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Abstract Efficacious integration of such CAx technologies
as CAD, CAM and CAPP still remains a problem in engi-
neering practice which constantly attracts research attention.
Design by feature model is assumed as a main factor in the
integration effort in various engineering and manufacturing
domains. It refers principally to feature clustering and con-
sequently operation sequencing in elaborated process plan
designs. The focus of this paper is on CAPP for parts manu-
facture in systems of definite processing capabilities, involv-
ing multi-axis machining centres. A methodical approach is
proposed to optimally solve for process planning problems,
which consists in the identification of process alternatives and
sequencing adequate working steps. The approach involves
the use of the branch and bound concept from the field of
artificial intelligence. A conceptual scheme for generation of
alternative process plans in the form of a network is devel-
oped. It is based on part design data modelling in terms of
machining features. A relevant algorithm is proposed for cre-
ating such a network and searching for the optimal process
plan solution from the viewpoint of its operational perfor-
mance, under formulated process constraints. The feasibility
of the approach and the algorithm are illustrated by a numeri-
cal case with regard to a real application and diverse machine
tools with relevant tooling. Generated process alternatives for
complex machining with given systems, are studied using
models programmed in the environment of Matlab� soft-
ware.
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Introduction

Contemporary manufacturing is realised in the face of tough
global competition, under demand on high productivity and
product quality, large-variety customised production and
increasing attention being paid to shortening product devel-
opment life cycles (Molina et al. 2005; Zheng et al. 2008).
For the last two decades CAD/CAM technologies have been
extensively developed to automate and integrate individual
activities in the design and manufacturing cycle. Moreover,
computer-aided process planning (CAPP) as a momentous
task in product development cycle, has particularly attracted
a lot of research interest (Kang et al. 2003; Mokhtar and
Xu 2011). The task involves interpretation and conversion of
design specifications to appropriate data required for product
manufacture. In this regard, the use of a feature-based data
model has been considered as the adequate technology for
interlinking the engineering domains and disparate computer
systems. The application of feature-based process planning
has gained ground recently in supporting the efficient CAD
and CAM integration (Gao et al. 2004; Zhou et al. 2007). Fea-
tures are assumed inherently as a main factor in such an inte-
gration effort because of the association of various design,
engineering and manufacturing data used by CAPP (Liu and
Wang 2007; Tanaka and Kishinami 1998; Wang et al. 2006).
Proper sequencing of machining features still remains a chal-
lenging issue in CAPP due to its complexity and adherence
to the class of nondeterministic polynomial-time problems
(Mokhtar and Xu 2011). Its direct influence on machining
efficiency and part quality has also been widely recognised.
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The prior acquisition of precedence information between fea-
tures becomes a key task in a CAPP system which gives the
possibility for generating an effective and reliable operation
sequence in part machining. More importantly, determining
machining precedence of features becomes even more diffi-
cult in case of geometric interactions occurring among them
that usually lead to alternative sets of machining sequences.
It is worth also noticing that other corresponding activities
within process planning stage such as tooling selection, fix-
ture design, setup planning, etc. can be chained with definite
sets of features during feature sequencing. In such a case
some kind of feature recognition from a given 3-D model
of a part component is needed to automate the generation of
setup plans in CAPP systems. According to numerous reports
however, and among those of Kang et al. (2003); Ramesh-
babu and Shunmugam (2009) or Zhou et al. (2007), there are
substantial difficulties in regards to proper integration of fea-
ture recognition concepts and downstream applications like
setup planning, etc.

Despite the efforts done so far, as reported by e.g. Hayasi
and Asiabanpour (2009), and also by Zhou et al. (2007),
sharing manufacturing information within a product devel-
opment lifecycle still remains a bottleneck. As implied earlier
in Sormaz and Khoshnevis (2003) a common deficiency of
most often reported CAPP systems is that they act as stand-
alone function and generally in a batch mode, excluding the
possibility for real-time integration with CAD, CAM or pro-
duction scheduling modules. Consequently, these systems
are not suitable to incorporate any changes in product design
for incremental process plan generation.

To cope with the new, and aforementioned, market
challenges related to manufacturing area in a cost-effective
manner advancing flexible manufacturing systems (FMSs)
technology has been implemented. The extended use of
multi-axis machining centres has become the noticeable ten-
dency in manufacturing practice of recent years, and mostly
due to their capability of performing different types of oper-
ations on multiple planes of a work piece for any given setup
(Molina et al. 2005). This is also apparently consistent with
the aim after complete machining (operation concentration),
i.e. machining the entire part in a single setup in a definite
machine tool. The efficient application of those manufactur-
ing means is decided by utilisation level of their machin-
ing components, such as: multiple spindles, turrets, indexing
tables, additional tooling and fixtures. Mostly, as reported
e.g. in the paper by Chung and Suh (2008), a limited range
of the machine tools capabilities is used at any given instant.
Consequently, reconfigurable machines and their systems,
which can provide only the flexibility needed to produce a
specific parts spectrum and to avoid unused capacity of multi-
axis work centres, have gained ground instead. Great oper-
ational potential of those general purpose machine tools is
not fully utilised in industry, mainly due to the imperfections

of applied process planning methods. This may be referred
to both technologies of manual planning assumed by skilled
operators and those accomplished in an automated manner
using dedicated commercial CAPP systems.

