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Abstract This paper is dedicated to solving the 
problem of concept drift in industrial plants using 
artificial intelligence methods. For this purpose, 
methodological approaches and procedures are con-
sidered and analyzed. Based on the findings, ref-
erence architectures were developed at different 
abstraction levels that can be used in an industrial 
environment and enable continuous machine learn-
ing. Continuous machine learning offers the possibil-
ity of adapting to dynamic changes in the production 
environment, which are reflected in constantly chang-
ing data sets. Through a combination of machine 

learning techniques, a novel and practical framework 
for continuous learning, also known as lifelong learn-
ing, is presented. The integration of problem-focused 
machine learning methods is advancing in produc-
tion, e.g., predictive maintenance, process optimi-
zation or fault detection. Thereby, fully or semi-
automated adaptations to changing environments 
requiring continuous improvements are less often 
explored, although practical use cases often require 
adaptive capabilities as the physical data distribu-
tion may change over time. In this paper, the applica-
tion was continuously improved based on case stud-
ies and empirical results, and finally validated with a 
quality assurance application. Various methods and 
approaches for detecting concept and data deviations, 
retraining, packaging and model updating had to be 
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investigated, which led to the question of what a real 
industry-oriented implementation could look like. 
The result is a reference architecture that can run on 
cloud and edge computing resources. This reference 
architecture is validated in real-world application in 
the parquet production sector, proving its feasibility 
and efficiency.

Keywords Continual machine learning · 
Continuous machine learning · Concept drift · 
Automated deployment · Reference architecture · 
Manufacturing-as-a-service

1 Introduction

Machine Learning (ML) has revolutionized the 
manufacturing industry by enabling manufacturers 
to increase efficiency [1, 2], reduce costs [3, 4] and 
improve quality [5, 6]. ML has proven its applications 
in many fields, such as predictive maintenance [7, 8], 
quality control 9, 10, process optimization [11, 12], 
etc.

In a conventional ML application, the ML Algo-
rithm identifies the features or patterns in a histori-
cal dataset called training dataset and adapts the ML 
Model parameters according to the identified features 
during the Model training or learning process. The 
given training dataset shall have a static nature and be 
a subset of the data points from the real-world appli-
cation, which have been collected historically over 
time and have similar features to those of the applica-
tion. After successfully completing the model train-
ing process, the trained ML model will be able to imi-
tate the given data distribution through its parameters 
(weights) and make predictions on any new given 
data point with features similar to the training data 
distribution. This data-driven nature of ML Algo-
rithms makes them highly dependent on the quality 
and quantity of the collected historical data points 
and their effectiveness in representing the real appli-
cation scenario, which in turn becomes a crucial fac-
tor in the success of the application use case.

In a dynamically changing world, where the nature 
and features of products continuously vary, the static 
nature of the dataset used in ML applications cre-
ates inefficiencies and uncertainties in the long run. 
This idea of Concept Drift, where the underlying 
data distribution changes over time, thereby making 

the trained ML models obsolete, has become a criti-
cal issue in the trustworthiness of ML models in a 
production environment. For example, an ML model 
used to predict frauds in credit card transactions may 
become less accurate as fraudsters change their tactics 
[13]. To dynamically adapt to the changes in the real 
world and to eliminate the Data Drift inefficiencies, 
modern ML techniques such as Continual Learning 
(CL) and implementation approaches such as Contin-
uous Machine Learning (CML) must be used.

Continual Learning, also referred to as lifelong, 
sequential, or incremental learning, is the problem 
of learning from an infinite stream of data with the 
intent to preserve and extend the acquired knowledge 
[14]. In contrast to static artificial neural networks, 
which are incapable of adapting or expanding, real-
world streams of information constantly evolve [14]. 
Humans learn sequentially throughout their lives. 
They gradually forget some old information, espe-
cially details, but without completely losing obtained 
knowledge [15]. The ability to integrate new knowl-
edge and stability to preserve previous knowledge is 
called the "stability-plasticity" dilemma in both bio-
logical [16] and artificial neural systems [17]. With-
out a good balance, neural networks can suffer from 
"catastrophic forgetting", thus resulting in a deterio-
ration of performance in handling old classes when 
acquiring new data [18]. Although continual learning 
is a long-standing challenge [19, 20], with the spread 
of AI applications in the daily life, the ability to con-
tinuously learn is still of high importance.

On the other hand, Continuous Machine Learning 
is the latest ML development strategy for production-
ready ML applications, where an ML Model has been 
integrated and managed at periodic instances, lever-
aging Agile DevOps practices used in the industry. 
Although such a continuous approach can address 
a few requirements of a dynamic real world, it still 
associates other challenges such as complex infra-
structure requirements, low failure rates, etc. This gap 
can be filled by combining the approaches of CML 
with CL tools to achieve a highly dynamic ML work-
flow, which can be efficiently transferred to industrial 
scenarios.

Machine Learning Operations (MLOps) [72] refers 
to the efficient lifecycle management of machine 
learning models, including the technologies and 
methodologies required. It is considered a multidis-
ciplinary field, combining the practices of Machine 
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Learning, DevOps (Development and Operations), 
and data engineering. The main goal of MLOps is 
to improve the efficiency, quality, and maintainabil-
ity of machine learning projects by automating and 
standardizing the process of taking a machine learn-
ing model from development to production and man-
aging its complete lifecycle. MLOps practices can 
be applied to any machine learning project and itself 
does not concern with the learning methods used 
within a project. The Continual Machine Learning 
Reference Architecture presented in this paper incor-
porates many MLOps aspects in an automated man-
ner, such as re-training, versioning, testing, deploy-
ment, and monitoring and management.

