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Abstract Mixed-integer rounding (MIR) is a simple, yet powerful procedure for
generating valid inequalities for mixed-integer programs. When used as cutting planes,
MIR inequalities are very effective for mixed-integer programming problems with
unbounded integer variables. For problems with bounded integer variables, however,
cutting planes based on lifting techniques appear to be more effective. This is not
surprising as lifting techniques make explicit use of the bounds on variables, whereas
the MIR procedure does not. In this paper we describe a simple procedure, which
we call mingling, for incorporating variable bound information into MIR. By explic-
itly using the variable bounds, the mingling procedure leads to strong inequalities
for mixed-integer sets with bounded variables. We show that facets of mixed-integer
knapsack sets derived earlier by superadditive lifting techniques can be obtained by
the mingling procedure. In particular, the mingling inequalities developed in this paper
subsume the continuous cover and reverse continuous cover inequalities of Marchand
and Wolsey (Math Program 85:15–33, 1999) as well as the continuous integer knapsack
cover and pack inequalities of Atamtürk (Math Program 98:145–175, 2003; Ann Oper
Res 139:21–38, 2005). In addition, mingling inequalities give a generalization of the
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two-step MIR inequalities of Dash and Günlük (Math Program 105:29–53, 2006)
under some conditions.
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1 Introduction

Mixed-integer rounding (MIR) is a general procedure for deriving valid inequalities
for mixed-integer programming. The MIR cuts, introduced by Nemhauser and Wolsey
[11,12], are applied to a single constraint (possibly implied by other constraints) of a
mixed-integer program (MIP), much like the Chvátal–Gomory integer rounding cuts
[5] for pure integer programs. MIR cuts are equivalent to Gomory’s mixed-integer cuts
for MIPs [8] and split cuts of Cook et al. [6] and are a special case of the disjunctive
cuts of Balas [4].

Marchand and Wolsey [10] show that when applied carefully MIR cuts can give
some of the well-known strong cuts for special mixed-integer sets. In their computa-
tional study, they make a convincing case that applying MIR cuts after aggregating
constraints into a single constraint and complementing variables—that is, replacing a
variable x satisfying 0 ≤ x ≤ u with x̄ = u − x by appropriately updating the coeffi-
cients of the constraint—is very effective in solving MIPs. MIR cuts are implemented
in major MIP solvers, more or less, by following this approach.

Unlike lifted inequalities for sets with special structures, the MIR cuts do not explic-
itly use the upper bounds of the variables; however, they use their lower bounds.
Therefore, complementing variables allows MIR to make use of the upper bound
information to some degree. In this paper we present a new way of incorporating
upper bounds of the variables by a simple procedure, which we refer to as mingling
the variables. By explicitly using the variable bounds, the mingling procedure leads to
strong inequalities for mixed-integer sets with bounded variables. We show that facets
of the mixed-integer knapsack sets derived earlier by superadditive lifting techniques
are, indeed, mingling inequalities or two-step mingling inequalities.

Let us now recall the MIR inequalities. Consider the mixed-integer set given by
∑

i∈N

ai xi + s ≥ b, x ∈ Z
N+ , s ∈ R+, (1)

where the base inequality ax + s ≥ b may be implied by constraints of an MIP. For
any α > 0, the α-MIR inequality for (1) is

∑

i∈N

µα,b(ai )xi + s ≥ µα,b(b), (2)

where

µα,b(ai ) = r�ai/α� + min{r, ri }, i ∈ N ,

µα,b(b) = r�b/α� + r,
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Mixed-integer rounding with bounds 317

and

r = b − α�b/α�, ri = ai − α�ai/α�, i ∈ N .

Observe that an α-MIR inequality is the 1-MIR inequality written after dividing
the base inequality by α > 0. In order to highlight the inequalities of this paper, it is
important to remark that nonnegativity of xi , i ∈ N , is necessary for the validity of
the α-MIR inequality unless ai/α ∈ Z (see Marchand and Wolsey [10] for a simple
proof of validity of the MIR inequalities).

Lemma 1 [11] The MIR function µα,b is nondecreasing and subadditive for α > 0.

If it is known that a, b ≥ 0, then using the nonnegativity of the variables, we can
first strengthen the base inequality as

∑

i∈N

min{ai , b}xi + s ≥ b (3)

and then apply α-MIR to obtain

∑

i∈N

µα,b(min{ai , b})xi + s ≥ µα,b(b), (4)

which dominates α-MIR inequality (2) as µα,b is nondecreasing.
In this paper, we present a similar strengthening idea when the coefficients of the

base inequality are unrestricted in sign by using the lower bounds as well as the upper
bounds of the variables. We illustrate this point with a simple set in the next section.
In Sects. 3 and 4 we present the mingling inequalities in general form and in Sect. 5
we show the connection of the mingling inequalities with other inequalities given in
the literature before. Finally, in Sect. 6 we conclude with a few closing remarks.