The availability of alternative process plans is pointed out
as a key factor in integration of design, process planning,
and scheduling functions. Offering several process plan solu-
tions for diverse machined components, may be helpful in the
relaxation of the constraints in the optimisation of produc-
tion schedules and process control. This in turn may yield
more efficient utilisation of machine resources, correspond-
ingly to reductions in manufacturing cycle times (Sormaz
and Khoshnevis 2003; Chung and Suh 2008).

This research paper deals with issues related to planning
alternative process solutions in the environment of integrated
machining systems of extended and definite processing capa-
bilities. The issues are considered under the requirements for
agile manufacturing. A conceptual scheme for generation of
process plan alternatives in the form of a network is devel-
oped, based on part design data modelling by machining fea-
tures. A relevant algorithm is proposed for creating such a
network and searching for the optimal process plan solution
in terms of standardised operational performance criteria and
under formulated process constraints.

Overview of related research work

The subjects of computer-aided process planning have gen-
erally attracted a great deal of research attention and there
exists an abundant amount of literature on this topic. The
most recent survey of CAPP research works was written
by Xu et al. (2011). In their up-to-date and comprehensive
review, the authors attempt to ascertain the current status
of CAPP and anticipate future trends in this area, cover-
ing the related technologies developed for machining since
the late 1990s but mostly after 2000. Discussions concern-
ing the recent CAPP research are presented in a number of
distinguished categories, including: feature-based technolo-
gies, knowledge-based systems, artificial neural networks,
genetic algorithms, fuzzy set theory and fuzzy logic, Petri
nets, agent-based technology, Internet-based technology and
STEP-compliant CAPP. The paper also includes a respective
summary of previous surveys published by other authors,
and more importantly the relevant analysis of some emerg-
ing technologies, either developed or adapted for supporting
adequate process planning tasks. A significant and integral
part of the review provided is the discussion of some topi-
cal CAPP related issues, and among others: tool selection,
setup planning, operation selection and sequencing, decision
models, integration of process planning with production sys-
tem as well as non-linear process planning. Apart from those
mentioned, the relevant efforts and available possibilities for
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commercialisation of CAPP research are outlined and the
need for closer cooperation between CAPP researchers and
the industry are strongly recommended.

Studying existing literature suggests that despite signifi-
cant progress, particularly the issues related to system inte-
gration of CAD and CAPP still remain to be fully solved.
Much of current research effort is devoted to features recog-
nition that plays an important role in the integration of CAD,
CAM and CAPP. This includes papers of Gao et al. (2004)
as well as Hayasi and Asiabanpour (2009), respectively, who
proposed adequate system approaches, using the rule-based
methods and special algorithms to recognize the variety of
non-intersecting features and to convert them into machining
features. The determination of proper machining precedence
becomes more difficult when features being considered inter-
act with each other, as clearly shown in Mokhtar and Xu
(2011). Lee et al. (2007) in turn presented a scheme for com-
posite feature recognition with automatic process planning,
involving precedence relations among features derived from
CAD data model and based on a topological sorting.

STEP-NC data structure is utilised as the feature-based
product model by Mokhtar et al. (2009) so as to generate the
precedence information for interacting machining features,
under consideration of roughing and finishing operations for
those features. A hybrid feature recognition method, based on
volume subtraction and face adjacency graph, is in turn pro-
posed by Rameshbabu and Shunmugam (2009). It is shown
as the mean capable of recognising intersecting manufactur-
ing features with relative ease using 3D model data recorded
in the STEP AP-203 format. The integration of design and
manufacturing specific tasks based on STEP standard is dis-
cussed in more detail by Zhao et al. (2009).

A considerable part of related research work on fea-
ture-based process planning deals with issues of sequenc-
ing machining operations and setup planning. Existing
approaches, and among others those developed by Ramesh-
babu and Shunmugam (2009); Sormaz and Khoshnevis
(2000) or Wong et al. (2003) aimed at solving the issues
are based on diverse decision criteria, considering setup
and tool changes, tool access direction, operation time, etc.
Mokhtar and Xu (2011) in particular, suggest the need for
sequencing machining operations based on two types of clas-
sified constraints: machining operation specific constraint
and part geometry—related precedence constraint. An auto-
matic setup planning module for machining of prismatic parts
was developed by Gologlu (2004). Machining and fixturing
constraints are considered simultaneously by the CAPP sys-
tem prototype to ensure the effective generation of process
plans. At the same time, the best datum surfaces for support-
ing, locating and clamping the part can be identified.

One of the rules for the assignment of features to set-
ups is the consideration of tool approach directions (TAD)
as presented, among others, in research papers of Gologlu