DIGITbrain [21] is a European innovation project 
that aims to support the manufacturing industry by 
providing a collaborative platform for faster devel-
opment of Digital Twin (DT) solutions, re-usability 
and dynamic composition of various assets [22] 
(models incorporating behavioral, physics, finite ele-
ment model, 3D, machine learning [23], dynamically 
bound data resources, and algorithms decomposed 
into microservices), and easier access to high-perfor-
mance computing and cloud resources.

Reference Architectures (RAs) represent fre-
quently emerging patterns and best practices, which 
can be defined at various levels of abstraction. For 
example, "Reference Architectural Model Industry 
4.0” [24] (RAMI 4.0) or “Industrial Internet Refer-
ence Architecture” [25] is built on high-level con-
cepts. At the same time, RAs provided by popular 
public cloud providers such as Amazon WebServices 
(AWS) [26], Google Cloud Platform, and Micro-
soft Azure [27] are more concrete, directly deploy-
able components. RAMI 4.0 represents a high-level 
(abstract) reference architecture, a framework for 
digital transformation in manufacturing and industry 
that facilitates the integration of digital and physi-
cal processes. While being comprehensive, it is not 
without difficulties, such as (i) the cost of implemen-
tation to align with the standards of RAMI 4.0; (ii) 
complexity as it is a multi-dimensional and multi-
layered model; (iii) it has its adaptability, flexibility 
and interoperability issues; and (iv) assumes organi-
zational and process changes within any organization 
to adapt the model. Generally, it provides a structured 
approach for companies to modernize and standard-
ize their operations. Still, it may not be suited for 
organizations of all sizes and maturities and may not 

be applied to improve only a specific set of processes. 
DIGITbrain specializes in providing smaller-scale 
best-practice recommendations, blueprints, patterns, 
and prototypes in manufacturing context [28–31], 
which can be directly applied or customized with lit-
tle effort. Research and development carried out were 
validated using real-life industrial use cases.

This paper focuses on conceptualizing an industry-
transferable, dynamic ML pipeline and validating it in 
a Quality Control operation use case, namely, in the 
glue application process at Bauwerk Group Hrvat-
ska d.o.o. Reference Architectures are provided for 
dynamic ML at different levels of abstraction (from 
schematical to concrete realization). The process and 
the presented results can be utilized in other industrial 
use cases or at least can serve as a starting point or 
template for similar applications.

The main contributions of this work are as follows:

• overview and analysis of related approaches and 
methodological solutions addressing the problem 
of concept drift in industrial applications

• a logical architecture enabling continual machine 
learning

• a concrete reference architecture realization appli-
cable in industrial contexts

• a case study and empirical results that validate the 
approach to an industrial quality control applica-
tion

Note that the paper does not merely aim to pro-
vide a realization of a particular continuous machine 
learning application, which though can be applied in 
various domains in the industry, but to draw the atten-
tion to the phenomenon of concept drift, which can 
explain why the effectiveness of the applied machine 
learning technique degrades over time. We present an 
overview of the state-of-the-art methodologies and 
concepts in the field of continual learning. The pro-
posed high-level, logical reference architecture can 
serve as a functional blueprint, a starting point for 
designing such a complex system, and we also pre-
sent a particular implementation option, which was 
validated on a real-world manufacturing process to 
show its applicability and benefits for manufactur-
ing companies. To our experiences the introduction 
of ML is ongoing and of very high interest at small 
and medium enterprises (SMEs) having huge poten-
tial and even higher expectations. ML technologies 
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are more mature and are better supported by several 
tools and research materials. Application of continual 
machine learning however is less known, still a very 
important from both practical and research points of 
view.

The rest of the paper is organized as follows: In 
the next section, we overview the problem of concept 
drift in static ML models, and related, existing meth-
odological approaches addressing it. We then propose 
both a logical and a specific Reference Architecture 
that can help realize Continual ML architectures and 
workflows. It is followed by a particular use case and 
empirical results on adapting the proposed Reference 
Architecture onto an industrial application. Finally, 
the paper is concluded.

2  Related Work

Although ML utilizes static, historical data for its 
development, it has been successfully applied to 
diverse use cases in various branches of industry: 
agricultural industries for the optimization of food 
production [32], medical applications for disease 
diagnosing [33], making cybersecurity systems more 
secure [34], Industry 4.0 applications [35] etc.

The dynamic characteristics of industrial use cases 
and the inability of ML models to adapt to changes, 
as addressed in the context of concept drift or drift 
[36], make ML models obsolete in certain real-world 
environments and applications. ML models which 
are incapable of detecting cyber attacks as the attack-
ers change their strategies [13] or the medical image 
processing models which deteriorates its performance 
as the diversity of the data increases [73] are some of 
the examples of such real-world applications. On the 
other hand, the relationship between input and output 
data can also change over time meaning that, in turn, 
there are changes to the underlying mapping function 
learned by the ML model. These changes may be con-
sequential, such as the predictions made by a model 
(trained on historical data) are no longer correct or as 
correct as they could be if the model would have been 
trained on more recent historical data. Such unfore-
seeable changes of the underlying data distributions 
result in poor learning results [37] and performance 
deterioration [38] over a certain period. For success-
ful ML applications, it is thus essential to take drift 

into consideration even during the development phase 
to recognize the drift in early stages and to deploy 
updated models that would diagnose themselves and 
adapt to changes in data over time [39], which are 
essential in error-free industrial applications.