2 A simple set

In this section, we describe a simple mixed-integer knapsack set to give an intuition
for the inequalities that incorporate variable bound information into MIR. Consider
the following three-variable set

S =
{

(x, s) ∈ Z
2 × R : a1x1 + x2 + s ≥ b, x1 ≥ 0, u2 ≥ x2 ≥ 0, s ≥ 0

}
,

where the coefficients satisfy a1 < 0 < b < 1 ≤ u2 and u2 ∈ Z. Because a1 < 0, coef-
ficient improvement as in (3) is not applicable to the base inequality a1x1 +x2 +s ≥ b.
However, in this case, we can utilize the upper bound of x2 in order to derive a valid
inequality that generalizes the MIR inequalities.
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2.1 Basic inequality

Adding and subtracting u2x1, we rewrite the base inequality of S as

(a1 + u2)x1 + (x2 − u2x1) + s ≥ b. (5)

By considering the disjunction x1 = 0 ∨ x1 ≥ 1, we obtain from (5) the valid
inequality

(a1 + u2)x1 + b(x2 − u2x1) + s ≥ b (6)

for S. For x1 = 0, inequality (6) is the 1-MIR inequality for (5) as 0 < b < 1 and
s ≥ 0; and for x1 ≥ 1, inequality (6) is a relaxation of (5) as b < 1 and x2 −u2x1 ≤ 0.
This type of coefficient improvement using the upper bound of x2 is of interest when
a1 + u2 < 0 because otherwise, the 1-MIR inequality

µ1,b(a1)x1 + µ1,b(1)x2 + s ≥ µ1,b(b) (7)

is at least as strong as (6). Writing (7) explicitly as

min{a1 − �a1�, b}x1 + b(x2 + �a1�x1) + s ≥ b (8)

makes the comparison easier. Now, defining k := min{u2,−�a1�}, we can generalize
(6) and (8) as

min{a1 + k, b}x1 + b(x2 − kx1) + s ≥ b. (9)

Observe that if u2 < −�a1�, then (9) is stronger than 1-MIR inequality (8). Otherwise,
(9) is at least as strong as (6). Indeed, inequality (9) is facet-defining for conv(S), which
is easily checked with the affinely independent points (x1, x2, s) of S listed below:

(0, 0, b), (0, 1, 0), (1, k, (b − a1 − k)+).

Hence, by using the upper bound of x2, we have strengthened the basic MIR inequal-
ity (7). In Sect. 3, we generalize inequality (9) to obtain the mingling inequality (21).

Remark 1 We should point out that complementing x2 in the base inequality and then
applying 1-MIR does not lead to a new inequality as

µ1,b(a1)x1 + µ1,b(−1)(u2 − x2) + s ≥ µ1,b(b − u2),

which equals

µ1,b(a1)x1 − b(u2 − x2) + s ≥ b − bu2

for any u2 ∈ Z, is the 1-MIR inequality (7) obtained without complementing x2.
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2.2 A two-step inequality

Next we will derive a new inequality based on (9). First we consider the case a1+k < b.
As inequality (9) and

(a1 + k)x1 + (x2 − kx1) + s ≥ b

are both valid for S, their convex combination

(a1 + k)x1 + β(x2 − kx1) + s ≥ b, (10)

where b ≤ β ≤ 1, is valid as well. Choosing β = α�b/α� ≤ 1 for some α > 0 such
that b/α 	∈ Z and applying α-MIR to (10), we obtain

µα,b(a1 + k)x1 + µα,b(α�b/α�)(x2 − kx1) + s ≥ µα,b(b), (11)

or, equivalently,

µα,b(a1 + k)x1 + µα,b(b)(x2 − kx1) + s ≥ µα,b(b). (12)

Note that validity of the α-MIR inequality (11) crucially depends on the fact that β/α

is integral since x2 − kx1 may not be nonnegative.
Next consider the case a1 + k ≥ b. We now write the base inequality as

(a1 + (k − 1))x1 + (x2 − (k − 1)x1) + s ≥ b,

which, as a1 + (k − 1) ≤ 0 in this case, can be relaxed to

1(x2 − (k − 1)x1) + s ≥ b.

Also inequality (9) can be written in a similar form as

b(x2 − (k − 1)x1) + s ≥ b.

Then,

β(x2 − (k − 1)x1) + s ≥ b, (13)

where b ≤ β ≤ 1, is valid as well. Choosing β = α�b/α� ≤ 1 for some α > 0 such
that b/α 	∈ Z and applying α-MIR to (13), this time, we obtain

µα,b(b)(x2 − (k − 1)x1) + s ≥ µα,b(b). (14)

Combining (12) and (14), we obtain the following valid inequality for S:

µα,b(min{a1 + k, b})x1 + µα,b(b)(x2 − kx1) + s ≥ µα,b(b). (15)
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We note that when u2 ≥ −�a1�, inequality (15) becomes the two-step MIR
inequality [7]. In Sect. 3, we generalize inequality (15) to obtain the two-step mingling
inequality (31).

