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Abstract The theory of linear arithmetic (TLA), also known as the Theory of Rationals,
is an extremely well-studied theory. It has been widely applied to a number of domains,
including program verification and constraint specification. This paper discusses the compu-
tational complexities of two broad fragments of TLA, namely Quantified Linear Programs
(QLPs) and Quantified Linear Implications (QLIs). These fragments are ideal for expressing
specifications in real-time scheduling, and for modeling reactive systems. In this paper, we
study the computational complexities of several variants of QLPs and QLIs. Our principal
result shows that there exists a one-to-one correspondence between alternations in a class of
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QLIs and the complexity classes comprising the polynomial hierarchy PH. In other words,
for each class of the PH, there exists a class of QLIs that is complete for that class. Our
work mirrors the work in [L.J. Stockmeyer, The Polynomial-Time Hierarchy, Theoretical
Computer Science, 3:1-22, 1977] which established the connection between the classes of
PH and quantifier alternations in Quantified Boolean Formulas. Our results are surprising,
since the variables in the fragments that we consider are continuous, as opposed to discrete.

Keywords Quantified linear programming · Quantified linear implication · Theory of real
numbers with addition · Complexity classes

Mathematics Subject Classification (2010) 68Q17 · 03D15 · 90C05

1 Introduction

The Theory of Linear Arithmetic (TLA), also known as the Theory of Rationals (see
Appendix A.1), has been well-studied in the literature, on account of its wide applicability
to a number of practical domains. Indeed, this theory forms the backbone of most automated
program verifiers [4]. This paper studies the computational complexities of some interest-
ing fragments of TLA. In particular, it deals with Quantified Linear Programs (QLPs) and
Quantified Linear Implications (QLIs). Quantified linear programming is the problem of
checking whether a linear system is satisfiable with respect to a given quantifier string. The
quantifier string specifies the sort of each variable (existential or universal) and the order in
which they occur. Hence, quantified linear programming is a (non-trivial) generalization of
linear programming. For each universally quantified variable, the quantifier string specifies
a non-empty, continuous and closed interval on the real-line; this interval corresponds to the
permissible values for the variable [33]. It is not hard to see that QLPs represent the conjunc-
tive fragment of TLA with one major exception, viz., the universally quantified variables
are bounded. Note that the bounds can be removed by rewriting the constraints implied by
the QLP as an implication. The bounds on the universally quantified variables are placed in
the Left Hand Side (LHS) of the implication, while the original constraints form the Right
Hand Side (RHS). This is demonstrated in Example 1.

Example 1 Let us consider QLP (1):

∀y1 ∈ [0, 1] ∃x1 x1 + y1 ≤ 1. (1)

This is equivalent to QLI (2):

∀y1 ∃x1 [0 ≤ y1 ≤ 1 → x1 + y1 ≤ 1]. (2)

Allowing an arbitrary linear system on the LHS of the implication results in a Quantified
Linear Implication (QLI) [14]. Note that the abbreviations QLP and QLI and their variants
PQLP, UQLP, PQLI and UQLI are used to denote both a class of problems and specific
instances (see Section 2). The usage is clarified by the context.

In this paper, we examine some new variants of QLP and QLI, and establish their compu-
tational complexities. We also settle several open questions in the literature regarding QLI.
We prove that the variants of QLP and QLI in which every universally quantified variable is
partially bounded can be decided in polynomial time. Similarly, we show that the variants of
these problems in which every universally quantified variable is unbounded can be decided
inpolynomial time.Wealso showthat corresponding toeachclass of the polynomial hierarchy
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(PH) [27, 28], there exists some instantiation of the QLI framework that is complete for
this class. This is interesting due to the fact that QLI covers the PH using only continuous
variables, thus providing a continuous analogue to the results of [32]. Finally, we examine
the computational complexities of some classes of QLI with one quantifier alternation.

The rest of this paper is organized as follows: Section 2 formally describes the problems
that we consider in this paper. Section 3 describes the motivation for our work. In Section 4,
we survey related results in the literature. Sections 5 and 6 discuss variants of QLP and
QLI respectively from the perspective of computational complexity. Section 7 proves that
Quantified Linear Implication covers the polynomial hierarchy. Related complexity results
are described in Section 8. We conclude in Section 9 by summarizing our contributions and
outlining avenues for future research.

2 Statement of problems

We use the standard notation of linear algebra [29] to formally present the basic notions of
this paper. R is the set of real numbers. Let capital bold letters (A, B, . . .) denote matrices
and small bold letters (x, y, b, . . .) denote column vectors. 0 is the column vector with all
elements equal to 0. The product of A and x is denoted by A · x. Likewise, let x · y denote
the inner product of x and y. Finally, we assume that the dimensions of vectors and matrices
in products are compatible.

A QLP is a conjunction of linear constraints in which every variable is either existentially
or universally quantified:

∃x1∀y1 ∈ [l1,u1] . . . ∃xn∀yn ∈ [ln, un] A · x + N · y ≤ b. (3)

In QLP (3),

(i) x1 . . . xn is a partition of x with x1 possibly empty.
(ii) y1 . . . yn is a partition of y with yn possibly empty.
(iii) li is the lower bound for yi , i = 1, . . . , n.
(iv) ui is the upper bound for yi , i = 1, . . . , n.

Note that in a QLP every universally quantified variable is bounded from above and below.
It is clear that a QLP that in which every variable is existentially quantified is a Linear
Program (LP).

We now introduce two variants of Quantified Linear Programming, both of which alter
the nature of the bounds on the universal variables.

A Partially-bounded Quantified Linear Program (PQLP) is a QLP in which every
universally quantified variable is only bounded on one side.

∃x1∀y1 ∈ [ l1,+∞ ) . . . ∃xn∀yn ∈ ( − ∞,un ] A · x + N · y ≤ b

Without loss of generality, we can assume this single bound forces each such variable to be
non-negative:

∃x1∀y1 ∈ [0, +∞) . . . ∃xn∀yn ∈ [0, +∞) A · x + N · y ≤ b

This assumption holds because we can always transform any PQLP into the desired form.
This is demonstrated in Example 2.