Early detection of drift, characterization and quan-
tification, identification of change points and change 
time intervals [40] are important topics in many ML 
applications. Generally, drift detection algorithms 
can be classified into three different categories [37]. 
In an error rate-based drift detection algorithm, the 
error rate of the base classifier is tracked, and a drift 
notification will be triggered based on a statistically 
significant error rate. Common algorithms such as 
Drift Detection Method (DDM) [41], Learning with 
Local Drift Detection (LLDD) [42], Early Drift 
Detection Method (EDDM) [43] use an error rate-
based approach for drift detection. In data distribu-
tion-based drift detection approaches, algorithms use 
a metric or distance function to quantify the dissimi-
larity between the distribution of historical and new 
data points, and at statistically significant dissimilar-
ity instances, a trigger has been initiated. In such data 
distribution-based drift detection methods, the algo-
rithms consider the distribution drift to quantify the 
drift. In the third category, called multiple hypothesis 
test drift detection [37], a combination of both the 
error rate and the data distribution approaches has 
been utilized. Although these drift detection algo-
rithms can identify the occurrence time (when) and 
the severity of the concept drift (how), only a very 
few algorithms can locate the drift regions (where) in 
the dataset [37].

Upon successful detection of drift, a general strat-
egy for drift adaptation or drift reaction is to per-
form a simple model retraining, develop ensemble 
models, or perform model adjusting to handle differ-
ent types of drift [37]. The retraining strategy is one 
of the most successful methods of addressing global 
drift by replacing the obsolete model with a new 
one. The DELM [44] model performs such a retrain-
ing approach to address the global drift by actively 
adjusting the number of hidden layer nodes for clas-
sification models. Similarly, the just-in-time approach 
used in [45, 46] detects the drift using kNN classifiers 
[46], and the models are updated on-demand.

Model ensemble approaches were found to be 
more efficient in addressing the recurring concept 
drifts, where the previously trained models are 
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reused, and retraining efforts are minimized. In a 
general ensemble approach, a combined result from 
different models (using certain voting rules and 
weighting) is generated and used to make new pre-
dictions. The approaches proposed by [47, 48] uti-
lize ensemble models where an algorithm replaces 
the worse-performing model with the newer model 
to address the recurring drift.

Concept drift handling in industrial applications 
is challenging, involving performance as well as 
safety risks for the processes. In an industrial pro-
cess, a monitoring application of a CNC Milling use 
case [49] proposes a data drift tracking method to 
evaluate the uncertainty of utilized CNN’s. Once 
the drift is detected, new training samples are gener-
ated, and the model is adapted to the latest changes 
by retraining. Similarly, in an Injection Molding 
process’s quality control system [50], various drift 
detection algorithms are utilized to identify the 
drift, and the corresponding adaptations are per-
formed again by retraining the model on new train-
ing datasets. Although these approaches address 
the concept drift in the application, dynamic adap-
tations of data changes in a continuous manner are 
rarely researched and not widely implemented in 
industrial applications.

CL has originated as a new ML concept where a 
model learns from a dynamically changing dataset 
and updates and exploits its knowledge over its life-
time. Although CL enables models to develop them-
selves adaptively, it is limited by its catastrophic for-
getting nature, where learning new tasks results in 
performance degradation on old tasks. In comparison 
to the traditional ML approaches, the dynamic adapt-
ability of the CL models enables them to perform 
better in real-world problems, as explained by the 
plasticity-stability dilemma, with plasticity referring 
to the ability to integrate new knowledge and stability 
retaining previous knowledge while encoding it [51].

Traditional ML neural networks tend to be overly 
plastic, lacking the stability necessary to prevent for-
getting previous knowledge, and as the learning pro-
gresses, networks tend to forget previously seen tasks, 
which have been successfully addressed by various 
families of CL approaches [52]. Various methods 
[53–55] use regularization-based techniques while 
retraining the whole network; methods that selec-
tively train the network and dynamically expand it 
on-demand to represent the new tasks by architecture 

modifications [56, 57]; methods using memory replay 
to consolidate internal representation [58, 59]; meth-
ods by explicitly designing and manipulating the 
optimization programs [60–62] have successfully 
implemented strategies to overcome catastrophic for-
getting [14, 63], achieving a better plasticity-stability 
trade-off.

Due to the complexity of the real world, the practi-
cal application of Continual learning is facing many 
difficulties, namely, scenario complexity, task speci-
ficity and scarcity of labeled data [63], decelerating 
industrial adaptation of these approaches. Although 
concept drift is a well-known challenge in ML appli-
cations for industrial use cases, the application of 
Continual learning is not broadly researched and 
transferred to the industrial use cases.

3  Continual Machine Learning Reference 
Architecture

This section presents a schematic block diagram, a 
logical structure of a Continual ML reference archi-
tecture, incorporating components necessary to real-
ize potential CML workflows. We describe all the 
major steps of such processes, starting from the "hot" 
control loop performing real-time data analysis and 
intervention, then extending to the "cold" path that 
allows to detect concept drift to re-train and re-deploy 
the refined model from time to time to adapt to the 
changing environment. It is followed by an overview 
of existing tools and software frameworks that can be 
facilitated to realize such an end-to-end infrastruc-
ture, in part or fully. Finally, we propose a concrete 
and complete Continual ML Reference Architecture, 
in which every logical component has its correspond-
ing software choice, and so thus, after an application-
specific customization, it can directly be deployed 
and run in a local or cloud-edge execution environ-
ment, respectively.

