2 · wopen − ∑

o∈{Q((l′,m′))\Q((l,m))} λ(o) from D(l,m) to
B(l′,m′).

Proof Starting from node D(l,m), traversing exclusively gap arcs, we enter the bpg
from a node in cell (lb ,mb), from which we can not proceed without entering a for-
bidden obstacle. Cell (lb ,mb) must be the base of a pair of conflicting obstacles
(see Fig. 3a). We thus construct a sequence 〈vi〉n0 of pairs of conflicting obstacles
as described in the proof of Lemma 4.4 to determine the path through the bpg.
If we now can find a path from the B-node in cell t(vn) to node B(l′,m′) using
exclusively gap arcs that are not entering any forbidden obstacles the overall path
from D(l,m) to B(l′,m′) has desired length wext · ||(l′,m′) − (l,m)||1 + 2 · wopen −∑

o∈Q((l′,m′))\Q((l,m)) λ(o). Otherwise we reach again the base of a pair of forbidden
conflicting obstacles and we apply Lemma 4.4 again to jump over forbidden obsta-
cles. �

Finally we show, that we do not overestimate the optimal path length.

Lemma 4.6 Given strings s and t of length ns and nt , respectively, consider arbitrary
but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m < m′ < nt . Any path from D(l,m) to
B(l′,m′) that uses only gap arcs has length at most wext · ||(l′,m′) − (l,m)||1 + 2 ·
wopen − ∑

o∈{Q((l′,m′))\Q((l,m))} λ(o).

Proof For the sake of simplicity consider an arbitrary path that enters the bpg only
once from a node S(lb ,mb) and returns to the original dynamic programming graph
at a node B(tn). Then obstacles in Q((l′,m′)) \ Q((l,m)) can be subdivided into
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three disjoint groups. Obstacles that enclose (lb ,mb), obstacles in Q(tn)\Q((lb ,mb))

and obstacles that do not enclose tn. Obstacles from first and third group must
be entered and thus paid by the sequence of gap arcs leading from D(l,m) to
S(lb ,mb) (formulas (5)–(7)), and from B(tn) to B(l′,m′) (formula (7)), respectively.
The length of an arbitrary path p′–from S(lb ,mb) to B(tn) through the bpg dif-
fers from path p induced by sequence 〈vi〉n0 and constructed in Lemma 4.4 only
in two aspects. First, for an edge (vk, vk+1) on path p̂ we have to relax (16) to
Q+(k+1) ⊇ Q+(k)�Q+(vk, vk+1) and (17) to Q−(k+1) ⊆ Q−(k)\Q+(vk, vk+1).
Intuitively, when traversing edge (vk, vk+1) ∈ Eb in Fig. 7a, the shaded rectangle may
still contain obstacles. And second, {Q(tn) \ Q((lb ,mb))} ⊆ Q((l′,m′)) (see termi-
nation condition of sequence 〈vi〉n0) does not necessarily hold. As a consequence,
obstacles that contribute to the penalty of path p also contribute to the penalty of p̂

and the claim follows. �

5 Improving the Lagrangian relaxation bound

Recall that (LRλ) is the problem of computing all extended pairwise alignments for
a given set of multipliers λ and v(LRλ) is its objective function value. Moreover, (P )

is the multiple sequence alignment problem itself.
Since the optimal value v(LRλ) is an upper bound on the optimal value of (P ) for

all multiplier vectors λ ∈ R
m+, m = |M|, we are interested in solving the problem

(LR) min
λ≥0

v(LRλ)

to obtain tighter bounds for our branch-and-bound algorithm.

5.1 Subgradient optimization

It is well known that the Lagrangian function f (λ) = v(LRλ) (for our case where
(P ) is a maximization problem) is a convex function of λ, but it is not differentiable
at points, where the optimal solution of (LRλ) is not unique. A commonly used ap-
proach to determine near-optimal Lagrangian multipliers efficiently is based on the
vector of subgradients g(λ) ∈ R

m, associated with a given λ. The set ∂f (λ0) of all
subgradients of f (λ) at a point λ0 is always nonempty, and one can show that the
vector

gM(λ0) = r − 1 −
r∑

j=1

z̄(uj ,uj+1), M ∈M (20)

is contained in ∂f (λ0), where z̄ is an optimal solution to (LRλ0). The iterative ap-
proach proposed by Held and Karp (1971) generates a sequence λ0, λ1, . . . of La-
grangian multipliers by taking at iteration k a step along a subgradient of f (λk),
projecting the resulting point onto the nonnegative orthant:

λk+1
M = max

{

0, λk
M + θ

v(LRλk ) − LB
∑

M ′∈M g2
M ′

gM(λk)

}

, M ∈M (21)
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where LB is a lower bound on v(P ), and θ is a step size parameter assuming val-
ues in (0,2]. As to the adaption of scalar step size θ , our approach differs from the
classical Held-Karp method, which halves parameter θ when there is no upper bound
improvement for a certain number of consecutive iterations. If the best and worst up-
per bounds computed in the last p iterations differ by more than 1%, we suspect that
we are “overshooting” and thus we halve the current value of θ . If, in contrast, the
two values are within 0.1% from each other, we overestimate v(LRλ∗), where λ∗ is
an optimal solution to (LR), and therefore increase θ by a factor of 1.5. Similarly to
Caprara et al. (1999), we experienced a faster convergence to near optimal multipliers
using this strategy, compared to the classical approach.

As (2) involves exponentially many mixed cycle inequalities that would have to
be dualized, formula (21) can not be applied in a straightforward way, but we use the
relax-and-cut framework outlined below.

5.2 Relax-and-cut

In the traditional case of the subgradient method (SM), when the number of dualized
constraints is not too large, Beasley (1993) reported good practical convergence to
v(LR), when setting gi = 0 whenever gi ≥ 0 and λi = 0, for i ∈ 1, . . . ,m, i.e. if an
inequality whose multiplier is 0 is not violated. We extend this idea by setting gM = 0
for all M with λM = 0 whose corresponding mixed cycle inequalities are not violated
by the Lagrangian solution. These multipliers would remain zero valued at the end of
the current iteration and thus would not directly contribute to v(LRλ), at any given
SM iteration. We call the corresponding constraints inactive inequalities. Conversely,
we call inequalities, whose associated multiplier may directly contribute to the La-
grangian objective function, active inequalities. These are the constraints (2) that are
violated by the Lagrangian solution and those inequalities that have nonzero multi-
pliers associated with them. Otherwise the value

∑
M∈M gM would be very high,

resulting in virtually unchanged multipliers from iteration to iteration. We therefore
apply (21) exclusively to active inequalities, as suggested in Lucena (1993).

This dynamic scheme, where the pool of active inequalities may continuously
change, heavily relies on the ability to identify inequalities that are violated by the
Lagrangian solution. In order to prevent the set of active inequalities from grow-
ing too rapidly we restrict the separation problem to mixed cycle inequalities, that
are most violated by the average of the last h solutions. Experiments show, that this
modification improves the rate of convergence dramatically (Table 5).

6 Experiments

We have implemented our Lagrangian approach in C++ using the LEDA-library
(Mehlhorn and Näher 1999) and have embedded it into a branch-and-bound frame-
work. The lower bounds in each bb node are computed by selecting, in a greedy fash-
ion, edges from the set {e ∈ EA | x̄e = 1} that satisfy conditions (1)–(3). The weights
for the alignment edges were obtained by the BLOSUM62 amino acid substitution
matrix, whereas the gap arcs were assigned a weight that was computed as 4l + 6,
where l is the number of characters in the corresponding gap.
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We tested our implementation on a set of instances of the BAliBASE library, in-
cluding reference alignments from last inception, version 3. The benchmark align-
ments from reference 1 (R1) contain 4 to 6 sequences and are subdivided into three
groups of different length (short, medium, long). They are further categorized into
three subgroups by the degree of similarity between the sequences (group V1: identity
< 25%, group V2: identity 20–40%, group V3: identity > 35%). In BAliBASE 3 two
datasets are prepared. The homologous region set, which is similar to BAliBASE 2,
and the full length set, where sequences contain non-homologous residues.

The purpose of the experiments is twofold. First, we want to evaluate the com-
plexity of instances our current implementation is able to solve in reasonable time.
Second, we want to assess the quality of alignments that are optimal in our model of
the multiple sequence alignment problem. For the latter we used an evaluation pro-
gram provided by BAliBASE that computes a score between 0 and 1, indicating the
degree of accordance with the hand-made reference alignment, which uses structural
information (see Table 4).