(2004) or Liu and Wang (2007). As indicated in these papers,
features with the same TAD can be grouped into feature
clusters and machined within one setup. The objective of
this planning strategy is to reduce the number of setups
as well as part machining time by sequencing of features
within one setup that might reduce the number of required
tool changes. Similarly, Park (2003) implies the possibility
for the aggregation of machining operations with the ref-
erence to unit volume decomposition for complex features.
Apart from the geometric reasoning rules, just Liu and Wang
(2007) proposed the use of more detailed knowledge-based
rules for determining machining precedence constraints, with
regard to the sequence between setups and also to feature
sequencing within each consecutive setup. Wang and Shen
(2003) advocate a decentralization in CAPP system archi-
tecture and develop a novel method of distributed process
planning (DPP) characterized by increased system respon-
siveness, correspondingly with the requirements of dynamic,
reconfigurable and distributed manufacturing environments.
An agent-based approach is adopted for intelligent (adap-
tive) decision-making in process planning area. The integra-
tion of feature-based process planning and function block
(FB)-based process execution with the agent-based decision
making is at the core of the proposed method. Unlike the tra-
ditional methods, the proposed approach utilises a two-level
decision-making strategy, i.e. supervisory planning and oper-
ation planning. Consequently, the proposed DPP separates
generic and machine-specific information of process plans by
assigning operation planning tasks to open-architecture CNC
controllers. In order to realise the concept of DPP, Wang et al.
(2006) propose a reasoning approach to generic machining
process sequencing, based on enriched machining features
(EMFs). An EMF is represented by combining its machin-
ing volume with surface, geometric and volume features, as
well as other technological information needed to machine
the feature. Machine-neutral process plans of a given part
are generated on the basis of manufacturing constraints and
datum references. The grouping of EMFs include three steps:
choosing datum references, finding a primary locating direc-
tion and creating appropriate set-ups.

In most CAPP-related publications, geometric interac-
tions between features, the data sets concerning dimen-
sions and tolerances are used for sequencing features within
each individual setup, as assumed in the design schemes of
Gologlu (2004), and also Liu and Wang (2007). The problem
of embedding, in current CAD models, non-geometric tech-
nological information, such as dimensional and geometric
tolerance, surface roughness and hardness, that is necessary
for CAPP, is also discussed by Zhou et al. (2007). In process
design for the conditions of current manufacturing practice,
decision making frequently involves dealing with uncertain
and imprecise information. An adequate fuzzy approach for
solving the process plan selection and operation sequencing
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under uncertainty is described in the research work of Wong
et al. (2003). The factors of uncertainty are also taken into
account by Wang et al. (2010), who develop an adaptive setup
planning (ASP) approach that is suitable for the conditions
of dynamic system operation. It envisages both availability
and capability of machines on a shop floor since setup plans
generated in advance are often subject to changes even before
their executions.

Sormaz and Khoshnevis (2003), and later Zheng et al.
(2008) reported on their relevant approaches for generating
alternative process plans in the form of a process plan net-
work along with the algorithms for their optimization. In
both approaches, the selection of the process plan to be used
for parts manufacture is based on the minimization of time
and/or cost. The availability of alternative process plans pro-
vides the required flexibility to select different process plans,
depending on the current status of required resources in a
manufacturing shop floor.

The possibility for generation of alternative setups as the
part of process planning procedure is also widely studied
by Raman and Marefat (2004). In the presented solution the
setups and adequate tool sets are assigned to each of the fea-
tures with the objective of minimizing the total machining
cost. Minimizing the setup cost, gained by minimising the
number of setups, is an important factor in minimising total
machining cost due to expensive fixturing procedure.

Some of the features can be additionally restricted in terms
of machining due to machine—fixture relationships as noted
in the publication of Gologlu (2004). Alternatives of fixture
elements and machines are represented in this paper by alter-
native machining systems. Choosing particular machining
systems results in the feature sequencing, since some of the
features can not be machined until so called fixturing fea-
tures, required for the chosen system, are completed.

The literature survey confirms the authors’ belief that the
availability of process alternatives could be useful from the
viewpoint of an adaptive process planning in dynamically
changing manufacturing environments.

Modelling framework in process plan decision-making

Process planning activities basically involve the process
selection, operation sequencing and the allocation of adequate
machining equipment according to part design specification
and the manufacturing conditions. Using the quantitative
approach the process selection and sequencing problem is
formulated as the minimization of an objective function and
mostly of total manufacturing time and/or cost subject to def-
inite constraints, as it is assumed by Chung and Suh (2008)
as well as Sormaz and Khoshnevis (2003). Thereby, pro-
cess planning function can be realised by a two-stage pro-
cedure comprising: intra- and inter-feature planning (Wong

et al. 2003), also termed as micro- and macro planning by
such authors as: Mokhtar et al. (2009); Srinivasan and Sheng
(1999) or Zhao et al. (2009). The local optimum operation
sequence is first established for each feature, and then the
optimal global sequence is generated for the complete set
of features (Mokhtar et al. 2009). Considering its combina-
torial nature, the optimisation problem can be solved using
the branch-and-bound (BB) approach and heuristics derived
from engineering insights into process sequencing and sched-
uling for complex machining on multi-axis centres.

Data model for CAPP

The scheme developed for the generation of process alter-
natives for parts manufacture assumes the input data model
based on two interrelated information sets, and describing
a feature itself and the feature precedence relationships,
respectively. Reconstruction of a feature precedence tree
along with the technological information processing is indi-
cated as crucial to total integration of CAD and CAPP sys-
tems (Gao et al. 2004; Zhou et al. 2007). As reported recently,
also some dedicated systems using fuzzy logic and genetic
approaches in solving the operation sequencing problem are
designed to link up with a feature-based design or feature rec-
ognition system to obtain complete part design data (Wong
et al. 2003).