3.1  High-level CML Reference Architecture

Fig.  1 illustrates the structure of the logical refer-
ence architecture composed of high-level functional 
blocks, which can serve as a blueprint, pattern, or 
simply a schematic guideline to overview, under-
stand what needs to be designed and implemented 
to construct a Continual ML application. This 
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architecture contains all the essential, necessary 
modules and functionality, aimed to be as complete 
as possible, although, note that, in practice, several 
other components might extend this base architec-
ture to fulfil further application-specific require-
ments. This model was constructed jointly by sev-
eral companies from the industry and research 
organizations specialized for IT and AI technolo-
gies, went through multiple iterations of develop-
ments, and combines research and industrial prac-
tices gained from small and medium enterprises 
(SMEs) during the DIGITbrain project in manu-
facturing domain. In the following paragraphs, we 
explain the role and functionality of the individual 
components.

Proceeding upwards from the bottom, the lower 
part represents the shopfloor in a production plant 
with a production machine equipped with sev-
eral sensors observing various metrics of the live 
manufacturing process. Examples of production 
machines include metal-forming press machines or 
industrial robot arms, but they can also be complex 

systems with several cooperating components (even 
geographically distributed). Examples of sensors 
include heat-, pressure sensors, industrial cameras, 
programmable logic controllers (PLCs), or other 
software components (e.g., Enterprise Resource 
Systems), databases, respectively.

The stream of sensor data is fed into a compo-
nent called Real-time Inference. It performs real-
time inferences/predictions using ML algorithms 
and models (initially) trained on historical data pre-
viously. The result of the inference can imply imme-
diate control feedback and intervention to the pro-
duction machine (or another cooperating machine) 
through a component called a Control Unit. This 
loop of data and control is called the “hot path” 
(indicated as red arrows), as it is used actively in the 
production process.

The data coming from the sensors is forwarded 
to a Data Collector component, which is responsi-
ble for storing new data for later analysis, and might 
also perform further data transformation and pre-
processing activities such as data augmentation, 

Fig. 1  High-level CML reference architecture and workflows
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scaling, sampling, cleaning, aggregation, KPI (Key 
Performance Indicator) extraction, etc. Data Collector 
also records the actual predictions made by the cur-
rent ML application (Real-time Inference block) and 
potentially collects and assigns annotations (labels) 
for data samples on the fly, entered by a human 
operator.

Data Collector can also buffer the data before 
sending it to a persistent storage system called Data 
Storage. This direction of data is called a “cold path”, 
which is typically it is less time-critical compared to 
the “hot” control loop. Data Storage can be an object 
storage, as an example, a database, or a message bro-
ker, respectively. It can be hosted on-premises (keep-
ing governance, control, and sovereignty over the 
data) but can potentially hosted in a cloud storage ser-
vice outside the facility.

Drift Detection module continuously analyses new 
data (obtained from the Data Storage component), 
derives and calculates statistical, metric data, trends 
such as accuracy of prediction degradation over time, 
distribution change and other anomalies.

A Monitoring and Visualization layer, which is 
typically the graphical user interface of the system, 
can visualize this information for a human operator 
(but can provide other monitoring and status infor-
mation about the system; this time we restrict our 
attention of CML aspects). When drift is detected, 
it notifies the Decision Making component, which is 
responsible for determining whether model re-train-
ing is required and when it can be performed (e.g., 
enough new training data is available, drift exceeds a 
certain threshold), it schedules re-training and deter-
mines the set of data to be used (only new or a mix-
ture of old and new, etc.) and whether a new model 
architecture is required (e.g., in case of a new cat-
egory or ensembles). The decision may require user 
interaction or confirmation.

Model Training module performs the training pro-
cesses. This component is typically hosted in an exe-
cution environment equipped with sufficient compute 
resources (typically with GPU cards). Model train-
ing may use previous model parameters as a starting 
point (transfer learning), and the resulting model is 
eventually stored in the Model Registry using ver-
sioning and other metadata.

When the new model becomes available and is 
uploaded into the Model Registry, the Decision Mak-
ing component initiates graceful termination of the 

current control process and instructs the Real-time 
Inference module to fetch the new model version 
(indicated by “(re-)deploy model” arrow), apply it 
and resume the manufacturing with as little downtime 
as possible.

Note that this is a high-level reference architec-
ture that includes functional components needed 
to cover workflows in CML systems. Although it is 
also an architecture of high abstraction, in contrast to 
RAMI 4.0 for industry, this model focuses on CML. 
It intentionally does not specify software solutions 
and other implementation details that could restrict 
the application of the logical scheme to use cases 
or uniform requirements. It provides merely hints 
for placement for the components (shopfloor, edge, 
cloud), which can vary from application to applica-
tion; an “optimal” placement cannot be determined 
in general in advance and is largely dependent on 
company policies and preferences. In extreme cases, 
it can happen that all components are best deployed 
on the shopfloor (no data leaves company premises), 
or everything runs in the cloud (no infrastructure is 
needed from the company), respectively. In most 
cases, a mixed allocation of functional components 
to compute and storage resources might be prefer-
able, considering several aspects like performance, 
cost, data privacy, etc. Because the necessary data 
and model storage technologies (and the required 
infrastructure backing) also vary widely (databases, 
object/file storages, streaming resources, potentially 
storing loads of volumes in a distributed and repli-
cated manner), no placement is recommended at all 
for these components (simply referred to as a storage 
layer). Re-training, due to its high computing require-
ments (GPU support) and its periodical but tempo-
rary nature, is typically allocated to clouds for cost-
performance tradeoff reasons (as recommended by 
the architecture).