Remark 2 It is of interest to know how inequality (15) compares with a direct appli-
cation of MIR to inequality (9). In order to do so, we collect the terms for x1 in (9)
and rewrite it as

(min{a1 + k, b} − bk)x1 + bx2 + s ≥ b.

Applying α-MIR to this inequality, we obtain

µα,b(min{a1 + k, b} − bk)x1 + µα,b(b)x2 + s ≥ µα,b(b). (16)

If α is chosen as above, then the difference between (15) and (16) is only the coefficient
of x1. However, because µα,b is subadditive and k ∈ Z+, we have

µα,b(min{a1 + k, b}) ≤ µα,b(min{a1 + k, b} − bk) + µα,b(bk)

≤ µα,b(min{a1 + k, b} − bk) + kµα,b(b)

and, therefore, (15) is at least as strong as (16). The numerical example below illustrates
that (15) dominates (16) strictly.

Example 1 Let set S be given as

−5x1 + x2 + s ≥ 0.5, s ≥ 0, x1 ≥ 0, 2 ≥ x2 ≥ 0.

Then k = min{2, 5} = 2 and inequality (9) is

−3x1 + 0.5(x2 − 2x1) + s ≥ 0.5.

For α = 0.3, we have r = 0.2, and inequality (15)

−2x1 + 0.4(x2 − 2x1) + s ≥ 0.4

strictly dominates inequality (16)

−2.6x1 + 0.4x2 + s ≥ 0.4.

We note that this inequality is not facet-defining for conv(S).
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Mixed-integer rounding with bounds 321

3 A mingling procedure

In this section we generalize inequalities (9) and (15) to obtain valid inequalities for
the mixed-integer knapsack set

K≥ :=
⎧
⎨

⎩(x, s) ∈ Z
N × R :

∑

i∈I

ai xi +
∑

j∈J

a j x j + s ≥ b, u ≥ x ≥ 0, s ≥ 0

⎫
⎬

⎭,

where maxi∈I {ai } > b and (I, J ) is the partitioning of N with ai > 0 for i ∈ I and
a j < 0 for j ∈ J . We allow the upper bound on each variable to be either a positive
integer or infinite. Throughout this section we assume that b ≥ 0 and derive valid
inequalities for K≥ using upper bounds ui , i ∈ I . In the next section, we derive valid
inequalities when b ≤ 0 using upper bounds u j , j ∈ J .

3.1 Mingling inequalities

Let us first introduce some new notation. For x ∈ Z
N , let x(S) := ∑

i∈S xi for
S ⊆ N . Let I + := {1, . . . , n} be a nonempty subset of {i ∈ I : ai > b} indexed in
nonincreasing order of ai ’s, κ := ∑

i∈I + ai ui , and J̄ := { j ∈ J : a j + κ < 0}.
For any j ∈ J \ J̄ , we next define a set I j and numbers 0 ≤ ūi j ≤ ui for i ∈ I j

such that a j + ∑
i∈I j

ai ūi j ≥ 0. More precisely, for j ∈ J \ J̄ , let

I j := {1, . . . , p( j)}, where p( j) := min

{
p ∈ I + : a j +

p∑

i=1

ai ui ≥ 0

}
(17)

and

k j := min

⎧
⎨

⎩k ∈ Z+ : a j +
p( j)−1∑

i=1

ai ui + ap( j)k ≥ 0

⎫
⎬

⎭. (18)

Furthermore, for j ∈ J \ J̄ , and i ∈ I j , let

ūi j =
{

ui , if i < p( j),

k j , if i = p( j).
(19)

For j ∈ J̄ , we let I j := I +, p( j) := n, k j := un and ūi j = ui for i ∈ I j .
For i ∈ I , let Ji := { j ∈ J : i ∈ I j }; hence, Ji = ∅ for i ∈ I \I +. Observe that the

definitions of mingling sets I j and Ji imply that they are nested. Precisely,

for i, k ∈ I +, ai > ak ⇒ Jk ⊆ Ji

123



322 A. Atamtürk, O. Günlük

and

for j, k ∈ J, a j < ak ⇒ Ik ⊆ I j .

The nestedness property of the mingling sets is crucial for the validity of the mingling
inequalities introduced next.

Using the mingling sets defined above we can now write the base inequality in K≥
as follows:

∑

i∈I

ai

⎛

⎝xi −
∑

j∈Ji

ūi j x j

⎞

⎠ +
∑

j∈J

⎛

⎝a j +
∑

i∈I j

ai ūi j

⎞

⎠ x j + s ≥ b. (20)

Note that in this form a j + ∑
i∈I j

ai ūi j is nonnegative for j ∈ J \ J̄ and negative for

j ∈ J̄ . The main result of this section is the derivation of the mingling inequality

∑

i∈I +
b

⎛

⎝xi−
∑

j∈Ji

ūi j x j

⎞

⎠+
∑

i∈I\I +
ai xi+

∑

j∈J

min

⎧
⎨

⎩b, a j+
∑

i∈I j

ai ūi j

⎫
⎬

⎭ x j+s ≥ b,

(21)

from (20). Observe that if I + = ∅, then inequality (21) reduces to the base inequal-
ity (20). The validity of the mingling inequality for K≥ is not obvious and does
not follow from MIR of (20) because the terms (xi − ∑

j∈Ji
ūi j x j ), i ∈ I +, and

(a j + ∑
i∈I j

ai ūi j ), j ∈ J , are not necessarily nonnegative. Furthermore, it does not
seem to be possible to derive inequality (21) as a straightforward extension of (9).
In the following, we first prove the validity and then the strength of the mingling
inequality.