Example 2 Consider PQLP (4):

∀y1 ∈ (−∞,−2] ∃x1 x1 + y1 ≤ 1. (4)
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We can change the upper bound on y1 into a lower bound by negating all instances of y1 in
PQLP (4). This results in PQLP (5):

∀y1 ∈ [2, +∞) ∃x1 x1 − y1 ≤ 1. (5)

Then, we can change the lower bound on y1 from 2 to 0 by replacing all instances of y1 in
PQLP (5) with (y1 + 2). This results in PQLP (6):

∀y1 ∈ [0, +∞) ∃x1 x1 − (y1 + 2) ≤ 1. (6)

An Unbounded Quantified Linear Program (UQLP) is a QLP where there are no bounds
on any universal variable:

∃x1∀y1 . . . ∃xn∀yn A · x + N · y ≤ b

Note that UQLP represents the conjunctive fragment of TLA.
QLIs generalize the notion of polyhedral inclusion. The typical QLI has the following

form:

∃x1∀y1 . . . ∃xn∀yn [A · x + N · y ≤ b → C · x + M · y ≤ d] (7)

In [14], a nomenclature was presented to represent the various classes of QLI. We briefly
describe the nomenclature below:

Every QLI is exactly characterized by an ordered 3-tuple 〈A, Q, T 〉. In this 3-tuple,
(i) A denotes the number of quantifier alternations in the quantifier string.
(ii) Q denotes the first quantifier.
(iii) T is an (A+1)-character string that specifies whether each quantified set of variables

in the quantifier string appears on the Left, on the Right, or on Both sides of the
implication.

Example 3 Consider the 3-tuple 〈1, ∀,BL〉. This indicates a problem described by QLI (8):

∀y ∃x [A · x + N · y ≤ b → M · y ≤ d] (8)

We extend the notion of partially bounded and unbounded universally quantified vari-
ables to QLIs. A Partially-bounded Quantified Linear Implication (PQLI) is a QLI in which
every universally quantified variable is bounded only by a single absolute constraint. As
with PQLPs, we can assume without loss of generality that this single constraint is a non-
negativity constraint. This constraint is placed in the LHS of the implication. Thus, a PQLI
has the following form:

∃x1∀y1 . . . ∃xn∀yn [(A · x ≤ b ∧ y ≥ 0) → C · x + M · y ≤ d]

An Unbounded Quantified Linear Implication (UQLI) is a QLI in which no universally
quantified variable appears in the LHS of the implication. Thus, a UQLI has the following
form:

∃x1∀y1 . . . ∃xn∀yn [A · x ≤ b → C · x + M · y ≤ d]

It is important to note that 2-person game semantics have been proposed both for QLP
[33] and QLI [14]. These are described in detail in Appendix B.1 and Appendix B.2
respectively.

A boolean formula φ is said to be in disjunctive normal form (DNF), if it consists of a
disjunction of conjuncts, where each conjunct is a conjunction of literals. The formula is
said to be in 3DNF , if each conjunct has exactly three literals.
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A Quantified 3DNF (Q3DNF) formula is a quantified boolean expression of the form
Q(x, y) φ(x, y), where Q(x, y) is a quantifier string and φ(x, y) is a boolean formula in
3DNF.

The following quantified boolean expression is an instance of Q3DNF:

∃x1∀y1∃x2∀y2∃x3∀y3 (x1 ∧ y3 ∧ ¬x2) ∨ (x3 ∧ y2 ∧ ¬x1) ∨ (x2 ∧ y1 ∧ ¬x3)

We will use Q3DNFs to establish the connection between Quantified Linear Implication
and the Polynomial Hierarchy. A 2-person game semantics for this problem is provided in
Appendix B.3.

If L is a QLP, QLI or Q3DNF, the following terms are equivalent and used interchange-
ably:

1. L holds.
2. L is feasible.
3. L is satisfiable.
4. The existential player has a winning strategy for L (see Appendix B).

3 Motivation

Quantified Linear Programming represents a rich language that is ideal for expressing
schedulability specifications in real-time scheduling [8, 16]. In a real-time scheduling
instance, a dispatcher typically determines whether a set of ordered, non-preemptive jobs
can be scheduled within given time frames. Associated with each job is a start time and an
execution time. The execution time of a job is a range-bound variable. There exist timing
constraints that constrain the execution of jobs. These requirements can be modeled using
QLPs.

For example, consider a real-time scheduling application with two jobs J1 and J2 with
start times s1 and s2, and execution times e1 ∈ [le1 , ue1 ] and e2 ∈ [le2 , ue2 ]. Assume that J1
must start and finish before J2 starts (i.e., s1 + e1 ≤ s2), while J2 must start at most two
time units after J1 finishes (i.e., s2 ≤ s1 + e1 +2). The corresponding QLP is the following:

∃s1 ∀e1 ∈ [le1 , ue1 ] ∃s2∀e2 ∈ [le2 , ue2 ] s1 + e1 − s2 ≤ 0,

s2 − (s1 + e1) ≤ 2

Now, consider the case where the dispatcher has already obtained a schedule (solution).
If new constraints are added to the specification, then the dispatcher may have to recompute
the schedule. Alternatively, if it can be concluded that the current schedule does not cause
violation of the newly added constraints, then the dispatcher can use the existing schedule.
QLIs can be utilized to model the above decision problem. Note that QLP subsumes the
two-level programming model discussed in [3].

QLPs and QLIs can be used to model reactive systems. A system is called reactive,
if it maintains an ongoing interaction with its environment. A reactive system changes its
actions, outputs, and status in response to the input it receives from the environment. Reac-
tive systems are used in several real-world important applications and in various fields (see
e.g., [17–19, 21, 23, 24]). QLP and QLI are important modeling tools for the design and
implementation of reactive systems. The universally quantified variables can be used to rep-
resent the environmental input, while the existentially quantified variables can be used to
represent the system’s response.
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4 Related work

In this section, we briefly survey related work in the literature.
A decision procedure for the full elementary theory of real closed fields (see Appendix

A.2) with addition (+), multiplication (·) and order (<, =) was established in [34]. Sev-
eral quantifier elimination methods [13, 35] and efficient-in-practice approaches have been
proposed since then [5, 9, 11, 12, 25, 26]. The complexity of these quantifier elimination
procedures is, in the worst case, doubly exponential in the number of quantifier alternations
and exponential in the number of variables [10, 35].

Real numbers cannot be fully axiomatized by a first-order theory. Tarski’s axiomatization
of the reals requires a non-first-order axiom to express the Dedekind completeness of the real
numbers (i.e., the property that asks all bounded subsets of real numbers to have a real least up-
per bound and a real greatest lower bound). The axiom in question involves universal quan-
tification over subsets of the real numbers, which cannot be expressed in first-order logic.

Any field that satisfies all the same first-order properties as the real numbers is called
a real closed field. Note that although the real algebraic numbers comprise a real closed
field, they are not Dedekind complete. It is possible to construct a set of algebraic rational
numbers, that has π , which is transcendental, as a supremum.