One of the knowledge-based rules proposed by Liu and
Wang (2007) is the dominant role of the setup A with the
precedence feature of another feature in setup B. This kind
of the rule can be also applied for feature sequencing within
one setup. Machining the precedence features first may lead
to the number of setups reduction by opening more possible
alternatives. Features having multiple occurrences, in dif-
ferent setups, are retained with clusters having maximum
number of features, similarly as given in Rameshbabu and
Shunmugam (2009).

Thus, the framework assumes that relevant subsets of fea-
tures types (pattern features) of definite requirements related
to definite typologies of geometric entities are represented in
the knowledge base to be utilised in creating diverse process
instances.

The feature precedence relationships in turn are coded
within the following feature precedence matrix FPM =
[ fi j ]i≤m, j≤n , where: m—the maximum number of required
preceding features for a specific feature, n—the total num-
ber of features, and fi j < n. The value of a single element
of FPM matrix fi j is strictly correlated with the location of
the corresponding feature # j on the feature precedence tree.
The numerical value 0 is assigned to the all initial features
(of the highest level), in the first row of the FPM matrix.
The child features are given then the values correspondingly
to the numbers of directly preceding features. Hence, if the
feature #u needs the feature #v to be completed, the value
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of f1,u = v; and if the feature #u has more than one parent,
e.g. the features: #v and #w, two elements: f1,u = v, and
f2,u = w occur in the column #u. The value of −1 for fi j

with 1 < i ≤ m, j ≤ n, indicates no other relationships
apart from those coded in the first row (i = 1).

The processing alternatives for individual part features are
recorded in the form of the binary process capability matrix
PCM = [pi j ]i≤k, j≤n , where: k—the number of available
machining systems, n—the total number of discerned fea-
tures. Single machining system #i is understood as the com-
bination of a machine tool and assigned fixture type. This is
assumed consistently with the approach of Gologlu (2004)
who represented the interactions between the fixture ele-
ments and the work piece by machine-fixture relationships.
Apparently, due to these interactions some of the features
might be inaccessible to machining. Sets of fixture elements
and machines are represented as alternative machining sys-
tems #i . Some of the features, called fixturing features, are
required to be machined first, depending on the chosen set.
These types of features, which have already been machined
or are identified from unmachined feature are the locating
surfaces. Some of the fixturing concepts can not be used if
specific fixturing features have not been machined. Accord-
ing to Rameshbabu and Shunmugam (2009), the feature clus-
ter with larger number of features is preferred to be machined
last as it affects locating and clamping in subsequent setups.
Just the opposite, in our approach, machining this feature
cluster is suggested as first. This extends possibilities for
part fixturing in consecutive operations since more fixturing
and opening features can be machined.

To ensure the feasibility of generated process plan
candidates the operation precedence conditions have to be
determined. This may be referred to the necessity of prior
machining the datum feature in one of alternative systems
to continue the machining process in a system with spe-
cific fixture type using this datum. Consequently, these lim-
itations are defined in the unique constraints matrix for
the availability of machining systems, and formulated as:
CM = [ci j ]i≤h, j≤k , where: h—the maximum number of
required preceding machining systems for a given machin-
ing system, k—the total number of machining systems and
ci j < k. The value of a single element of the matrix ci j

expresses the precedence of machining systems. The sys-
tems available at any stage of a manufacturing process are
given the value 0 in the first row of the CM matrix. For the
system #u requiring the use of the system #v in the pre-
vious setup, the value of c1,u = v; and if there are more
systems which can be applied interchangeably before the
system #u, e.g. the system #v or the system #w, two ele-
ments: c1,u = v, and c2,u = w occur in the column #u.
The value of −1 for ci j , with 1 < i ≤ h, j ≤ k, indi-
cates no other constraints apart from those coded in the first
row.

A substantial part of the input data model are also the
machining time matrix MTM = [ti j ]i≤k, j≤n , and the setup
time matrix STM = [si ]i≤k . Those matrices are directly
used in quantitative evaluation of generated setup sequences
and the overall process plan alternatives under consideration.
Thus, the entries of the former matrix include the time val-
ues concerning machining individual features within definite
systems. With regard to the latter matrix, its entries involve
the changeover times of individual systems associated with
accomplishing the subsequent process tasks. The machin-
ing process operation times are considered deterministic all
over the research, since NC part programs dictate in full the
actual cutting time. Apparently, the same assumption can be
referred to the other manufacturing time components.

Process selection and operation sequencing

Considering the assumptions made with regard to informa-
tion data model, the overall hierarchical structure of the sys-
tem under development is depicted in Fig. 1. Three stages are
discerned in the system structure: the intra-feature planning
and the inter-feature planning that is followed by quantita-
tive assessment of determined operation sequences in pro-
cess plan alternatives. At the former stage of the system
structure geometric entities of part components are identified
as machining features together with technological require-
ments related to them. This stage is integrated with the CAD
solid modelling environment and the analysis of occurring
feature interactions. As a result, the appropriate processes
are selected for each feature in a knowledge-based fashion,
after comparing their capabilities and the feature require-
ments. At a time, priority relations are introduced to diminish
the number of possible process alternatives for single fea-
tures. The machine tools with relevant tooling and tool sets
are then specified and next cutting parameters are selected
for each generated process instance. The last phase of this
stage involves the estimation of relevant feature machining
time components and related cost. The macro-planning stage
of the structure is meant for clustering and sequencing of
machining operations for sets of interrelated features, with
the aim to optimise the overall process plan. Data analysed
in feature clustering module are written numerically in three
matrixes described in the previous section and presented in
the block diagram of proposed set-up planning module. Thus,
geometric and process based interactions among features,
resulting from tool and setup changes, are analysed in detail.
At the final stage, all feasible alternatives are generated and
then extracted with the use of the developed decision scheme.
Those alternatives are mapped in the form of hierarchical
process decision trees and as a result, the optimal process
plan is found. The respective analysis involves the calcula-
tion of manufacturing times considering the possibilities for
operation concentration and its differentiation. The analysis
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Fig. 1 Outline of the system
solution for optimal process plan
selection based on proposed
feature clustering module
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includes the considerations of such part manufacturing time
components, as: machining time per unit, part handling time,
tool change time as well as changeover and setup times, etc.