Proposition 1 The mingling inequality (21) is valid for K≥.

Proof First we will write inequality (21) more explicitly with the aid of some new
notation. For j ∈ J , let

δ j = a j +
p( j)−1∑

i=1

ai ui + ap( j)k j = a j +
∑

i∈I j

ai ūi j . (22)

We have δ j < 0 for j ∈ J̄ and δ j ≥ 0 for j ∈ J \ J̄ . For j ∈ J \ J̄ and i ∈ I j , let

ũi j =

⎧
⎪⎪⎨

⎪⎪⎩

ui , if i < p( j),

k j , if i = p( j) and δ j < b,

k j − 1, if i = p( j) and δ j ≥ b.

(23)
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Note that ũi j = ūi j − 1 if i = p( j) and δ j ≥ b, and ũi j = ūi j otherwise. Also
observe that for j ∈ J \ J̄

a j +
∑

i∈I j

ai ũi j =
{

δ j ≥ 0 if δ j < b,

δ j − ap( j) ≤ 0 if δ j ≥ b.
(24)

Now let w = s + ∑
i∈I\I + ai xi . We treat w as a nonnegative continuous variable.

Instead of ū, using ũ let us write the mingling inequality (21) explicitly as

w +
∑

i∈I+
b

⎡

⎢⎣xi −ui x( J̄ )−
∑

j∈Ji \ J̄

ũi j x j

⎤

⎥⎦+
∑

j∈ J̄

(a j + κ)x j +
∑

j∈J\ J̄

⎛

⎜⎝a j +
∑

i∈I j

ai ũi j

⎞

⎟⎠

+

x j ≥ b.

(25)

Using the same notation, consider also the following relaxation of the base inequality

w +
∑

i∈I+
ai

⎡

⎢⎣xi −ui x( J̄ )−
∑

j∈Ji \ J̄

ũi j x j

⎤

⎥⎦+
∑

j∈ J̄

(a j +κ)x j +
∑

j∈J\ J̄

⎛

⎜⎝a j +
∑

i∈I j

ai ũi j

⎞

⎟⎠

+

x j ≥ b.

(26)

Let (x̄, s̄) be a feasible point of K≥. We will examine two cases and show that
(x̄, s̄) satisfies inequality (25). First assume that x̄( J̄ ) ≥ 1. In this case [x̄i −ui x̄( J̄ )−∑

j∈Ji \ J̄ ũi j x̄ j ] ≤ 0 for all i ∈ I + as x̄i ≤ ui . Therefore, inequality (25) is a relaxation
of (26) for (x̄, s̄).

So, we can now assume that x̄( J̄ ) = 0. If x̄(J\ J̄ ) 	= 0, let j ′ := argmin j∈J {a j :
x̄ j ≥ 1} and note that j ′ ∈ J\ J̄ as x̄( J̄ ) = 0. Now let � := p( j ′); thus, I j ′ =
{1, . . . , �}. In other words, j ′ ∈ Ji for all i = 1, . . . , � and j ′ 	∈ Ji for any i =
� + 1, . . . , n. Furthermore, observe that ũi j = ui for i < � and j ∈ Ji \ J̄ , and x̄ j = 0
for j ∈ Ji \ J̄ for i > �. Then, for i < �, we have x̄i − ∑

j∈Ji \ J̄ ũi j x̄ j ≤ x̄i − ui ≤ 0;
and for i > �, we have x̄i − ∑

j∈Ji \ J̄ ũi j x̄ j = x̄i ≥ 0. Thus,

x̄i −
∑

j∈Ji \ J̄

ũi j x̄ j

{≤0 if i < �

≥ 0 if i > �
for all i ∈ I +. (27)

If x̄(J\ J̄ ) = 0, then let � = 1 and notice that (27) still holds. As (x̄, s̄) ∈ K≥, it
satisfies (26) and as ai ≥ a� for i < � and ai ≤ a� for i > � it also satisfies

w +
∑

i∈I +
a�

⎡

⎣xi −
∑

j∈Ji \ J̄

ũi j x j

⎤

⎦ +
∑

j∈J

⎛

⎝a j +
∑

i∈I j

ai ũi j

⎞

⎠
+

x j ≥ b. (28)