Several sub-classes of the full elementary theory of the reals have been studied.
The existential theory of the reals is obtained by restricting allowable expressions to

existentially quantified formulas ∃x F(x) where F(x) is a quantifier-free formula. There
exists a decision procedure for this problem that is singly exponential in the number of
quantified variables [1]. From the complexity perspective, it is known that this problem is
NP-hard [30] and in PSPACE [7].

The theory of reals with addition and order (TLA) is obtained by restricting the set of
function symbols to {+}. A quantifier elimination procedure for sentences in this theory
that is singly exponential in space and doubly exponential in time is presented in [15]. An
exponential time lower bound is shown in [2], where the time and space complexities at
various levels of quantifier alternations are also determined.

Consider a formula in the theory of reals with addition and order in prenex normal form
with (k − 1) quantifier alternations

∃x1 ∀x2 . . . Qxk F (x1, . . . , xk)

where Q is ∃ for k odd and ∀ for k even, while F(x1, . . . , xk) is a quantifier-free formula.
This class of formulas has been proven to be log-space complete for �kP [31].

In this paper, we examine two interesting fragments of TLA:

(i) The Quantified Linear Programming fragment, where F(x1, . . . , xk) consists of
conjunctions of linear inequalities, namely a linear system.

(ii) The Quantified Linear Implication fragment, where F(x1, . . . , xk) consists of a linear
system implication, i.e., an implication between two linear systems.

QLP decidability is in PSPACE, though hardness has not yet been established [33]. The
sub-classes of QLP with one quantifier alternation have the following complexities:

(i) If the first quantifier is existential, then the problem is in P [33].
(ii) If the first quantifier is universal, then the problem is coNP-complete [33].

Decidability of QLI with an arbitrary number of quantifier alternations has been shown
to be PSPACE-hard [14]. The computational complexities of several sub-classes of QLI
decidability with a given number of quantifier alternations have also been established [14].
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Table 1 The computational complexity of deciding R, Q, QLI, and QLP

Theory Complexity

R EXPTIME-hard and 2-EXPTIME [10]

R
(+,≤) = Q = TLA EXPTIME-hard [4] and 2-EXPTIME [15, 31]

QLI PSPACE-hard [14]

QLP coNP-hard and PSPACE [33]

Table 1 captures the various theories described above and the complexity of deciding the
same. The corresponding inclusion diagram is provided in Fig. 1.

The principal contributions of this paper are presented below. We establish that:

(i) PQLP and UQLP decidability are in P.
(ii) PQLI and UQLI decidability are in P.
(iii) For each complexity class comprising the PH, there exists a class of QLI (i.e., an

instantiation of the 〈A,Q, T 〉 triple) which is complete for that class.
(iv) 〈1, ∀,RB〉 is in P.
(v) 〈1, ∃,BL〉 is in P.
(vi) 〈1, ∀,BR〉 and 〈1, ∀,BB〉 are coNP-complete.

5 Variants of QLP

In this section, we examine the computational complexities of PQLP and UQLP. We
commence our analysis by showing that PQLP decidability is in P.

Theorem 1 PQLP decidability is in P.

Proof Let L be the following PQLP:

∃xn ∀yn ∈ [0, +∞) ∃xn−1 ∀yn−1 ∈ [0, +∞) . . . ∃x1

∀y1 ∈ [0, +∞) ∃x0 A · x + B · y ≤ c (9)

Let A = (an, an−1, . . . , a0), B = (bn,bn−1, . . . , b1), x = (xn, xn−1, . . . , x0)
T , and

y = (yn, yn−1, . . . , y1)
T . Note that any PQLP can be reduced to the form specified by PQLP

(9) through the addition of dummy variables. Enforcing this strict alternation of quantifiers
will at most double the total number of program variables.

QLP

QLI

Fig. 1 Inclusion diagram of R, Q, QLI, and QLP
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Consider the linear program:

LPn : A · x ≤ c, (10)

and, for i = 1, . . . , n consider the linear program:

LPi−1 : A · x + bi ≤ 0

xi, . . . , xn = 0. (11)

We will show that PQLP (9) is feasible if and only if LPn is feasible, and LPi−1 is feasible
for all i = 1 . . . n.

Assume that the linear program represented by System (10) and the linear programs
represented by System (11) are feasible.

Let x̂n denote a solution to LPn. Furthermore, let x̂i−1 denote a solution to LPi−1 for
i = 1, . . . , n.

Let xs denote the strategy of the existential player X and let ys denote the strategy of the
universal player Y.

Consider the assignment

xs = x̂n +
n∑

i=1

yi · x̂i−1 (12)

Note that in LPi−1, the constraints xi, . . . , xn = 0 ensure that xs
n through xs

i do not
depend on the values of yi through y1. Hence, the moves specified by the strategy xs depend
only on the moves previously made by Y, i.e., System (12) is a strategy for X.

As per the 2-person game semantics of QLPs, the game corresponding to System (9) will
be played as follows:

1. X chooses xn = xs
n = x̂n

n .
2. Y chooses yn = ys

n ∈ [0, ∞); X chooses xn−1 = xs
n−1 = x̂n

n−1 + yn · x̂n−1
n−1 .

...

3. Y chooses yi+1 = ys
i+1 ∈ [0, ∞); X chooses xi = xs

i = x̂n
i + ∑n−1

j=i yj+1 · x̂
j
i .

...

4. Y chooses y1 = ys
1 ∈ [0, ∞); X chooses x0 = xs

0 = x̂n
0 + ∑n−1

j=0 yj+1 · x̂
j

0 .

Observe that all the xs
i , i = 0, . . . , n and the ys

i , i = 1, . . . , n are assigned linear values.
Let xT be the numeric vector assigned to x by the strategy xs. It follows that xT = x̂n +∑n

i=1 ys
i · x̂i−1. Likewise, let yT = (ys

n, y
s
n−1, . . . , y

s
1). Accordingly, the outcome of the play

can be evaluated as:

A · xT + B · yT = A ·
(
x̂n +

n∑

i=1

ys
i · x̂i−1

)
+

n∑

i=1

bi · ys
i

= A · x̂n +
n∑

i=1

ys
i · (A · x̂i−1 + bi )

≤ c +
n∑

i=1

ys
i · 0

= c

Since Y’s strategy was chosen arbitrarily, at the end of any play, X’s strategy forces A · x+
B · y ≤ c. Thus, PQLP (9) is feasible, proving our claim.
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Now assume that PQLP (9) is feasible. Thus, X has a winning strategy xs.
Consider the case when Y plays according to the strategy ys = 0. Let x* be the numeric

vector assigned to x by the strategy xs in this situation. It is clear that x* satisfies LPn.
Let us focus on a specific value of i. Let ȳi = (0, 0, . . . , 1, . . . , 0)T . Note that ȳi

i = 1 is
the only non-zero element of ȳi .