We compared our implementation, which we will call LASA (LAgrangian Se-
quence Alignment) with MSA (Lipman et al. 1989), COSA (Althaus et al. 2006),
T-COFFEE (Notredame et al. 2000), CLUSTALW (Thompson et al. 1994), MAFFT
(Katoh et al. 2005) and MUSCLE (Edgar 2004). The multiple sequence alignment
program MSA is based on dynamic programming and uses the so called quasi-affine
gap cost model, a simplification of the (natural) affine gap cost model. The branch-
and-cut algorithm COSA is based on the same ILP formulation and uses CPLEX as
LP-solver.

We ran the experiments on a system with a 2,39 GHz AMD Opteron Processor
with 8 GB of RAM. Any run that exceeded a CPU time limit of 12 hours was con-
sidered unsuccessful. Tables 1, 2 and 3 report our results on short, medium sized
and long instances from reference 1, respectively. The columns have the following
meaning:

• Instance: Name of the instance, along with an indication (k, n) of the number of
sequences and the overall number of characters;

• Heur: Value of the initial feasible solution found by COSA or MSA;
• PUB: Pairwise upper bound;
• Root: Value of the Lagrangian upper bound at the root node of the branch-and-

bound tree;
• Opt: Optimal solution value;
• #Nodes: Number of branch-and-bound subproblems solved;
• #Iter: Total number of iterations during the subgradient optimization;
• Time: Total running time in seconds.

Although MSA reduces the complexity of the problem by incorporating quasi-
affine gap costs into the multiple alignment, it could hardly solve instances with
a moderate degree of similarity. In contrast, our preliminary implementation outper-
forms the CPLEX based approach COSA, the only method known till now to solve
the MSA problem exactly. COSA was not able to solve any of the medium sized or
long benchmark alignments, while LASA found the optimal solution within minutes.
This is mainly because the LPs are quite complicated to solve. Moreover, one in-
stance crashed as an LP could not be solved by CPLEX (Table 1)
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Table 1 Results on short instances from reference 1

Instance Heur PUB Root Opt LASA COSA MSA

#Nodes #Iter Time Time Time

Reference 1 Short, V3

1aho (5/320) 877 987 884 881 7 1,089 <1 1:29 –

1csp (5/339) 1,457 1,473 1,457 1,457 1 17 <1 1 <1

1dox (4/374) 749 782 751 750 3 253 3 30 <1

1fkj (5/517) 1,578 1,675 1,585 1,578 3 348 13 6:04 –

1fmb (4/400) 1,333 1,353 1,333 1,333 1 13 <1 2 <1

1krn (5/390) 1,523 1,558 1,523 1,523 1 104 1 6 6

1plc (5/470) 1,736 1,824 1,736 1,736 1 218 6 4:24 20:14

2fxb (5/287) 1,341 1,352 1,341 1,341 1 11 < < 1 <1

2mhr (5/572) 2,364 2,406 2,364 2,364 1 65 3 2 17

9rnt (5/499) 2,550 2,573 2,550 2,550 1 39 1 4 <1

Reference 1 Short, V2

1aab (4/291) 231 257 231 231 1 100 <1 4 < 1

1csy (5/510) 649 769 649 649 1 393 17 3:01 –

1fjlA (6/398) 674 731 676 674 5 561 12 34 –

1hfh (5/606) 903 1,067 911 903 3 411 33 – –

1hpi (4/293) 386 439 386 386 1 298 4 53 7

1pfc (5/560) 994 1,139 1,004 994 11 1,387 1:48 37:46 –

1tgxA (4/239) 247 317 247 247 1 566 9 53 –

1ycc (4/426) 117 309 202 200 7 1,865 2:19 – –

3cyr (4/414) 515 615 522 515 7 983 38 –* 45

Reference 1 Short, V1

1aboA (5/297) −685 −476 −604 −676 3,497 417,260 11:04:02 – –

1tvxA (4/242) −409 −260 −358 −405 777 122,785 1:59:44 – –

1idy (5/269) −420 −273 −356 −414 4,193 678,592 12:00:48 – –

1r69 (4/277) −326 −207 −289 −326 253 54,668 58:40 – –

1ubi (4/327) −372 −246 −330 −372 215 43,620 1:12:57 – –

1wit (5/484) −198 −25 −186 −197 15 4,221 7:42 – –

2trx (4/362) −182 −88 −178 −182 5 2,186 3:04 – –

*With the COSA-code, the instance 3cyr crashed after about one hour of computation time as the LP-solver
was not able to solve the underlying LP

Concerning the quality of the alignments, our approach ranks among the best pro-
grams implemented so far (see Table 4). The quality could be probably improved by
a more careful choice of the objective function. In our current implementation we use
a fixed objective for all instances, no matter what their level of identity is.