3.2  Related Tools and Frameworks

There are several platforms and libraries available 
to support continual ML use cases. MLflow [64] 
is an open-source platform designed to streamline 
the machine learning life cycle, manage and track 
machine learning experiments, models, and deploy-
ments. It provides a unified interface and allows 
users to work with various machine-learning frame-
works, libraries, and tools. The core components of 
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MLflow include (i) Tracking, which enables users to 
log and organize experiments and their parameters, 
metrics, and artifacts; (ii) Projects, which standardize 
the structure and modularization of machine learning 
code to make it more shareable and reproducible; and 
(iii) Models, which facilitate model packaging and 
deployment across different platforms.

Additionally, MLflow offers a Model Registry for 
version control, collaboration on model development 
and an extensive set of APIs and integrations. Fur-
thermore, MLflow Recipes is an experimental frame-
work for structuring MLOps workflows that simpli-
fies and standardizes machine learning application 
development and productionization. It provides (a) 
predefined templates that include standardized stages 
such as data ingestion, transformation, training, eval-
uation, etc.; (b) a recipe execution engine that allows 
fast iteration by, e.g., keeping track of the dependen-
cies within any pipeline and will trigger re-execution 
starting only from the required step; and (c) standard-
ized and modular structure to simplify and automate 
hand-off from development to production.

On the other hand, Avalanche [65] is an open-
source end-to-end Continual Learning library based 
on PyTorch. Its goal is to support fast prototyping, 
training and evaluation of continual learning algo-
rithms. Its initial focus was on continual supervised 
learning for vision tasks. It focuses on reproduc-
ibility, scalability, and code efficiency (e.g., requir-
ing less code, allowing faster iteration, and reducing 
errors). It consists of five modules: (i) the bench-
marks module contains the major CL benchmarks 
and offers a uniform API for data handling; (ii) the 
training module contains functionality for model 
training, including efficient methods for implement-
ing new CL strategies and also contains CL base-
lines and algorithms to use and compare against; 
(iii) the evaluation module contains functionality for 
evaluating CL algorithms based on the criteria, fac-
tors that the Avalanche authors consider important; 
(iv) the models module includes task-aware models 
and utilities to expand models through a set of pre-
trained models and popular (reference) architectures, 
similarly to torchvision.models. Finally, (v) the log-
ging module contains logging and plotting features, 
including native support for Tensorboard. As Ava-
lanche is an off-the-shelf open-source framework 
offering end-to-end CL implementation and customi-
zation opportunities on demand, its functionalities 

are in line with the objectives of the paper and, there-
fore, chosen for the implementation.

3.3  Concrete CML Reference Architecture

Figure  2 illustrates the proposed Reference Archi-
tecture implementation. It contains three major lay-
ers. (i) The DIGITbrain Platform (also called Digital 
Agora) serves as a high-level user interface (also, the 
control and orchestration layer within the ecosystem). 
(ii) The cloud layer is designed to provide the neces-
sary compute capacity from a cloud. Throughout the 
deployment process, the platform orchestrates the 
deployment of the predefined components and facili-
tates essential integration steps, such as data manage-
ment and communication between the components; 
(iii) The infrastructure of the manufacturing com-
pany, including the Data Storage and Model Registry 
components.

In manufacturing, data handling and control feed-
back are generally sensitive topics; therefore, com-
panies often prefer to share as little information as 
possible with the outside world (and the competi-
tors). Therefore, the Data Storage and the Control 
Unit (which beyond privacy has high security risk) 
are separated from the provided reference architecture 
implementation and are connected dynamically on 
application start on-the-fly.

During the process of data integration, data and 
models need to be stored and accessed, but since the 
Reference Architecture does not intend to delimit the 
type of storage to be used (which varies significantly 
from use case to use case depending on the actual 
data the factory produces), it contains an Rclone 
component to connect to these external storages 
seamlessly (data and model storages may even be of 
different types). Rclone offers dynamic configuration 
options to connect to a particular storage at run-time, 
supporting more than 70 different providers (includ-
ing AWS S3, Microsoft Azure Blob Storage, Google 
Drive, etc.). Moreover, leveraging the functionality 
provided, Rclone component ensures that only essen-
tial data is synchronized to the cloud. This targeted 
synchronization minimizes network load, reduces 
data movement latency, and carefully considers the 
secure advantages associated with retaining data 
on-premises.

For the CL framework Avalanche had been 
selected as a software implementation. The 
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Avalanche container is built on top of the PyTorch 
stack and extends its functionality to the CL direc-
tion. Since, during model development, use of 
authoring tools (training, evaluating, experimenting, 
etc.) can be important, we also integrated the widely 
used JupyterLab, as a graphical development envi-
ronment option. Moreover, this container is equipped 
with an NVIDIA driver for GPU execution, which 
is versatile, allowing testing and utilization of CPU 
resources whenever GPU resources are not available.