The approach proposed to generate a set of process alterna-
tives under the interchange ability of machining systems and
then to identify the optimal or near-optimal process plan solu-
tion is summarised in Table 1. The procedure starts with the
selection of features, assigned to the highest level in the fea-
ture precedence tree, initiating process and the first setup—
step 1. Machining systems, in which maximum number of
related features can be accomplished, are identified with the
use of PCM and CM matrices—steps 2 ÷ 4. Subsequent
features are identified in the similar manner in steps 5 ÷ 8.
After the setup completion, the machining time is calculated
and alternatives with minimum time are chosen—step 9. The
alternative is eliminated in step 10 if it is evident that it will

not approach the benchmark value in the current or in the
next setup. The promising alternatives are analysed in further
setups—step 11. The process alternative of minimum cycle
time is set as a benchmark in step 13 after computing total
manufacturing time for all alternatives under consideration
(step 12). Other alternatives are searched in the backward
reasoning mode with the consideration of the reminder of
existing machining capabilities—step 14. Finally, the opti-
mal process plan solution is generated—step 15.

Illustrative case study

The efficacy and usability of the proposed approach is
tested with regard to manufacture of mechanical parts in
the SIM plant, which is aimed at small batch production of
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Table 1 Detailed heuristic procedure for process selection and operation sequencing

Step # Algorithm/procedure description

Input data FPM = [ fi j ], PCM = [pi j ], CM = [ci j ], MTM = [ti j ], STM = [si ]
Additional matrices used for calculations: If = [ ], I∗p = [ ], threshold B [time units]

1 Selection of features initiating a process or a setup, available for machining based on FPM matrix

In the first row of FPM = [ f1 j ] j≤n , find j (the number of column) for which f1 j = 0 and generate the vector
Js = [ js ]s≤ j0, where j0—number of initiating features.

Use If = [i f ] and find more j in FPM = [ fi j ] for which all fi j = any i f or -1, and next including all j ,
generate the vector Jq = [ jq ]q≤n

2 Checking process capabilities for selected features using PCM matrix

For selected columns written in Jq, find i in the matrix PCM = [pi j ]i≤k, j=Jq, where any pi j = 1 and generate
the new vector of available machining systems, Ir = [ir ]r≤k

3 Inclusion of corresponding machining system(s) by CM matrix into possible processing alternatives under consideration

In the first row of CM = [c1 j ] j≤k , find j for which c1 j = 0 and next generate the vector of available machining
systems Jr = [ jr ]r≤k . Using I∗p = [i∗p] (elements of I∗p are generated at the Step #10, initially I∗p = [ ]), find
more j in CM for which any ci j = any i∗p and add it to Jr .

4 Identification of the machining system(s) with maximum number of related features, initiating a process or a setup

For selected rows and columns written in Jr and Jq, respectively, find i in the matrix PCM = [pi j ]i∈Jr, j∈Jq,
with

∑
pi = max and record results: i in Ip = [i p]p≤r for machining systems and j in If = [i f ] f ≤n for

features. Update If including the consecutive subset(s) of features.
5 Selection of subsequent features available for machining based on FPM matrix, if any; otherwise go to Step 9

Replace entries of FPM with value -2 for columns given in If to exclude machined features. Using If = [i f ],
find j in FPM = [ fi j ] for which all fi j = any i f or − 1; for found j generate a new vector Jq = [ jq ]q≤n ; if
Jq = [ ] go to Step 9.

6 Checking process capabilities for the selected features and extracted machining system(s) using PCM matrix; if
the need for setup (machining system change) is encountered go to Step 9

For selected rows and columns written in Ip and Jq, respectively, find i in the matrix PCM = [pi j ]i∈Ip, j∈Jq,
where pi j = 1 and update Jr = [ jr ]r≤k with still considered machining systems, if Jr = [ ] go to Step 9

7 Identification of the machining system(s) with maximum number of features in the subset(s)

For selected rows and columns written in updated Jr and Jq, respectively, find i in the matrix
PCM = [pi j ]i∈Jr, j∈Jq, with

∑
pi = max and record results in a new Ip = [i p]p≤r for machining system(s)

and update If = [i f ] f ≤n including the consecutive subset(s) of features
8 Go to Step 5

9 Computing the machining time(s) for the entire setup and selection of the alternative(s) with minimum estimated machining time

Generate a new resultant matrix RM(setup#k) = [ri j ]i≤max si ze of latest Ip, j≤max si ze of If , where entries are
features listed in If , machined in selected system(s) Ip.