Furthermore, we give computational evidence for the effectiveness of our novel
approach to select violated inequalities to be added to our constraint pool. Consider-
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Table 2 Results on medium sized instances from reference 1. COSA and MSA were not able to solve any
of these benchmark alignments. Results on group V1 are omitted, since LASA was not able to solve these
instances in the allowed time frame

Instance Heur PUB Root Opt #Nodes #Iter Time

Reference 1 Medium, V3

1amk (5/1241) 5,668 5,728 5,669 5,669 1 60 8

1ar5A (4/794) 2,303 2,357 2,304 2,303 3 262 20

1ezm (5/1515) 8,378 8,466 8,378 8,378 1 105 23

1led (4/947) 2,150 2,282 2,158 2,150 33 1,435 3:54

1ppn (5/1083) 4,718 4,811 4,729 4,724 23 925 3:10

1pysA (4/1005) 2,730 2,796 2,732 2,730 3 223 28

1thm (4/1097) 3,466 3,516 3,468 3,468 3 233 30

1tis (5/1413) 5,854 5,999 5,874 5,856 83 2,993 18:31

1zin (4/852) 2,357 2,411 2,361 2,357 13 625 1:03

5ptp (5/1162) 4,190 4,329 4,233 4,205 193 8,337 35:48

Reference 1 Medium, V2

1ad2 (4/828) 1,195 1,270 1,197 1,195 7 419 42

1aym3 (4/932) 1,544 1,664 1,551 1,544 17 1,060 2:37

1gdoA (4/988) 980 1,201 1,003 984 459 31,291 2:38:36

1ldg (4/1240) 1,526 1,640 1,539 1,526 41 2,160 8:32

1mrj (4/1025) 1,461 1,608 1,473 1,464 27 1,681 5:29

1pgtA (4/828) 683 808 691 690 9 926 2:05

1pii (4/1006) 1,099 1,256 1,103 1,100 23 1,320 4:54

1ton (5/1173) 1,550 1,898 1,609 1,554 807 44,148 5:32:47

Table 3 Results on long sequences from reference 1. Only three instances could be solved by LASA.
MSA and COSA were not able to solve any of these benchmark alignments. Instance 3pmg was solved
once with an initial lower bound obtained by MSA (7363) and once with the optimal value (7418) com-
puted by LASA itself

Instance Heur PUB Root Opt #Nodes #Iter Time

1ad3 (4/1746) 5,355 5,424 5,358 21 734 4:25

actin (5/1924) 8,018 8,178 8,039 8,022 45 2,138 19:41

3pmg (4/2224) 7,363 7,602 7,460 7,418 1,397 53,350 12:50:50

3pmg (4/2224) 7,418 7,602 7,448 7,418 119 4,789 1:08:37

ing the average of the last h solutions of the Lagrangian relaxation instead of looking
only at the current solution (h = 1) dramatically reduces the number of iterations (see
Table 5). Only short sequences of high identity (short, V3) could be solved for h = 1.
Moreover, this table shows that the extended pairwise alignment problems are solved
at least twice as fast when using the A∗ approach.

The columns in Table 5 have the following meaning:
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Table 4 Average score of the alignments computed by different programs. Only instances that have been
solved by LASA were considered. In BAliBASE 3.0 full length sequences (full) and instances from the
homologous region set (hom) are distinguished

Group LASA T-COFFEE CLUSTALW MAFFT MUSCLE

BAliBASE 2.0

Short V1 0.969 0.968 0.984 0.988 0.970

Short V2 0.865 0.819 0.936 0.948 0.811

Short V3 0.512 0.340 0.562 0.882 0.537

Medium V1 0.944 0.952 0.943 0.969 0.969

Medium V2 0.933 0.886 0.911 0.901 0.895

Long V1 0.960 0.941 0.933 0.976 0.982

BAliBASE 3.0

RV11 full 0.942 0.966 0.935 0.939 0.952

RV11 hom 0.795 0.672 0.764 0.819 0.780

RV12 full 0.918 0.900 0.918 0.919 0.905

RV12 hom 0.894 0.876 0.895 0.882 0.888

Table 5 We give the number of iterations needed by our approach for different numbers h of solutions
that were considered to compute the average Lagrangian solution. The default is h = 10. The last column
gives the time spent in the root node if we resign to use the A∗ approach