The Avalanche Container allows for realizing the 
following functionalities: (i) model training and vali-
dation; (ii) Decision Making logic that triggers model 

re-training on extended/re-sampled datasets; (iii) detec-
tion of data distribution changes (drift) over time. Since 
these phases are application-specific, the reference archi-
tecture can only provide a framework, tools, and options 
to implement them but cannot provide hard-wired solu-
tions for all the cases requiring no customization efforts.

Finally, the Reference Architecture when launched 
by the platform allows users configuring essential 
parameters such as specifying external data resources 
(hosts, storage types and data protocols, access cre-
dentials, etc., for data and model storages), entering 
application-specific settings (such as the password to 
access JupyterLab), as well as keeping track of the 

Fig. 2  Concrete CML reference architecture and implementation details
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status of current application execution and potential 
alerts coming from the containers.

Note that the provided concrete reference architec-
ture is an actual implementation (deployable and inte-
grated) and convers and provides frameworks for most 
of the functional building blocks of the logical reference 
architecture presented previously. It is not application-
specific, so it can be used more generally in various 
production environments and use cases requiring CML, 
although it cannot specify details such as how exactly 
to detect drift, what data/types of data are collected, 
what particular storage needs to be used and where it is 
deployed, how to decide when to retrain the model and 
how, etc., which are application-dependent details. It 
still offers implementation solutions for several compo-
nents and frameworks for placeholders subject to speci-
fication, customization, tailoring to complete the system.

4  Validation and Experimental Results

The APRICOT experiment (one of the industrial 
validation experiments in DIGITbrain project) 
implemented a solution for automatized quality 

control in the glue application process on parquet 
manufacturing lines. The end user previously per-
formed quality control using manual methods, 
which was rather time-consuming, costly and prone 
to error. To eliminate such bottlenecks and auto-
mate the process the experiment utilized high-end, 
NIR (near-infrared) cameras and deep learning-
based computer vision techniques to detect the 
quality issues in the glue application process on 
the wooden planks in real time on a dedicated edge 
device. The images generated from the NIR cam-
eras, as shown in Figure  3, have been utilized to 
generate an ML model in later stages.

The architecture of the application as shown in 
Figure 4 consists of multiple microservices:

1. A microservice responsible for image acquisition, 
image processing and machine learning model 
inference (Glue Defect Detection)

2. A microservice that, depending on the defect 
detection result, sends a command to a printer to 
mark the defective plank (PLC Trigger)

3. A microservice for storing collected data in the 
cloud (S3 Cloud Storage Microservice)

Fig. 3  Image data from the NIR Cameras of the plank surfaces, used as the input data to the ML Model
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4. A microservice for publishing metric data to 
Ascalia’s web platform for monitoring production 
(Data Publisher)

5. A graphical user interface showing the data on 
detected defects and simple statistics

6. An MQTT broker for communication between 
microservices.

Since the application uses a deep learning model 
to detect the defects on images, its performance could 
deteriorate over time due to various factors inherent 
to industrial environments. Most frequent factors fall 
into the following categories:

1. Hardware degradation: Hardware equipment 
can degrade over time or stop functioning com-
pletely. For instance, lighting intensity could 
decrease over time, leading to changes in data 
quality which could affect model performance.

2. Adaptation challenges: New product types 
could be added to production, which could differ 
from existing data. The ML model in production, 
which was trained prior to this addition, most 
likely wouldn’t be able to perform well on those 
new images. To mitigate this additional image 
data of the new products should be collected and 
annotated, and the ML model should be retrained.

Fig. 4  Architecture of the APRICOT experiment implementation
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3. Environmental changes: If the environment, in 
which the hardware setup is installed, undergoes 
changes (e.g., in lighting conditions, equipment 
configuration, background), the model could fail 
to adapt if such conditions weren’t represented in 
the training data.

An increased number of false positive detections 
could be very disruptive for a manufacturing pro-
cess, whereas an increased number of false nega-
tives could result in the defect being undetected by 
the operators, and lead to customer dissatisfaction. 
Therefore, it’s crucial to incorporate data/model 
monitoring concepts and Continual learning. To 
implement those concepts into the manufacturing 
pipeline the current application architecture was 
extended.

4.1  Challenges

4.1.1  Scarcity of Labeled Data

Typically, in industrial production, defects rarely hap-
pen however their significance is huge when they 
remain undetected and defective products are shipped 
to the customer. Scarcity of labeled data was a great 
challenge in this use case. The manufacturing com-
pany (targeted user of the application) has not previ-
ously used cameras to inspect their products, so they 
could not provide data. Also, no such open dataset 
was available at the time of the application develop-
ment. It required a huge effort to collect, manually 
(visually) inspect, categorize and verify image labels 
one-by-one, involving the work of experts, line man-
agers and operators to confirm the actual glue appli-
cation defects which also depend on parameters such 
as size, shape and density.

4.1.2  Scenario Complexity

As mentioned previously, changes of the environment 
can negatively impact the performance of the model, 
which may then fail to “generalize”, detect poten-
tial faults under the new conditions. Computer vision 
applications are sensitive to lighting conditions, and 
despite that the hardware setup was designed to mini-
mize impact of external lighting conditions, it was 

impossible to eliminate all interferences. Another chal-
lenge was the diversity of plank types to be inspected, 
which varied in texture and color, furthermore, defects 
also differed in their shape, size, and frequency, which 
could result in an imbalanced dataset. The model was 
expected to perform well on all types of products.