Assume that LPi−1 is infeasible. Let xi = (xi−1, . . . , x0) and let Ai be the matrix con-
sisting of the corresponding columns ofA. Note that we can rewrite LPi−1 asAi ·xi ≤ −bi .
By Farkas’ Lemma, there exists a vector z ∈ R

m+ such that zT · Ai = 0 and −zT · bi < 0.
We can assume without loss of generality that zT · bi = 1.

Let M ∈ Z
+ denote an arbitrary integer constant. Consider the case when Y plays

according to the strategy M · ȳi . Let x′ be the numeric vector assigned to x by the strategy
xs in this situation. Let x̄iM be the numeric vector such that x′ = (x∗ + x̄iM). Thus x̄iM

represents the change in X’s response when Y’s play changes by M · ȳi .
Until yi is assigned a value, Y’s plays (viz., 0 and M · ȳi) are indistinguishable. Thus, X’s

response cannot change until after yi is assigned a value. This means that x̄iM
i , . . . , x̄iM

n = 0.
We have A ·x∗ ≤ c and A · (x∗ + x̄iM)+B · (M · ȳi ) ≤ c. Since M was chosen arbitrarily,

we have:

(∀M) (A · x∗) + A · x̄iM + M · (B · ȳi ) ≤ c. (13)

Since x̄iM
i , . . . , x̄iM

n = 0, we can rewrite A · x̄iM as Ai · x̄iM . Thus System (13) can be
rewritten as:

(∀M) (A · x∗) + Ai · x̄iM + M · bi ≤ c. (14)

We can now multiply System (14) by zT . Since z is non-negative we get:

(∀M) zT · (A · x∗) + zT · (Ai · x̄iM + M · bi ) ≤ zT · c
(∀M) zT · (A · x∗) + ((zT · Ai ) · x̄iM + M · zT · bi ) ≤ zT · c

(∀M) zT · (A · x∗) + (0 · x̄iM + M) ≤ zT · c
(∀M) M ≤ zT · (c − A · x∗).

This is clearly infeasible. Thus, LPi−1 must be feasible. Since i was chosen arbitrarily,
we have that this is true for every i = 1 . . . n.

Thus, we have successfully reduced the problem of deciding the feasibility of PQLP (9)
to the problem of deciding the feasibility of LPn and the feasibility of LPi−1 for i = 1 . . . n.
Since the problem of deciding LP feasibility is in P [20], it follows that the problem of
deciding PQLP feasibility is also in P.

We now show that UQLP decidability is in P.

Theorem 2 UQLP decidability is in P.

Proof Consider the following UQLP:

∃xn ∀yn ∃xn-1 ∀yn-1 . . . ∃x1 ∀y1 ∃x0 A · x + B · y ≤ c (15)

To show that UQLP (15) can be solved in polynomial time, we reduce it to a PQLP.
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Consider the following PQLP:

∃xn ∀y′
n ∈ [0, +∞) ∀y′′

n ∈ [0, +∞) ∃yn ∃xn−1

∀y′
n-1 ∈ [0, +∞) ∀y′′

n-1 ∈ [0, +∞) ∃yn-1 . . .

∃x1 ∀y′
1 ∈ [0, +∞) ∀y′′

1 ∈ [0, +∞) ∃y1 ∃x0
A · x + B · y ≤ c (16)

yi = y′
i − y′′

i , i = 1, 2, . . . n.

In PQLP (16), y′
1, . . . , y

′
n is a partition of y

′ and y′′
1, . . . , y

′′
n is a partition of y′′, such that

|y′
i | = |y′′

i | = |yi |, for i = 1 . . . n.
The key observation is that the universal player can win System (15) if and only if he

can win System (16). To see this, note that the value of yi in System (16) is completely
determined by the universal player’s choices for y′

i and y′′
i . Since y

′
i ∈ [0, +∞) and y′′

i ∈
[0,+∞), y can take any value in the interval (−∞,+∞). Thus, the quantifier sequence
∀yi in System (15) i = 1, 2, . . . , n, can be replaced respectively by the quantifier sequence
∀y′

i ∈ [0, +∞) ∀y′′
i ∈ [0, +∞) ∃yi to get System (16), without affecting its feasibility. In

other words, UQLP (15) is feasible if and only is PQLP (16) is feasible. From Theorem 1,
it follows that UQLP decidability is in P.

By proving that UQLP is in P, we have essentially shown the following: The computa-
tional complexity of deciding a formula in TLA depends on both the number of alternations
in the quantifier specification and the syntactic restriction. Observe that in the absence of
any syntactic restriction, and in the presence of unbounded alternation, the TLA decidabil-
ity problem is in 2-EXPTIME [15, 31] and EXPTIME-hard [4]. However, the conjunctive
fragment of TLA, even with unbounded alternation, is decidable in polynomial time.

6 Variants of QLI

We utilize the results of Section 5 to show that PQLI and UQLI are also solvable in
polynomial time.

Corollary 1 PQLI decidability is in P.

Proof Consider the following PQLI:

∃x1 ∀y1 . . . ∃xn ∀yn [A · x ≤ b, y ≥ 0 → C · x + D · y ≤ f] (17)

We will focus on the following two cases:

1. There exists a point z, such that A · z �≤ b - It follows that ∀x (A · x ≤ b) does not hold.
In this case, the PQLI is trivially satisfied, since the existential player can guess z and
cause the left hand side of the implication to be falsified.

2. There is no point z such that A · z �≤ b - In this case, the PQLI (17) reduces to the
following PQLI.

∃x1 ∀y1 . . . ∃xn ∀yn [y ≥ 0 → C · x + D · y ≤ f] (18)

PQLI (18) can in turn be written as:

∃x1 ∀y1 ∈ [0, +∞) . . . ∃xn ∀yn ∈ [0, +∞) C · x + D · y ≤ f (19)



Erratum to: Restricted fragments of the theory of linear arithmetic 381

However, System (19) is a PQLP, and hence can be decided in polynomial time by
Theorem 1.

Corollary 2 UQLI decidability is in P.

Proof Consider the following UQLI:

∃x1 ∀y1 . . . ∃xn ∀yn [A · x ≤ b → C · x + D · y ≤ f] (20)

As argued in the proof of Corollary 1, if ∀x (A · x ≤ b) does not hold, then UQLI (20) is
trivially satisfied.