Instance h = 1 h = 2 h = 20 h = 30 LASA (A*, h = 10) DynProg, h = 10

#Iter #Iter #Iter #Iter #Iter Time Time

1aho (5/320) 748,470 2,496 1,194 1,283 1,089 10 22

1csp (5/339) 17 14 19 19 17 <1 <1

1dox (4/374) 80,001 271 211 207 253 1 5

1fkj (5/517) 316,072 849 707 676 348 9 25

1fmb (4/400) 1,372 14 14 14 13 <1 <1

1krn (5/390) 191,281 634 148 155 104 1 8

1plc (5/470) 232,591 489 642 513 218 06 14

2fxb (5/287) 16,425 15 11 11 11 <1 <1

2mhr (5/572) 60,005 93 116 177 65 3 8

9rnt (5/499) 54 49 40 40 39 1 3

• Instance: Name of the instance, along with an indication (k, n) of the number of
sequences and the overall number of characters;

• h = ·: The number of solutions that were considered to compute an average La-
grangian solution;

• LASA: Default version of LASA, i.e. h = 10 and using the A* approach;
• DynProg: LASA without using the A* approach;
• #Iter: Number of iterations needed by a specific version of LASA;
• Time: Total running time in seconds needed by a specific version of LASA;
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Table 6 For the first four
benchmark alignments of each
subgroup of short and medium
sized instances we compare the
size of the underlying graphs of
the simple respectively
improved algorithm (with and
without “transitive reduction”).
The figures show a snap-shot
after the last iteration in the root
node of the branch and bound
tree of the average number of
blue and red obstacles between
each pair of sequences (#Obst),
the average number of nodes in
the bypass graph
(# BPG-Nodes), the average
number of arcs of the bpg
(#BPG-Arcs), including arcs
connecting the bpg to the
dynamic programming graph,
and the average number of
additional arcs needed when no
bpg is used (#Arcs)

Instance #Obst #BPG-Nodes #BPG-Arcs #Arcs

Reference 1 Short, V3

1aho (5/320) 32 7 42 205

1csp (5/339) 6 0 0 0

1dox (4/374) 18 3 18 56

1fkj (5/517) 29 6 35 137

Reference 1 Short, V2

1aab (4/291) 18 3 18 51

1csy (5/510) 57 11 58 333

1fjlA (6/398) 13 2 13 33

1hfh (5/606) 61 17 91 760

Reference 1 Short, V1

1aboA (5/297) 63 40 236 4047

1tvxA (4/242) 82 61 373 8979

1idy (5/269) 51 21 120 1314

1r69 (4/277) 74 29 165 1934

Reference 1 Medium, V3

1amk (5/1241) 17 1 7 9

1ar5A (4/794) 39 10 56 258

1ezm (5/1515) 24 5 26 83

1led (4/947) 65 13 72 468

Reference 1 Medium, V2

1ad2 (4/828) 51 11 61 360

1aym3 (4/932) 54 21 122 1286

1gdoA (4/988) 104 22 121 1168

1ldg (4/1240) 67 14 76 491

Finally, we try to assess the practical performance of the simple algorithm and
both versions of the improved algorithm (with and without “transitive reduction”) by
considering the size of the underlying graph structure after the last iteration in the
root node of the branch and bound tree. Table 6 indicates that for a bpg G = (V,E),
O(|O|2) and O(|O|3) are rather pessimistic estimates for |V|, respectively |E |, and
therefore we expect the running time of the simple algorithm (O(n2

s n
2
t |O|)) to be

significantly larger than the running time of the improved algorithm using the bpg
(O(nm + |V| + |E |)). Moreover, the “transitive reduction” obtained by introducing
the bypass graph reduces the number of additional arcs considerably.
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7 Conclusion

We have constructed a Lagrangian relaxation of the multiple sequence alignment ILP
formulation that allowed us to obtain strong bounds by solving a generalization of
the pairwise alignment problem. By utilizing these bounds in a branch-and-bound
manner we achieved running times that outperform all other exact or almost exact
methods. We plan to integrate our implementation into the software project SEQAN
currently developed by the Free University of Berlin.

Besides optimizing our implementation for speed an important issue in our future
work will be to extend the scheme to Volume and to Bundle algorithms. A more
sophisticated Lagrangian heuristic for computing lower bounds in the bb nodes will
be necessary to be able to solve instances of larger size (compare instance 3pmg in
Table 3).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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