4.1.3  Task-Specific Requirements

The environment can change over time, so as the 
products and the types of defects being inspected. In 
addition, after a certain period, the ratio of glue com-
ponents was updated (to reduce production costs), 
which resulted in visually different defects. On one 
product type, there were multiple smaller regions 
of unapplied glue on planks (“spotty” glue applica-
tion) and the decision to be reported (defect or not) 
depended on the distance between the smaller defects 
(density) and their size.

Considering the above challenges, continual learn-
ing was a critical aspect at developing such a com-
puter vision application.

4.2  Application Overview

A microservice for data drift detection was devel-
oped to detect changes in the acquired images. The 
microservices utilizes WhyLabs [66], an open-source 
data logging platform, to detect drift in the input data. 
Using a reference dataset, the platform performs dif-
ferent statistical or machine-learning-based methods 
to detect changes in the data distributions. When a 
drift is detected, the microservice notifies the operator 
about the change on a graphical user interface, which 
recommends reviewing and annotating the new data. 
Also, it can trigger immediate interactions, interven-
tions in case of sudden drops, unexpected behavior 
of the production machine or unusual change of the 
environmental conditions.

The operator is then directed to use the data anno-
tation microservice, another graphical user interface 
wrapping LabelStudio [67], an open-source platform 
for data labeling. Using this microservice, the user 
can annotate previously collected image data from the 
cameras. The annotations are automatically stored in 
an S3 bucket (AWS cloud storage solution).

Once the data labeling session has been com-
pleted, the microservice responsible for retraining 



J Grid Computing (2024) 22:71 Page 13 of 19 71

Vol.: (0123456789)

models is notified, and training jobs are started. The 
resulting model is evaluated and stored in S3. If the 
new model performs better, the glue defect detection 
microservice fetches the new model automatically. 
The following paragraphs describe in detail the drift 
detection and retraining microservices that have been 
implemented.

4.3  Data Drift Detection

To assess data drift the WhyLabs platform initiates 
a profiling process on the data before the drift detec-
tion algorithm is applied. These profiles encapsulate 
essential statistical attributes of the data, including 
distribution metrics, frequent items, and the identifi-
cation of missing values. Such statistical properties 
are then employed in modified versions of drift detec-
tion techniques. It is crucial to acknowledge that a 
profile is merely an estimation of the original data. Its 
use for drift detection results in approximations rather 
than precise identification of the actual drift [68].

Various methodologies exist in drift detection to 
quantify the similarity between two probability dis-
tributions or data profiles. The selection of a specific 
method hinges on the unique requirements of the use 
case. The WhyLabs Platform accommodates four 
algorithms for drift detection and monitoring: Hell-
inger distance, Kullback-Leibler (KL) divergence, 
Jensen-Shannon (JS) divergence, and Population Sta-
bility Index (PSI). Each algorithm has distinct advan-
tages and disadvantages, necessitating some trial-and-
error to fine-tune the monitoring process to attain an 
optimal signal-to-noise ratio.

The default choice for calculating drift is the Hell-
inger distance due to its applicability to discrete (cate-
gorical) and non-discrete (numerical) features and its 
interpretability. This metric, derived from comparing 
the square root of probability distributions, yields val-
ues between 0 and 1. A value of 0 signifies no diver-
gence, while a value of 1 denotes entirely distinct 
distributions. However, its robustness may limit its 
sensitivity to subtle changes in distribution, making 
alternatives like KL or JS divergence more suitable in 
certain cases [69].

Monitoring unstructured data, such as images, 
and telemetry data, is captured in a structured format 
compatible with conventional statistical approaches. 
For instance, monitoring changes in image brightness 
can be achieved by calculating the mean pixel value, 

while hue and saturation offer insights into the image 
color palette. Monitoring image height involves cap-
turing the shape of the tensor representing raw image 
data along with the number of channels in the tensor 
indicating the image’s color space (RGB, CMYK, 
grayscale) [70].

In the reference example, parameters such as 
image height, width, color space, brightness, and 
entropy (representing image complexity) are con-
tinuously monitored. Once the divergence between 
reference and current profiles surpasses a predefined 
threshold, indicating a drift, the user is promptly noti-
fied through the user interface to review and poten-
tially annotate new data for retraining purposes.

4.4  Model Retraining Microservice

The process of retraining a complex model from 
scratch whenever new data is available can be 
extremely costly in terms of storage and com-
pute resources, even when conducted on serv-
ers [71]. Therefore, the reference architecture’s 
model retraining service utilizes the Python library 
mentioned earlier, Avalanche for rehearsal strat-
egy implementation, a simple continual learning 
strategy consisting of learning new experiences 
as well as re-learning/repeating those that were 
already seen by the deployed model to minimize 
the effects of catastrophic forgetting and reduce 
the training complexity. Previously learned expe-
riences are available and can be fetched from a 
rehearsal buffer, a dynamic dataset (with a fixed 
maximum size) that can be continuously updated 
with new data as needed. This approach employs 
a custom data loader that fetches previous experi-
ences from the rehearsal buffer and injects them 
into each training batch composed primarily of new 
experiences.

Avalanche proved to be a good fit for this applica-
tion because it is an easy-to-use, open-source Python 
library that extends PyTorch with continual learning 
capabilities. It covers the whole process, from data 
loading to model training and evaluation. Since it is 
designed for fast prototyping, adjusting the training 
loop for the PyTorch-based machine learning model 
was not difficult. The updated versions of the model 
are stored in AWS S3 cloud storage, utilizing its ver-
sioning feature. All versions are kept alongside the 
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model’s metadata, in case the updated model’s per-
formance has not improved, necessitating a rollback.