Otherwise, UQLI (20) is equivalent to:

∃x1 ∀y1 . . . ∃xn ∀yn C · x + D · y ≤ f

which is a UQLP, and hence can be decided in polynomial time by Theorem 2.

7 QLI and the polynomial hierarchy

In this section, we prove that for each class of the PH, there exists a class of QLI decidability
that is complete for that class. This is interesting, since QLIs are comprised of continu-
ous variables, as opposed to the discrete variables comprising QBFs. Hence, we provide a
continuous analogue to the results in [32], where the PH is generated using QBFs.

Let Bk+1 denote a string of (k + 1) Bs. The following results were obtained in [14].

Theorem 3 〈k, ∃,Bk+1〉 with k odd, is �kP-hard.

Theorem 4 〈k,∀,Bk+1〉 with k even, is �kP-hard.

To establish the computational complexities of 〈k, ∃,Bk+1〉 when k is even, and
〈k, ∀,Bk+1〉 when k is odd, we first provide a reduction from Q3DNF to QLI.

7.1 Reduction from Q3DNF to QLI

Consider a Q3DNF instance � : Q(x, y)φ(x, y), where Q(x, y) represents the quantifier
string, x is the set of existentially quantified variables, and y is the set of universally quan-
tified variables. Note that φ(x, y) = φ1 ∧ φ2 ∧ . . . ∧ φm where each φi is a disjunctive
clause. Without loss of generality, we can assume that the innermost quantifier of Q(x, y) is
∀, since if the innermost quantifier is ∃, then this variable can be eliminated in polynomial
time. This is because Q3DNF is the complement of Q3CNF and an innermost quantifier of
∀ can be eliminated from a Q3CNF formula in polynomial time [22].

We will produce a QLI I : Q′(x, r, y, s, w) E → F , such that the existential player has
a winning strategy for I, if and only if the existential player has a winning strategy for �.
Note that E represents the set of constraints on the LHS of the constructed implication, and
F represents the set of constraints on the RHS of the implication.

For each existentially quantified variable xi in �, we add an existentially quantified
variable xi and a universally quantified variable ri to I. We also add the constraints ri ≤ xi

and ri ≤ 1−xi toE, and the constraint ri ≤ 0 to F . Note that these constraints are equivalent
to ri ≤ min(xi, 1 − xi) → ri ≤ 0. Finally, we add the constraint 0 ≤ xi ≤ 1 to F .
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For each universally quantified variable yi in �, we add an existentially quantified vari-
able si and a universally quantified variable yi to I. We also add the constraints 0 ≤ yi ≤ 1
to E, and the constraints 0 ≤ si ≤ 1, 2 · yi − 1 ≤ si , and si ≤ 2 · yi to F . Note that these
are the only constraints that use yi variables, since the clause constraints use only xi and si
variables.

For each clause φj in φ(x, y), we add the existentially quantified variable wj to I, and
3 constraints to F . These constraints ensure that wj is less than or equal to the existential
variables corresponding to the literals in φj . Note that these constraints contain only exis-
tential variables. Even in the case of a universal variable yi in φj , the constraint contains the
existential variable si of the QLI.

For example, if φj = (xi, yk, x̄l), we add wj ≤ xi , wj ≤ sk , and wj ≤ 1 − xl to F ,
while if φj = (xi, ȳk, x̄l), we add wj ≤ xi , wj ≤ 1 − sk , and wj ≤ 1 − xl to F .

Finally, we add the linear constraint w1 + w2 + · · · + wm ≥ 1 to F .
We inductively create the quantifier string Q′(x, r, y, s, w) of I based on Q(x, y):

Q′(x, r, y, s, w) of I is initialized to ε (the empty string). For each i = 1, 2, . . . , n,

1. If the ith quantifier of Q(x, y) is ∃xi , then we append ∃xi∀ri to the end of
Q′(x, r, y, s, w).

2. If the ith quantifier of Q(x, y) is ∀yi , then we append ∀yi∃si to the end of
Q′(x, r, y, s, w).

Finally, we add ∃w to the end of Q′(x, r, y, s, w).
Since the final quantifier of Q(x, y) is ∀, the number of quantifier alternations in

Q′(x, r, y, s, w) is one more than the number of quantifier alternations in Q(x, y).
Note that the final quantifier of Q′(x, r, y, s, w) is ∃.

Example 4 Let us consider the Q3DNF instance

� = ∃x1 ∀y1 ∃x2 ∀y2 (x1, ȳ1, y2)︸ ︷︷ ︸
φ1

∨ (x̄1, x2, y2)︸ ︷︷ ︸
φ2

.

Under the above construction, � becomes an instance of 〈4, ∃,BBBBR〉 with the quantifier
string

∃x1 ∀r1 ∀y1 ∃s1 ∃x2 ∀r2 ∀y2 ∃s2 ∃w1 ∃w2.

Note that this is also an instance of 〈4, ∃,BBBBB〉 [14].
The LHS of the implication (E) consists of the following set of constraints:

r1 ≤ x1, r1 ≤ 1 − x1,

r2 ≤ x2, r2 ≤ 1 − x2,

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

The RHS of the implication (F ) consists of the following set of constraints:

r1 ≤ 0, 0 ≤ x1 ≤ 1,
r2 ≤ 0, 0 ≤ x2 ≤ 1,

0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1,
2 · y1 − 1 ≤ s1, s1 ≤ 2 · y1,

2 · y2 − 1 ≤ s2, s2 ≤ 2 · y2,

φ1

⎧
⎨

⎩

w1 ≤ x1,

w1 ≤ 1 − s1,

w1 ≤ s2,

w2 ≤ 1 − x1,

w2 ≤ x2,

w2 ≤ s2,

⎫
⎬

⎭ φ2

w1 + w2 ≥ 1.
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We now establish that all the variables in I can be restricted to {0, 1} without affecting
its feasibility. To do so, we utilize the game semantics discussed in Appendix B.

Lemma 1 The existential player X has a winning strategy, if and only if he has a winning
strategy, when each xi is chosen from {0, 1}.

Proof The if part is obvious.
Accordingly, we focus on proving the only if part. Assume that the existential player X

has a winning strategy. First, observe that if xi �∈ [0, 1], then at least one of the constraints
in F is violated. In particular, the constraint 0 ≤ xi ≤ 1 is violated. Now focus on the
constraints in E. Since each ri is chosen by the universal player Y after the existential
player chooses xi , these constraints can only be violated by Y. In other words Y can always
satisfy the RHS of the implication. Thus, the implication does not hold and X does not have
a winning strategy.