Therefore, it has to satisfy the a�-MIR inequality for (28)

w +
∑

i∈I +
b

⎡

⎣xi −
∑

j∈Ji \ J̄

ũi j x j

⎤

⎦ +
∑

j∈J

⎛

⎝a j +
∑

i∈I j

ai ũi j

⎞

⎠
+

x j ≥ b, (29)

which is same as (25) when x( J̄ ) = 0. ��
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We next show that the mingling inequality is facet-defining for conv(K≥) when
I + is chosen to be {i ∈ I : ai > b}. Furthermore, when J̄ 	= ∅, then it can also be
facet-defining when I + is a proper subset of {i ∈ I : ai > b}.
Proposition 2 The mingling inequality (21) is facet-defining for conv(K≥) if

b − min{ a j + κ : j ∈ J̄ } ≥ max{ ai : ai > b, i ∈ I \ I + }.
Proof We use the notation introduced in the proof of Proposition 1. In addition, let
J = J̄ ∪ J ′ ∪ J ′′, where J ′ = { j ∈ J \ J̄ : δ j < b} and J ′′ = { j ∈ J \ J̄ : δ j ≥ b},
and let I = I + ∪ I ′ ∪ I ′′, where I ′ = {i ∈ I : ai ≤ b} and I ′′ = {i ∈ I\I + : ai > b}.
Furthermore, let j∗ = argmin{a j : j ∈ J̄ }, and note that if J̄ = ∅ then I = I + and
I ′′ = ∅ by the assumption of the proposition.

It is easily seen that the following |I | + |J | + 1 affinely independent points are on
the face defined by (21):

: s = b,

i ∈ I + : s = 0, xi = 1,

i ∈ I ′ : s = b − ai , xi = 1,

j ∈ J̄ : s = b − a j − κ, xi = ui , i ∈ I +, x j = 1,

j ∈ J ′ : s = b − δ j , xi = ūi j , i ∈ I j , x j = 1,

j ∈ J ′′ : s = 0, xi = ūi j , i ∈ I j , x j = 1,

i ∈ I ′′ : s = b − a j∗ − κ − ai , xk= uk, k ∈ I +, x j∗ = 1, xi = 1.

Each row above shows only the nonzero components of a point. ��

3.2 Two-step mingling inequalities

Next we will derive a second class of inequalities based on the mingling inequalities

s+
∑

i∈I +
b

⎛

⎝xi−
∑

j∈Ji

ūi j x j

⎞

⎠+
∑

i∈I\I +
ai xi+

∑

j∈J

min

⎧
⎨

⎩b, a j+
∑

i∈I j

ai ūi j

⎫
⎬

⎭x j ≥b. (30)

For any α > 0 such that α�b/α� ≤ mini∈I + ai , let the two-step mingling inequality
be defined as

s +
∑

i∈I +
µα,b(b)

⎛

⎝xi −
∑

j∈Ji

ūi j x j

⎞

⎠ +
∑

i∈I\I +
µα,b(ai )xi

+
∑

j∈J

µα,b

⎛

⎝min

⎧
⎨

⎩b, a j +
∑

i∈I j

ai ūi j

⎫
⎬

⎭

⎞

⎠ x j ≥ µα,b(b), (31)

where µα,b is the MIR function described in Sect. 1.
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Observe that if I + = ∅, then inequality (30) is same as the base inequality (20)
and therefore inequality (31) simply becomes the α-MIR inequality obtained from
inequality (20). If I + 	= ∅, however, this is not the case even though inequality (31)
is obtained by applying the MIR function µα,b to the coefficients of the variables in
inequality (30). Notice that the terms (xi −∑

j∈Ji
ūi j x j ), i ∈ I +, are not necessarily

nonnegative and therefore validity of (31) does not follow from MIR. As shown in
Remark 2, due to subadditivity of µα,b, MIR of inequality (30) produces a weaker
inequality than inequality (31) for the same α. Finally, if b/α ∈ Z, then inequality
(30) reduces to s ≥ 0 as does the MIR inequality (2).

Proposition 3 The two-step mingling inequality (31) is valid for K≥.

Proof We use the notation introduced in the proof of Proposition 1. Let (x̄, s̄) be a fea-
sible point of K≥ and consider the relaxation (26) of the base inequality. If x̄( J̄ ) = 0,
then using the same arguments as in the proof of Proposition 1, the inequality

s +
∑

i∈I\I +
ai xi + a�

∑

i∈I +

⎡

⎣xi − ui x( J̄ ) −
∑

j∈Ji \ J̄

ũi j x j

⎤

⎦

+
∑

j∈ J̄

(a j + κ)x j +
∑

j∈J\ J̄

⎛

⎝a j +
∑

i∈I j

ai ũi j

⎞

⎠
+

x j ≥ b (32)

is valid for (x̄, s̄) for some � ∈ I +. Consider, again, mingling inequality (21), written
in its explicit form

s +
∑

i∈I\I +
ai xi + b

∑

i∈I +

⎡

⎣xi − ui x( J̄ ) −
∑

j∈Ji \ J̄

ũi j x j

⎤

⎦

+
∑

j∈ J̄

(a j + κ)x j +
∑

j∈J\ J̄

⎛

⎝a j +
∑

i∈I j

ai ũi j

⎞

⎠
+

x j ≥ b. (33)

