CORRECTION

Correction to: The Other Closure and Complete Sublocales

Maria Manuel Clementino¹ · Jorge Picado¹ · Aleš Pultr²

Published online: 29 June 2018 © Springer Nature B.V. 2018

Correction to: Appl Categor Struct https://doi.org/10.1007/s10485-018-9516-4

In the original publication of the article, the formulation of the *c*-subfitness condition (c-sfit) in Subsection 5.2 is inaccurate, with effect in Theorem 5.3. A corrected version of 5.2 and more explanation in the proof of 5.3 is provided in this Corrigendum note.

5.2. A Formal Relaxation

Since an open sublocale of a subfit locale is subfit, we can replace (iii) in 5.1.2 by a formally stronger claim concerning an arbitrary open $U \subseteq L$ instead of L. Thus, we can characterize subfitness by

for any open $U \subseteq L$ and any sublocale $S \subseteq L$, $S^{\circ} = U \Rightarrow S = U$ (sfit")

(compare with 4.3). Now, we will formally relax this condition to

for any open
$$U \subseteq L$$
 and any *complete* sublocale $S \subseteq L$,
 $S^{\circ} = U \Rightarrow S = U$. (c-subfit)

We will present two necessary and sufficient conditions for c-subfitness, one of them technical, another stating that it is precisely the borderline of the coincidence of completeness and openness.

Maria Manuel Clementino mmc@mat.uc.pt

Aleš Pultr pultr@kam.mff.cuni.cz

¹ CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

² Department of Applied Mathematics and ITI, MFF, Charles University, Malostranské nám. 24, 11800 Praha 1, Czech Republic

The original article can be found online at https://doi.org/10.1007/s10485-018-9516-4.

[☑] Jorge Picado picado@mat.uc.pt

5.3 Theorem A frame L is c-subfit iff, for every complete S and open U in S(L),

$$\downarrow (S \smallsetminus \{1\}) = \downarrow (U \smallsetminus \{1\}) \quad \Rightarrow \quad S = U.$$

Proof \Rightarrow : Since $S^{\circ} = \mathfrak{o}(a)$ is obviously the same as claiming that $S \subseteq \mathfrak{o}(a)$ together with \downarrow (*S* \ {1}) being cofinal in \downarrow ($\mathfrak{o}(a)$ \ {1}), it suffices to prove that *S* \subseteq $\mathfrak{o}(a)$.

Let $\downarrow (S \setminus \{1\}) = \downarrow (\mathfrak{o}(a) \setminus \{1\})$. We shall show that $\mathfrak{c}(a) \cap S = \mathfrak{O}$. Indeed, if $1 \neq s \in S$ and $a \leq s$, then $a \in \downarrow(\mathfrak{o}(a) \setminus \{1\})$, hence $a \leq a \rightarrow x \neq 1$ for some x. But then $a \leq x$ and therefore $a \rightarrow x = 1$, a contradiction. \Leftarrow is trivial.