We now consider the case xi ∈ (0, 1). In this case, Y could choose ri = min(xi, 1 − xi)

> 0 . Note that both xi and ri are positive with ri ≤ xi and ri ≤ 1 − xi . Thus the universal
player Y wins the game, since the constraints involving xi and ri in E, viz., ri ≤ xi and
ri ≤ 1 − xi are satisfied and the constraint ri ≤ 0 in F is violated.

To sum up, any choice of xi �∈ {0, 1} would cause X to lose the game.
It follows that if X has a winning strategy, then he has a winning strategy when each xi

is chosen from {0, 1}.

Lemma 2 The universal player Y has a winning strategy, if and only if he has a winning
strategy, when each yi is chosen from {0, 1}.

Proof The if part is obvious.
Accordingly, we focus on proving the only-if part. It is clear that in order to win, the

universal player Y must choose yi ∈ [0, 1]. Otherwise, the constraint 0 ≤ yi ≤ 1 in the
LHS E of the implication is violated and the existential player X wins the game.

Suppose now that Y can win by choosing yi ∈ (0, 1). As per the construction of
Section 7.1, the only constraints involving si and yi are given by System (21).

0 ≤ si ≤ 1, 2 · yi − 1 ≤ si , si ≤ 2 · yi (21)

If yi ∈ (0, 1
2 ], then from System (21) it follows that si can take any value in [0, 2 · yi].

However, if instead Y had chosen yi = 0, then si is forced to equal 0. It follows that if Y
can win by choosing yi ∈ (0, 1

2 ], then Y can win by choosing yi = 0. Similarly, if Y can
win by choosing yi ∈ [ 12 , 1), then Y can win by choosing yi = 1.

To sum up, we can safely assume that the universal player only chooses yi ∈ {0, 1}.
It follows that if Y has a winning strategy, then he has a winning strategy when each yi

is chosen from {0, 1}.
The import of Lemma 1 and Lemma 2 is that we can confine our analyses to games in

which the existential player X and universal player Y make moves in {0, 1} for the xi and
yi variables respectively.

An interesting observation is that if yi is restricted to {0, 1}, then so is si . The constraints
involving si and yi in the RHS F of the implication are described by System (21). If yi = 0,
the constraints in System (21) force si to be 0; likewise, if yi = 1, they force si to be 1. In
other words, X is forced to set si = yi . Any other choice of si would violate at least one
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constraint of F , causing X to lose the game. Hence, the si variables are also restricted in the
set {0, 1}.

Theorem 5 I is feasible if and only if � is feasible.

Proof We show that the existential player X has a winning strategy for I if and only if he
has a winning strategy for �.

Only if part: Assume that the existential player X has a winning strategy for I. Con-
sider a play of the game, in which X chooses values for the existentially quantified
variables and Y chooses values for the universally quantified variables. After X chooses
a value for xi , Y can choose ri , such that the constraints ri ≤ xi and ri ≤ 1 − xi are
both satisfied. By our 2-person game semantics, the universal player Y will ensure that
all the constraints in the LHS are satisfied. In order for X to win the game, he has to
ensure that all the constraints in the RHS are satisfied as well. In particular, the constraint
w1 + w2 + · · · + wm ≥ 1 in the RHS of the implication must be satisfied. Consequently,
wj > 0, for at least one j . This wj corresponds to the clause φj of �. Assume that φj

has the form (xi, yk, xl). Since the xis and sis are restricted to the set {0, 1} (see Lemma
1 and Lemma 2), the constraints wj ≤ xi , wj ≤ sk , and wj ≤ xl force each variable
(xi , sk and xl) to be 1. It follows that φj is satisfied in this play. Similar arguments can
be made for other forms of φj . Since the play was chosen arbitrarily, the same argument
applies for all plays, i.e., at least one clause of φ(x, y) is satisfied in every play. Hence, � is
feasible.

If part: Assume that the existential player X has a winning strategy for �.
At the end of any play, φ(x, y) is satisfied. Thus, at least one clause, say φj , must be

satisfied. Assume that φj is of the form (xi, yk, xl). Consider the constraints constructed
from φj , viz., wj ≤ xi , wj ≤ sk , and wj ≤ xl . Since φj is satisfied, xi, yk, xl are all
true. Assume that X sets the variables xi , sk , xl and wj to 1 and the w variables associated
with other clauses to 0. It is clear that the constraints corresponding to the other clauses
are trivially satisfied. Likewise, the aggregate constraint w1 + w2 + · · · + wm ≥ 1 is also
satisfied. Similar arguments can be made for other forms of φj .

From Lemma 1 and Lemma 2 and the subsequent discussion, xi and yi can be restricted
to the set {0, 1}. Furthermore, the existential player must choose si = yi . Observe that for
each i, ri ≤ xi and ri ≤ 1 − xi imply that ri ≤ 0 (thus satisfying the corresponding
constraint in F ). Similarly, for any i, the constraints 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1, 0 ≤ si ≤ 1,
2 · yi − 1 ≤ si , and si ≤ 2 · yi are all satisfied, under this assignment. Hence, E → F holds.
Since the play was chosen arbitrarily, the same argument applies for all plays, i.e., X has a
winning strategy for I and I is feasible.

Theorem (5) allows us to obtain the following two results.

Corollary 3 〈k, ∃,Bk+1〉 with k even, is �kP-hard.

Proof Let � denote a Q3DNF formula having k (k even) quantifiers ((k − 1) quantifier
alternations) starting with ∃, i.e., with a quantifier string of the form ∃∀ . . . ∃∀. Deciding the
feasibility of � is �kP-complete. This is because this problem is the complement of the
problem ∀∃ . . .∀∃ φ(x, y), where φ(x, y) is a 3CNF formula, which is �kP-complete [22]
(the assumption that k is even is essential). By Theorem 5, we can reduce � to a QLI, I.
Note that the quantifier string of I has k quantifier alternations, and that the first and last
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quantifiers are ∃. Thus, I is a 〈k, ∃,BkR〉 QLI. This can be trivially reduced to a 〈k, ∃,Bk+1〉
QLI. Hence, the result follows.

Corollary 4 〈k, ∀,Bk+1〉 with k odd, is �kP-hard.