Calculate the estimated machining operation time (EMT) for features listed in RM related to selected system(s)
in Ip, according to the procedure:

For p = 1 to max size of Ip,

E MTk (p, i) = ∑

j∗
ti j + si , (1)

where: j∗—all j listed in the row p of RM, k—setup index, i = Ip(p)—analysed system,

End.

Select a system #i with minimum E MTk .

10 Calculating machining time for finished setup(s) in related process alternatives and comparing its value to the
assumed benchmark (initially set as a threshold value of B [time units]).

Append I∗p of chosen machining systems which could be required by other systems.

Sum up the machining operation times for alternative # (A) found and finished setups, as:

SMTA = ∑

k
E MTk , (2)

If SMTA ≤ B continue, else go to Step 14.

11 Return to Step 1 for machining missing feature(s) in a consecutive setup, if any.

12 Assuming total manufacturing time (TMT) for the alternative(s) under consideration.

T MTA = SMTA

13 Setting the process alternative of minimum manufacturing time as a new benchmark B.

B = min(T MTA)

14 Repeating the procedure from Step 4 for features initiating the process considering the reminder of machining possibilities, if any occur.

15 Generating the optimal process plan solution with minimum total machining time and /or cost.
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F1 
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Fig. 2 The sample mechanical component with machining features: a solid model, b wire-frame representation, c discerned features in an exploded
view

F1

Stock

F10

F2

F4 F3F5F6F7F8F9

F11 F13

F12

F14 F15

F16 

F19
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F20F17

FPM= 

Feature #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 0 1 1 1 1 1 1 1 7 10 11 10 0 0 14 14 14 15 19 

 -1 -1 -1 -1 -1 -1 -1 -1 -1 8 -1 -1 -1 -1 -1 -1 11 -1 10 -1 

 -1 -1 -1 -1 -1 -1 -1 -1 -1 9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

(a) 

(b) 

Fig. 3 Feature precedence tree (a) and related precedence matrix (b) of the sample work piece

industrial fittings components. The sample workpiece con-
sists of 20 machining features of definite technological
requirements—Fig. 2. The feature precedence tree related
to this real case example is shown in Fig. 3a. Using this
descriptive means, the feature precedence relationships are
coded in the FPM matrix with 20 columns and 3 rows as
given in Fig. 3b.

The analysis of process capabilities related to the case,
included the process realisation with the utilisation of
horizontal- as well as vertical work centres, along with
part palletising. For the simplicity, the differences in pro-
cess candidates for machining features are represented
just by selecting different machining systems under the
consideration of both one-piece (Fig. 4) and multi-piece
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Fig. 4 Part setup solutions considered in machining process on vertical-spindle milling centre: a fixturing part for machining of datum (axial)
hole, b holding part on a mandrel placed inside the datum hole for machining side planes and secondary surfaces

manufacturing (Fig. 5). Ten systems, and namely S1 ÷ S10,
appropriate for machining individual features of the sam-
ple work piece are shown in Table 2. As seen, the pro-
cess capabilities are given in the form of incidence rela-
tions of those machining systems and the discerned features
F1 ÷ F20.

Constraints matrix (Fig. 6) for available machining sys-
tems of the illustrative case study shows that some of them
can not be applied from the beginning of the manufactur-
ing process. S2 and S4 must be preceded by S1 or S3,
and S8 by S7, respectively. The reason for that is illus-
trated in Fig. 4 where holding a part on a mandrel refers
to the fixture type # Fx2. The use of a mandrel requires a
datum hole (feature F10) which is machined with the fix-
turing type # Fx1 on a four axis CNC controlled vertical
spindle milling machine (axes: X, Y, Z and A). The same
technological requirement is due to be met with reference
to machining system S8, in which multi-piece fixturing is
assumed.

The generation of the process plan network is conse-
quently based on the FPM, PCM and CM matrices. Gen-
erated individual setups and entire manufacturing process
alternatives included in the network subject to comparative
assessment in terms of time using the MTM and STM matri-
ces. Hence, with reference to the developed numerical case,
the related values of manufacturing time components have

Fig. 5 Fixturing parts in a tower-type pallet applied to multi-part
machining on a horizontal-spindle milling centre

been derived from the data base of the above mentioned real
manufacturing plant.

The detailed procedure of proposed algorithm is presented
numerically in Appendix A. It starts with the stock state and
focuses on the consideration of only features that can be
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Table 2 Processing alternatives (capabilities) in the relation to individual features of the sample part

Machining system (machine #/fixture #) Feature

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

S1 (M1/Fx1) x x x x x x x x x x x x x

S2 (M2/Fx2) x x x x x x x

S3 (M3/Fx1) x x x x x x x x x x x x x

S4 (M4/Fx2) x x x x x x x

S5 (M5/Fx3) x x x x x x x x x x x x x x x x x x x

S6 (M5/Fx4) x

S7 (M1/Fx5)* x x x x x x x x x x x x x

S8 (M2/Fx6)* x x x x x x x

S9 (M5/Fx7)** x x x x x x x x x x x x x x x x x x x

S10 (M5/Fx8)** x

* Multi-piece machining process with 4 pieces in a pallet, ** with 16 pieces in a pallet