As both inequalities (32) and (33) are valid for (x̄, s̄), inequality

s +
∑

i∈I\I +
ai xi + β

∑

i∈I +

⎡

⎣xi − ui x( J̄ ) −
∑

j∈Ji \ J̄

ũi j x j

⎤

⎦

+
∑

j∈ J̄

(a j + κ)x j +
∑

j∈J\ J̄

⎛

⎝a j +
∑

i∈I j

ai ũi j

⎞

⎠
+

x j ≥ b (34)

is valid for (x̄, s̄) for any β such that b ≤ β ≤ a�. Then, choosing b ≤ β ≤ a :=
mini∈I + ai ensures validity of (34) for (x̄, s̄) provided that x̄( J̄ ) = 0.
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On the other hand, if x̄( J̄ ) ≥ 1, as [x̄i − ui x̄( J̄ ) − ∑
j∈Ji \ J̄ ũi j x̄ j ] ≤ 0 for all

i ∈ I +, inequality (34) is a relaxation of (26) for (x̄, s̄) provided that β ≤ a.
Hence, (34) is valid for all (x̄, s̄) ∈ K≥ provided that b ≤ β ≤ a. By taking

β = α�b/α�, (31) simply becomes the α-MIR inequality for (34). Note that, µα,b(b) =
µα,b(α�b/α�) by definition, and as β is an integer multiple of α, it is not necessary
for the integer term

∑
i∈I +[xi − ui x( J̄ ) − ∑

j∈Ji \ J̄ ũi j x j ] in (34) to be nonnegative
for the corresponding α-MIR inequality to be valid for K≥ (see [7]). ��
Remark 3 If I + = {i ∈ I : ai > b} and α is chosen such that mini∈I + ai ≥ α ≥ b,
then mingling inequality (21) dominates two-step mingling inequality (31). To see
this, observe that for such α, we have µα,b(a) = a for 0 ≤ a ≤ b. On the other hand,
µα,b(a) ≥ a for any a ≤ 0 and α > 0.

Proposition 4 The two-step mingling inequality (31) is facet-defining for conv(K≥)

if b > 0, J̄ = ∅, I + = {i ∈ I : ai ≥ α�b/α�}, and α = ai for some i ∈ I .

Proof We show in Sect. 5.2 that if I + = {i ∈ I : ai ≥ α�b/α�}, then two-step min-
gling inequalities become the continuous integer cover inequalities [1] obtained by
superadditive lifting with integer variables [2]. These inequalities are facet-defining
for conv(K≥) when b > 0, J̄ = ∅, and α = ai for some i ∈ I as shown in Theorem 6
of Atamtürk [1]. ��

4 Symmetric inequalities

In this section we present inequalities for the mixed-integer knapsack set K≥ when
b ≤ 0. The two classes of inequalities we present below are “symmetric” to the min-
gling inequality (21) and the two-step mingling inequality (31) developed for the case
when b ≥ 0.

To develop the symmetric inequalities, we use a basic observation that shows the
correspondence between the facets of conv(K≥) and the facets of conv(K≤), where

K≤ =
{
(x, t) ∈ Z

N × R : ax ≤ b + t, u ≥ x ≥ 0, t ≥ 0
}
.

Based on this observation, we utilize the results in the previous section. Note that we
do not restrict the sign of a or b in the following lemma.

Lemma 2 Inequality πx +s ≥ πo is valid for K≥ if and only if inequality (a −π)x ≤
b −πo + t is valid for K≤. Moreover, πx + s ≥ πo defines a facet of conv(K≥) if and
only if (a − π)x ≤ b − πo + t defines a facet of conv(K≤).

Proof To see the first part, by adding a slack variable s let us write K≤ as

K =
{
(x, s, t) ∈ Z

N × R × R : ax + s = b + t, u ≥ x ≥ 0, s, t ≥ 0
}

and consider its “relaxation” K≥ obtained by dropping t . Because πx + s ≥ πo

is valid for K≥, it is also valid for K . Substituting b + t − ax for s, we obtain
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(a − π)x ≤ b − πo + t as a valid inequality for K≤. The other direction is the same.
For the second part, observe that conv(K≤) is isomorphic to conv(K ), which is iso-
morphic to conv(K≥). Thus, there is a one-to-one correspondence between the facets
of conv(K≤) and conv(K≥). ��

Based on this observation, we next describe how to derive valid inequalities for
K≥ when b ≤ 0. First we multiply the base inequality ax ≥ b by −1 to obtain an
equivalent representation of the set in K≤ form with a nonnegative right-hand-side.
We then use Lemma 2, and utilize the facets of the corresponding K≥ set (again with
a nonnegative right-hand-side) to obtain facets of the K≤ representation. The inequal-
ities presented below generalize the reverse continuous cover inequality developed
by Marchand and Wolsey [9] and the continuous integer knapsack pack inequality of
Atamtürk [1,3]. We compare them in detail later in Sect. 5.