Proof Let � denote a Q3DNF formula having k (k odd) quantifiers ((k − 1) quantifier
alternations) starting with ∀, i.e., with a quantifier string of the form ∀∃ . . . ∃∀. Deciding the
feasibility � belongs to is �kP-complete. This is because this problem is the complement
of ∃∀ . . . ∃ φ(x, y), where φ(x, y) is a 3CNF formula, which is �kP-complete [22] (the
assumption that k is odd is essential). By Theorem 5, we can reduce � to a QLI, I. Note
that the quantifier string of I has k quantifier alternations, and that the last quantifiers is ∃.
Thus, I is a 〈k, ∀,BkR〉 QLI. This can be trivially reduced to a 〈k,∀,Bk+1〉 QLI. Hence, the
result follows.

Theorem 6 〈k, ∃,Bk+1〉 is �kP-complete, 〈k,∀,Bk+1〉 is �kP-complete.

Proof Given Theorems 3-4 and Corollaries 3-4, it suffices to show that each of these
problems is also contained within the corresponding complexity class of the polynomial
hierarchy. Let L denote the problem of deciding an arbitrary boolean combination of lin-
ear constraints under a quantifier string with a limited number of alternations. Sontag [31]
showed that problem L can be solved by an alternating algorithm in which the guesses
made by both the ∀ player and the ∃ player are rational and at most polynomial in the size
of the input. QLIs with a finite number of quantifier alternations are clearly sub-problems
of L, since they can be rewritten as a quantified disjunction of the RHS constraints and
the negation of the LHS constraints. It follows that the feasibility of QLIs with a finite
number of alternations is preserved, even if every variable is restricted to values that are
polynomially-sized with respect to the input. Consider the problem 〈k, ∃,Bk+1〉. After k

rounds in which the ∃ player and ∀ player alternate and guess polynomially-sized values, the
QLI reduces to either 〈0, ∃,B〉 or 〈0, ∀,B〉 (depending on whether k is even or odd respec-
tively), both of which are in P [14]. Thus, 〈k, ∃,Bk+1〉 is in �kP. Likewise, 〈k, ∀,Bk+1〉 is
in �kP.

For example, QLIs of the form 〈3, ∀,BBBB〉 are in �3P.

PH

P

NPcoNP

Fig. 2 QLI and the Polynomial Hierarchy
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The various forms of QLI cover the polynomial hierarchy as shown in Fig. 2.
We make the following observations on the basis of the theorems derived above:

(i) In case of QLPs, if the innermost variable is universally quantified, it can be removed
using quantifier elimination techniques, in polynomial time. In case of QLIs, the com-
plexity class to which the problem belongs, does in fact depend upon whether the
innermost variable is existentially or universally quantified (see Fig. 2).

(ii) There exists a class of QLI that is complete for each class in the PH. This is not true,
if the underlying formula is in CNF form. For instance, there is no QCNF formula,
which is complete for the class coNP.

8 Other complexity results

In this section, we establish the computational complexities of various classes of QLI with
one quantifier alternation that were left open in [14].

Lemma 3 〈1,∀,RB〉, i.e., deciding whether ∀y ∃x [M · x ≤ n → A · x+ B · y ≤ c] holds,
is in P.

Proof We will focus on the following two cases:

1. There exists a point z, such that M · z �≤ n - It follows that ∀x (M · x ≤ n) does not
hold. In this case, the QLI is trivially satisfied, since the existential player can guess z
and cause the left hand side of the implication to be falsified.

2. There is no point z such thatM ·z �≤ n - In this case, the QLI reduces to ∀y ∃x A ·x+B ·
y ≤ c, which is a UQLP and hence can be decided in polynomial time by Theorem 2.

The decision problem for formula ∃x ∀y [A · x + B · y ≤ c → M · y ≤ n] is NP-
complete [14]. However, if there are no universally quantified variables on the RHS, the
problem becomes tractable.

Lemma 4 〈1, ∃,BL〉, i.e., deciding whether ∃x ∀y [A · x + B · y ≤ c → M · x ≤ n] holds,
is in P.

Proof First, we check whether ∃x M · x ≤ n holds, which can be done in polynomial time
[20]. If ∃x M · x ≤ n holds, then ∃x ∀y [A · x + B · y ≤ c → M · x ≤ n] trivially holds. If
∃x M·x ≤ n does not hold, then the only way in which ∃x ∀y [A·x+B·y ≤ c → M·x ≤ n]
can hold is if ∃x ∀y A · x + B · y ≤ c does not hold. However, the latter formula is a UQLP
and hence it can be checked to hold in polynomial time by Theorem 2.

Let us turn our attention to the class 〈1, ∀,BR〉 and its super-class 〈1, ∀,BB〉. Both these
classes were shown to be coNP-hard in [14]. Note that these classes are also in coNP by
Theorem 6.

Lemma 3 and Lemma 4 settle some open problems on the computational complexities
of QLIs with one quantifier alternation. A complete representation of all classes with one
quantifier alternation QLIs is given in Fig. 3 (starting with an existential quantifier) and
Fig. 4 (starting with a universal quantifier).
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(NP-complete)

(NP-complete)(P)

(P) (P) (P) (P)

(P) (P)

Fig. 3 Complexity of ∃∀ classes of QLI. Arrows denote inclusions

(coNP-complete)

(coNP-complete)(P) (P) (P)

(P)(P)(P)(P)

Fig. 4 Complexity of ∀∃ classes of QLI. Arrows denote inclusions
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9 Conclusion

In this paper, we established the computational complexities of various fragments of the the-
ory of linear arithmetic. More specifically, we examined several variants of QLP and QLI
that arise when the universally quantified variables are partially bounded or unbounded and
showed that all these variants are in P. Furthermore, for QLIs, we proved that 〈k, ∃,Bk+1〉
is �kP-complete and 〈k, ∀,Bk+1〉 is �kP-complete. Hence, we showed that any class of
PH can be represented by some instantiation to the QLI framework, i.e., using only con-
tinuous variables, thus providing a continuous analogue to the way QBFs cover the PH. In
particular, our work mirrors the work in [32], which established the connection between the
classes of PH and the quantifier alternations in Quantified Boolean Formulas. Our results
are surprising, since the variables in the fragments that we consider are continuous, as
opposed to discrete. Moreover, we answered several open questions on the computational
complexities of classes of QLI with one quantifier alternation, thus completing the map of
the computational complexities of all such classes of QLI (see Figs. 3 and 4).

From our perspective, the following problems are worth pursuing:

1. What is the complexity of Quantified Linear Programming? As discussed previously,
we have shown in previous research that the problem is in PSPACE and coNP-hard.
Note that our results are similar to the results obtained in [6] for Quantified Horn
formulas.