CM = 

Machining system

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

0 1 0 1 0 0 0 7 0 0 

-1 3 -1 3 -1 -1 -1 -1 -1 -1  

Fig. 6 Constraints matrix for available machining systems of the illus-
trative case study

machined at the very beginning of the process, which are fur-
ther called as the initial features. The features F1, F2, F14,
F15, identified here as initial features, can be carried out by
7 alternatives at this stage—Fig. 7. Two machining systems
are chosen (S5, S9), with maximum number of completed
features: F1, F14, F15. Subsequent features are established
by searching data matrices until the need for a new setup

occurs. Machining times for respective alternatives are next
calculated by the formula (1), as shown in Table 1. Conse-
quently, the alternative with machining system S9 is chosen
due to the shorter machining time as compared with S5. The
only missing feature F2 with possible machining systems
S1, S3, S6, S7, S10 can be realised in five alternatives in a
new setup and the alternative F2-S10 is selected as the short-
est one. The total manufacturing time calculated (accord-
ingly to the formula (2), as given in Table 1) for all features
with chosen alternatives is set at this point as a commenc-
ing benchmark value. The whole procedure is repeated from
the beginning for the two features: F1, F2 machined by three
alternative routings with S1, S3, and S7. After the setup com-
pletion, the machining system S1 is chosen as the one with the
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Note: 

- a subset of features performed in an assigned machining system;  F#: feature number - S#: machining system number 

range of 1st setup in the process plan within envisaged machining systems range of the following (2nd) setup  

Fig. 7 The segment of process plan network with the optimal design solution marked with shaded boxes
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∗) B = TMT for the winning process alternative; where: B - current benchmark value, TMT - total machining time    

Fig. 8 Decision making course for the identification of optimal machining process alternative (the winning process solution shown with shaded
boxes)

shortest value of machining time which is compared with the
benchmark. As its value is lower than the benchmark value,
other remaining features are analysed in a new setup with
five alternatives—S2, S4, S5, S8, S9 for features F14 and
F15. After inclusion of all subsequent features in a branch,
the setup with S9 machining system is found as the shortest
one. The total machining time for the alternative branches
carried out in S1 and S9 machining systems is calculated
and compared with the benchmark. The winner alternative
still remains the one within the branch S9-S10. There are
two more alternatives at the first stage of the process plan
network: F2-S6 and F2-S10. The branch F2-S10 as a shorter
alternative can be expanded further with the use of S9 or S5
systems. The routing S10-S9 is similar to the one with S9-
S10, but with the lower number of features machined at the
initial stage. Any sequence from the stock to the finished part
state represents a valid alternative process plan. Taking into
account the objective function value as the minimum total
machining time, the optimal process plan solution involves
the use of S9-S10 systems.

As a supplement to Fig. 7, the mechanism for decision
making is presented in more descriptive manner in Fig. 8. It
particularly reflects the order of the setups (machining sys-
tems) selection in machining process design. Decision pro-
cess takes into account both forward and backward reasoning
loops. Operations related to chosen setups are compared in
terms of processing time that is measured along the abscissa.

Conclusions

Dynamic operation conditions of manufacturing facilities
often cause process designs generated in advance to change
even before their execution. There is a need to have a
set of process plan alternatives at disposal to deal with
uncertainty factors. Considering the above requirement,
we propose a conceptual framework for the generation of
process alternatives in the form of a network. A relevant
hierarchical procedure is proposed for creating such a net-
work and extracting optimal process plan solutions from
the viewpoint of their operational performance. The sys-
tem utilises matrix recording of input data sets, which com-
prise: feature-based product data model, machining systems
capabilities and process constraints. The matrix formulation
of machining process constraints is a unique method pro-
posed by authors, effectively used by developed algorithm
for feature clustering into consecutive setups. The usabil-
ity of the approach is studied numerically with regard to a
real life case study of a complex prismatic part machined
with the use of multi-axis centres, and equipped with rel-
evant fixtures, as far as the conditions of multiple piece
machining are concerned. The proposed system is princi-
pally appropriated for prismatic parts, however, it can be
also successfully applied to rotational part components. The
experimental results reveal its capability of identifying the
most effective machining process design, considering actual
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production conditions with regard to the constraints of a
fixturing strategy, and the availability of a specific tool
set.

Our contributions beside the reported work in the literature
can be recapitulated as follows: (1) the unique matrix cod-
ing of part data in terms of features and manufacturing con-
strains enables the selection of effective and efficient setups
and process plans, where machine availability and capabil-
ity change over time. Owing to such a meaningful form of
data representation a set of adequate process solutions can be
timely generated in an automated manner. (2) Constraints of
manufacturing resources (machine tools and equipment) are
considered explicitly at the setup formulation stage for the
network of alternative processes, including those of multi-
ple piece machining. (3) Application of the proposed reason-
ing scheme and relevant algorithm yield optimal process plan
designs from the viewpoint of time/cost and machine utilisa-
tion criteria.

Our further research aims at the extension of the pro-
posed modelling scheme by sets of technological data, as
implied in enriched machining features (EMFs)-based rea-
soning approach. It could be contributive to automated selec-
tion of tools, cutting parameters as well as time standards.
Thus, process planning could be further integrated with
scheduling tasks.
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Appendix A

The following calculations with the elements of pseudo-
code, describe steps of the developed algorithm presented in
Table 1, using numerical data related to the illustrative case.
It shows in detail a numerical realisation of the developed
algorithm.