4.5  Experimental Results

During the initial model development phase, an object 
detection model (YOLO architecture) was trained to 
identify defects in the glue application process using 
a dataset composed of 300 initial images.

However, after the model was deployed into pro-
duction, the environment changed slightly due to 
decaying lighting conditions. Even though the cam-
eras and lighting were placed in the industrial cas-
ing to minimize external influences, the housing 
might have been readjusted, causing changes in 
how the lighting reflects from the plank surfaces. It 
can be observed from the image comparison in Fig-
ure 5 that the latest images had higher brightness and 

Fig. 5  Input data evolution: images taken before (top row) and after (bottom row) environmental changes. A noticeable increase in 
brightness and the presence of reflections can be observed

Fig. 6  False positive detec-
tion made by the initial 
model on the latest input 
images due to data drift
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visible reflections. Consequently, the initial data-
set was updated to account for these environmental 
changes.

Occurrences of false positive detection, as 
depicted in Figure 6, have escalated during produc-
tion. To address this the model was updated using 
the replay rehearsal strategy within Avalanche, as 
described in the previous subsection, with default 
hyperparameters. In the updated dataset, there were 
254 new images in total (204 used for training and 
50 for testing). Training the model required about 
20 minutes on a ml.p2.xlarge GPU instance on 
AWS.

The comparison of model performances shown in 
Table 1 illustrates the impact of updating the model 
with a continual learning strategy on various perfor-
mance metrics. The precision dropped slightly (from 
0.985 to 0.957); however, it could also be seen that 
recall improved significantly (from 0.792 to 0.936). 
To clients in this industry that means that much less 
defects were missed by the quality control system, 
while there was a slight increase in false positive 
detections. As it was previously mentioned, the error 
of missing a true positive defect is much greater to the 
manufacturing company than having a false positive 
detection. In this use case especially, since after the 
glue application phase the defects cannot be detected 
in any way due to the nature of the process, and the 
consequences become visible only after the parquet is 
shipped to the end user, which is costly for the com-
pany and damaging to the reputation.

Having false positive detections could impact the 
production process in a way that operators spend too 
much time on false detections or increase costs due 
to larger amounts of planks being withdrawn from 
production. However, the false positives in this case 
occur rarely enough, and when they occur, the results 
can be used to further improve the model. Operators 
at the manufacturing line have a user interface that 

notifies them about the defects with visualization. If 
the reported defect is false positive, the operators can 
report it as a false positive detection using a button. 
That sample is stored in the dataset for later retrain-
ing and validation purposes. The operators or other 
personnel with expertise on quality control have 
the ability to label the images using the application, 
which then triggers the model retraining pipeline and 
deploys the new model in case of better performance.

Therefore, even though precision dropped slightly, 
the updated model performs better overall and can 
be deployed into production. Slightly increased false 
positive detection rate is not disruptive to the produc-
tion, and can only benefit from the continual learning 
process, since images will be annotated and used in 
future training. Due to the nature of the framework, 
the majority of the pipeline is automatized so the end 
user is only required to interact with the user interface 
and annotate images in case of drift detection or false 
positive detections.

5  Discussion and Conclusions

Continual Machine Learning ensures dynamic adap-
tation of ML models to these new conditions by mon-
itoring and re-fitting models according to the shift or 
more radical changes, from time to time. To imple-
ment such a continuously evolving system is not a 
straightforward task due to its complexity.

The paper overviewed state-of-the-art techniques 
on how to recognize, identify change points, char-
acterize and quantify concept drift (based on error 
rate, data distribution or on a combination of both) 
as well approaches to how to adapt and react upon 
these changes (by retraining models or constructing 
ensemble models). We provided a high-level, logical 
architecture that includes all the necessary functional 
building blocks, their relationships and the main 
workflows (“hot” and “cold” data paths), keeping 
implementation decisions open (concrete software 
choices, location of deployments, integration ques-
tions), which can serve as a reference or simply as a 
guide for the more detailed system design. The paper 
proposed a particular implementation for this logical 
reference architecture (centered around Avalanche, 
based on PyTorch, and with data interfaces through 
Rclone), which was then further customized and suc-
cessfully validated in an industrial application at the 

Table 1  Comparison of metrics between the initial and 
updated model on validation datasets before and after environ-
mental changes

Precision Recall F1 Score mAP50 mAP50-95

Initial 
dataset

0.985 0.792 0.878 0.873 0.581

Updated 
dataset

0.957 0.936 0.946 0.957 0.871
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industrial plant of APRICOT showing that the pre-
sented approach has also practical usability.

This research proposed one realization for the high-
level Continual machine learning reference archi-
tecture (based on Avalanche and PyTorch), however, 
other implementations may also prove to be widely 
usable in different domains in the industry, potentially 
using other CML toolkits and other machine learning 
frameworks (Keras-TensorFlow, Scikit Learn, etc.). 
The experimental validation further narrowed the 
focus to specific drift detection and decision-making 
strategies (optimized accordingly to the objectives of 
the current manufacturing process), furthermore, the 
implementation was not fully automated; human-in-
the-loop was required to assist in labelling new data to 
revise or override decisions made by the system. The 
investigation of these options and further improve-
ments serve as a basis for our future work.
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