2. What is the complexity of Quantified Linear Implication? It is known that the decid-
ability of generic QLIs with unbounded alternations is PSPACE-hard [14]. However,
completeness is not yet shown. Note that the known decision methods for TLA
with an arbitrary number of quantifier alternations run in double exponential time
[15, 31].

3. In deriving our complexity results, we mostly instantiated the T parameter in 〈A, Q, T 〉
to B. It remains to be seen if and how the complexity results change when T is assigned
L or R. At this point, it is important to note that the assignments L and R are not
symmetric from the perspective of computational complexity [14].
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Appendix

A Axioms

We now provide the axioms of each theory mentioned in the paper.
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A.1 Theory of linear arithmetic

The Theory of Linear Arithmetic, also known as the Theory of Rationals, is a set of first
order axioms which define the properties of rational numbers.

The signature of this theory is:

�Q = {0, 1, +,−, =, ≥}.

The axioms of this theory are as follows:

1. ∀x∀y x ≥ y ∧ y ≥ x → x = y.
2. ∀x∀y∀z x ≥ y ∧ y ≥ z → x ≥ z.
3. ∀x∀y x ≥ y ∨ y ≥ x.
4. ∀x∀y∀z (x + y) + z = x + (y + z).
5. ∀x x + 0 = x.
6. ∀x x + (−x) = 0.
7. ∀x∀y x + y = y + x.
8. ∀x∀y∀z x ≥ y → x + z ≥ y + z.
9. ∀x ∀n ∈ Z

+ n · x = 0 → x = 0.
10. ∀x ∀n ∈ Z

+ ∃y x = n · y.

A.2 Theory of real closed fields

The Theory of Real Closed Fields is a set of axioms which define the properties of real
numbers.

The signature of this theory is:

�R = {0, 1, +, −, ·, =, ≥}.

The first order axioms of this theory are as follows:

1. ∀x∀y x ≥ y ∧ y ≥ x → x = y.
2. ∀x∀y∀z x ≥ y ∧ y ≥ z → x ≥ z.
3. ∀x∀y x ≥ y ∨ y ≥ x.
4. ∀x∀y∀z (x + y) + z = x + (y + z).
5. ∀x x + 0 = x.
6. ∀x x + (−x) = 0.
7. ∀x∀y x + y = y + x.
8. ∀x∀y∀z x ≥ y → x + z ≥ y + z.
9. ∀x∀y∀z (x · y) · z = x · (y · z).
10. ∀x x · 1 = x.
11. ∀x x �= 0 → ∃y x · y = 1.
12. ∀x∀y x · y = y · x.
13. ∀x∀y x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0.
14. ∀x∀y∀z x · (y + z) = x · y + x · z.
15. 0 �= 1.
16. ∀x ∃y x = y2 ∨ −x = y2.
17. ∀x ∀n ∈ Z

+ ∃y n mod 2 ≡ 1 → yn + x1 · yn−1 + . . . + xn−1 · y + xn = 0.
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However these fail to fully describe the real numbers. To do this, we need the
following second order axiom:

∀S ⊆ R ∃x1 ∃y ∀x2 ∈ S ∀x3 > y ∃x4 ∈ S x1 ≤ x2 → (y ≤ x2 ∧ x4 < x3).

This axiom represents the Dedekind completeness of real numbers. Namely that every
set S that has a lower bound x1 has a greatest lower bound y.

B Game semantics

We provide 2-person game semantics for QLP, QLI, and Q3DNF.

B.1 QLP semantics

We interpret QLP decidability as a 2-person game. Such a game includes an existential
player X, who chooses values for the existentially quantified variables, and a universal
player Y, who chooses values for the universally quantified variables. Our analysis focuses
on QLPs in general form [33], but also holds for the partially bounded and unbounded
variants, discussed in this paper.

Consider the generic form of QLP (i.e., QLP (3)) and assume, without loss of generality,
that x1 and yn are not empty (dummy variables can be added, if necessary). The initial board
configuration of the game is:

A · x + N · y ≤ b (22)

The game is played in a sequence of 2 · n rounds. Let i = 1, . . . , n. In round (2 · i − 1),
X makes his ith move (by choosing values for the variables in the set xi). Then, Y makes
his ith move (by choosing values for the variables in the set yi) in round 2 · i. Hence, X and
Y make their moves by selecting values for their respective variable sets. The moves are
strictly alternating: X makes his ith move, which is followed by Y’s ith move, after which
X makes his (i + 1)th move and so on. After all the moves have been made in the order
specified by the quantifier string, if A · x + N · y ≤ b holds, we say that X wins the game;
otherwise, we say that Y wins the game.

B.2 QLI semantics

We now interpret a QLI as a 2-person game. As with the QLP semantics discussed above,
such a game includes an existential player X, who chooses values for the existentially
quantified variables, and a universal player Y, who chooses values for the universally quan-
tified variables. Again, our analysis focuses on QLIs of generic form but also holds for the
partially bounded and unbounded variants.

Consider the generic form of QLI (i.e., QLI (7)), and assume, without loss of generality,
that x1 and yn are not empty (dummy variables can be added, if necessary). The initial board
configuration of the game is:

[A · x + N · y ≤ b → C · x + M · y ≤ d] (23)

The game is played in a sequence of 2 · n rounds. Let i = 1, . . . , n. In round (2 · i − 1),
X makes his ith move (by choosing values for the variables in the set xi). Then, Y makes
his ith move (by choosing values for the variables in the set yi) in round 2 · i. Hence, X and
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Y make their moves by selecting values for their respective variable sets. The moves are
strictly alternating: X makes his ith move, which is followed by Y’s ith move, after which
X will makes (i + 1)th move and so on. Assume that all the moves have been made by
both players in the order specified by the quantifier string. Let u = A · x + N · y and let
v = C · x+M · y. If u ≤ b and v �≤ d, we say that Y wins the game. Otherwise, X wins the
game.

B.3 Q3DNF semantics

We now discuss game semantics for Q3DNF. Again, the existential and the universal player
make moves according to the quantifier string. The existential player wins a (disjunctive)
clause, if all the literals in the clause are set to true. Conversely the universal player wins
the clause, if at least one literal is set to false. The existential player wins the game, if
he wins at least one clause in the disjunction, thus causing the expression to evaluate to
true. The universal player wins the game, if he wins every term in the disjunction, thus
causing the expression to evaluate to false. This can be considered as a reversal of the
players’ objectives in an instance of Q3SAT, where the existential player needs to win all
the conjunctive clauses, and the universal player only needs to win a single clause. This
occurs because the underlying boolean formula of a Q3DNF instance is in DNF, while the
underlying boolean formula of a Q3SAT instance is in CNF.
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