Step # 1:

⎥
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⎥
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⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−=

11111111119111111111

1101111111118111111111

1915141414001011107111111100

FPM

j = 1 2 14 15

Js = [
1 2 14 15

]
, Jq = [

1 2 14 15
]

Step # 2:
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⎥
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j = 1 2 14 15

i = 1

i = 2

i = 3

i = 4
i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

Ir = [
1 2 3 4 5 6 7 8 9 10

]

Step # 3:

⎥
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⎤
⎢
⎣

⎡
−−−−−−−−

=
1111113131

0070001010
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j = 1 3 5 6 7 9 10

Jr = [
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]

Step # 4:
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]
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Step # 6:
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Step # 8:

Go to Step 5
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Step # 7; iteration #1:
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Step # 8; iteration #1:
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Step # 8; iteration #2:

Go to Step 5

Step # 5; iteration #3:
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Ip=
[

5 9
]

I f =
[
1 14 15 3 4 5 6 7 8 9 16 18 10 11 13 19 12 17 20

]

Step # 8; iteration #3:

Go to Step 5

Step # 5; iteration #4:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−

=
22222222222222222212

22222222222222222212

22222222222222222202

FPM

no j elements  

Jq = [ ] —go to Step 9

Step # 9:

RM(1) =
[

1 14 15 3 4 5 6 7 8 9 16 18 10 11 13 19 12 17 20
1 14 15 3 4 5 6 7 8 9 16 18 10 11 13 19 12 17 20

]

Using the formula (1), given in Table 1, for calculations,

begin the procedure:
max(size(Ip)) = 2
p = 1—corresponds to the first row of RM; features listed
in rows of RM may differ.

E MT1(1, 5) = t5,1 + t5,14 + t5,15 + · · · + t5,20 + s5 =
9.79 min

p = 2
E MT1(2, 9) = t9,1 + t9,14 + t9,15 + · · · + t9,20 + s9 =
6.95 min

end

min(EMT1) = 6.95 min; S9 selected of S5 and S9 systems.
Step # 10:
Since chosen system #9 is not required by other systems (as
noted in CM), thus:

I ∗
p = [ ]

initial value of B = 100 min
SMT1 = EMT1 = 6.95 min; continue, as SMT1 < B

Step # 11:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−

=
22222222222222222212

22222222222222222212

22222222222222222202

FPM

missing feature

go to Step 1

Step # 1; Setup #2:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−

=
22222222222222222212

22222222222222222212

22222222222222222202

FPM

j = 2

Js = [2] , Jq = [2]

Step # 2; Setup #2:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000000000000000010

11111111111111111101

11111110000000000000

00000001111111111111

00000000000000000010

11111111111111111101

11111110000000000000

00000001111111111111

11111110000000000000

00000001111111111111

PCM

j = 2

i = 1

i = 3

i = 6

i = 7

i = 10

Ir = [
1 3 6 7 10

]
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Step # 3; Setup #2:

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−−−−

=
1111113131

0070001010
CM

j = 1 3 5 6 7 9 10

Jr = [
1 3 5 6 7 9 10

]

Step # 4; Setup #2:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000000000000000010

11111111111111111101

11111110000000000000

00000001111111111111

00000000000000000010

11111111111111111101

11111110000000000000

00000001111111111111

11111110000000000000

00000001111111111111

PCM

Jq =       [2]

[1

3

6

7

10]

Jr = ∑ ip

1

1

1
1

1

Ip = [
1 3 6 7 10

]

I f = [
1 14 15 3 4 5 6 7 8 9 16 18 10 11 13 19 12 17 20 2

]

Step # 5; Setup #2:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

=
22222222222222222222

22222222222222222222

22222222222222222222

FPM

no j elements  

Jq = [ ] —go to Step 9

Step # 9:

RM(2) =

⎡

⎢
⎢
⎢
⎢
⎣

2
2
2
2
2

⎤

⎥
⎥
⎥
⎥
⎦

Using the formula (1)—see Table 1, for calculations,

begin the procedure:
max(size(Ip)) = 5
p = 1—corresponds to the first row of RM (features listed
in rows of RM may differ).

E MT2(1, 1) = t1,2 + s1 = 0.79 min
p = 2

E MT2(2, 3) = t3,2 + s3 = 0.84 min
p = 3

E MT2(3, 6) = t6,2 + s6 = 1.27 min
p = 4

E MT2(4, 7) = t7,2 + s7 = 0.62 min
p = 5

E MT2(5, 10) = t10,2 + s10 = 0.47 min
end
min(EMT2) = 0.47 min; S10 selected of S1, S3, S6, S7
and S10 machining systems.

Step # 10:
Chosen system #10 is not required by other systems (as noted
in CM), hence:

I∗
p = [ ]

Accordingly to the formula (2):
SMT1= EMT1+ EMT2=7.42 min; continue, as SMT1< B;
(B=100 min)

Step # 11:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

=
22222222222222222222

22222222222222222222

22222222222222222222

FPM

no missing feature

Step # 12:

TMT1 = SMT1 = 7.42 min

Step # 13:
A new benchmark B= 7.42 min

Step # 14:
Go to Step 4 to consider the reminder of matching pos-

sibilities.
Step # 4:

Ip = [
1 3 7

]

I f = [
1 2

]

Continue according to the algorithm (see Table 1).
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