4.1 Symmetric mingling inequalities

We now consider the case b ≤ 0 for K≥. Our approach this time is to update the
coefficients of xi , i ∈ I , in the base inequality of K≥ using the upper bounds of x j ,
j ∈ J , to get a more convenient form (36). Toward this end, let J− := {1, . . . , m}
be a nonempty subset of { j ∈ J : a j < b}, indexed in nondecreasing order of a j ’s,
ν := ∑

j∈J− a j u j , and Ī := {i ∈ I : ai + ν > 0}. For i ∈ I \ Ī , let

Ji := {1, . . . , p(i)}, where p(i) := min

⎧
⎨

⎩p ∈ J− : ai +
p∑

j=1

a j u j ≤ 0

⎫
⎬

⎭

and

ki := min

⎧
⎨

⎩k ∈ Z+ : ai +
p(i)−1∑

j=1

a j u j + ap(i)k ≤ 0

⎫
⎬

⎭·

For i ∈ Ī , we let Ji := J−, p(i) := m, and ki := um . For and i ∈ I and j ∈ Ji , let

ū j i :=
{

u j , if j < p(i),

ki , if j = p(i).
(35)

For j ∈ J , let I j := {i ∈ I : j ∈ Ji }. Note I j = ∅ for j ∈ J \ J−. Using these
mingling sets, the base inequality of K≥ can be written as

∑

j∈J

a j

⎛

⎝x j −
∑

i∈I j

ū j i xi

⎞

⎠ +
∑

i∈I

⎛

⎝ai +
∑

j∈Ji

a j ū j i

⎞

⎠ xi + s ≥ b. (36)
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We define the symmetric mingling inequality corresponding to (36) as

∑

j∈J−
(a j−b)

⎛

⎝x j−
∑

i∈I j

ū j i xi

⎞

⎠+
∑

i∈I

min

⎧
⎨

⎩ai+
∑

j∈Ji

a j ū j i−b, 0

⎫
⎬

⎭ xi+s ≥ 0. (37)

Observe that if J− = ∅, then inequality (37) reduces to s ≥ 0.

Proposition 5 The symmetric mingling inequality (37) is valid for K≥. Furthermore,
it is facet-defining for conv(K≥) provided that

min{ a j : a j < b, j ∈ J \ J− } ≥ max{ ai + ν : i ∈ Ī }.

Proof After rewriting the base inequality of K≥ as

∑

j∈J

−a j x j +
∑

i∈I

−ai xi ≤ −b + s

in K≤ form, we use the corresponding K≥ set

∑

j∈J

−a j x j +
∑

i∈I

−ai xi + s ≥ −b (38)

to generate mingling inequalities of Sect. 3.1 as −b ≥ 0. Using the mingling sets
defined in this section, the corresponding mingling inequality (21) for (38) is

∑

j∈J−
−b

⎛

⎝x j−
∑

i∈I j

ū j i xi

⎞

⎠+
∑

j∈J\J−
−a j x j

+
∑

i∈I

min

⎧
⎨

⎩−b,−ai−
∑

j∈Ji

a j ū j i

⎫
⎬

⎭ xi+s ≥ −b. (39)

Translating this inequality for the original K≤ set using Lemma 2, we obtain

∑

j∈J−
(−a j+b)x j−

∑

j∈J−

∑

i∈I j

bū ji xi+
∑

i∈I

⎛

⎝−ai− min

⎧
⎨

⎩−b,−ai−
∑

j∈Ji

a j ū j i

⎫
⎬

⎭

⎞

⎠ xi ≤s,

which is equivalent to (37). The facet condition follows from Proposition 2 and
Lemma 2. ��
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4.2 Symmetric two-step mingling inequalities

In this section, we give the symmetric class of inequalities for two-step mingling
inequalities for the case b ≤ 0. For any α > 0 such that max j∈J− a j ≤ α�b/α�, let
us define the symmetric two-step mingling inequality corresponding to (36) as

∑

j∈J−
(a j + µα,−b(−b))

⎛

⎝x j −
∑

i∈I j

ū j i xi

⎞

⎠ +
∑

j∈J\J−
(a j + µα,−b(−a j ))x j

+
∑

i∈I

⎛

⎝ai +
∑

j∈Ji

a j ū j i + µα,−b

⎛

⎝min

⎧
⎨

⎩−b,−ai −
∑

j∈Ji

a j ū j i

⎫
⎬

⎭

⎞

⎠

⎞

⎠ xi

+ s ≥ b + µα,−b(−b). (40)

Observe that if b/α ∈ Z, then the symmetric two-step mingling inequality (40)
reduces to the base inequality (1). Therefore, we assume below that b/α 	∈ Z. If
J− = ∅, then inequality (40) reduces to

∑

i∈N

(ai + µα,−b(−ai ))xi + s ≥ b + µα,−b(−b),

which equals the α-MIR inequality

∑

i∈N

µα,b(ai )xi + s ≥ µα,b(b)

because µα,b(ai ) = ai +µα,−b(−ai ) for ai ∈ R as checked below. Let r = b−α�b/α�
and ri = ai − α�ai/α�, i ∈ N . If ai/α 	∈ Z, then

µα,b(ai )−µα,−b(−ai ) = r�ai/α� + min{r, ri }−(α−r)�−ai/α�− min{α−r, α−ri }
= r�ai/α� + min{r, ri } + (α−r)�ai/α�−α + max{r, ri }
= min{r, ri } + α�ai/α�−r−α + max{r, ri }
= α�ai/α�−r + r + ri

= ai .

And if ai/α ∈ Z, we have µα,b(ai )−µα,−b(−ai ) = r(ai/α)− (α −r)(−ai/α) = ai .

Proposition 6 The symmetric two-step mingling inequality (40) is valid for K≥. Fur-
thermore, it is facet-defining for conv(K≥) if b < 0, Ī = ∅, J− = { j ∈ J : a j ≤
α�b/α�}, and α = a j for some j ∈ J .
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Proof Applying Proposition 3 to inequality (39), for any α > 0 such that α�−b/α� ≤
min j∈J− −a j , we obtain

∑

j∈J−
µα,−b(−b)

⎛

⎝x j −
∑

i∈I j

ū j i xi

⎞

⎠ +
∑

j∈J\J−
µα,−b(−a j )x j

+
∑

i∈I

µα,−b

⎛

⎝min

⎧
⎨

⎩−b,−ai −
∑

j∈Ji

a j ū j i

⎫
⎬

⎭

⎞

⎠ xi + s ≥ µα,−b(−b). (41)

Translating it to the original K≤ form using Lemma 2 gives

∑

j∈J−
(−a j−µα,−b(−b))x j +

∑

j∈J\J−
(−a j−µα,−b(−a j ))x j + µα,−b(−b)

∑

j∈J−

∑

i∈I j

ū j i xi

+
∑

i∈I

⎛

⎝−ai−µα,−b

⎛

⎝min

⎧
⎨

⎩−b, −ai−
∑

j∈Ji

a j ū j i

⎫
⎬

⎭

⎞

⎠

⎞

⎠ xi ≤ s−b−µα,−b(−b),

which is equivalent to (40). The facet condition follows from Proposition 4 and
Lemma 2. ��

5 Connections with other inequalities

In this section we present some well-known valid inequalities from the literature for
knapsack sets and describe how to obtain them as (symmetric) mingling or (symmet-
ric) two-step mingling inequalities. In particular, we consider the continuous cover
and reverse continuous cover inequalities of Marchand and Wolsey [9] and the contin-
uous integer knapsack cover and pack inequalities of Atamtürk [1,3]. We would like
to emphasize that all these inequalities can be obtained by mingling when the set I +
(or, J−, respectively) is taken to be {i ∈ I : ai > b} (or, { j ∈ J : a j < b}, respec-
tively). When subsets of {i ∈ I : ai > b} ({ j ∈ J : a j < b}) are used for I + (J−),
the mingling procedure leads to new inequalities for these sets.

5.1 Continuous 0-1 cover inequalities

Consider the mixed 0-1 knapsack set

K 1≤ :=
{

(x, s) ∈ {0, 1}N × R :
∑

i∈N

ai xi ≤ b + s, s ≥ 0

}
,
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where a > 0. A subset C of N is called a cover if λ := ∑
i∈C ai − b > 0. Letting

x̄i = 1 − xi , i ∈ C , after rewriting the base inequality as

∑

i∈C

ai x̄i +
∑

i∈N\C

−ai xi + s ≥ λ, (42)

for I + ⊆ {i ∈ C : ai > λ} and J = N \C , we obtain the mingling inequality

∑

i∈I +
λ

⎛

⎝x̄i−
∑

j∈Ji

x j

⎞

⎠+
∑

i∈C\I +
ai x̄i+

∑

j∈N\C

min

⎧
⎨

⎩λ,−a j+
∑

i∈I j

ai

⎫
⎬

⎭ x j+s ≥λ. (43)

For I + = {i ∈ C : ai > λ}, mingling inequality (43) reduces to

∑

i∈C

min{λ, ai }x̄i +
∑

j∈N\C

⎛

⎝−λ|I j | + min

⎧
⎨

⎩λ,−a j +
∑

i∈Ji

ai

⎫
⎬

⎭

⎞

⎠ x j + s ≥ λ, (44)

which is equivalent to the continuous cover inequality (Marchand and Wolsey [9]).
We will illustrate inequality (44) in Example 2.

Now assume that there exists a k ∈ C such that θ = ak −λ > 0. In this case writing
the base inequality as

∑

i∈C\k

ai x̄i +
∑

i∈N\(C\k)

−ai xi + s ≥ −θ, (45)

for J− ⊆ { j ∈ N \(C\k) : a j > θ} and I = C\k, we obtain the symmetric mingling
inequality

∑

i∈C\k

min

⎧
⎨

⎩0, ai −
∑

j∈Ji

a j + θ

⎫
⎬

⎭ x̄i +
∑

j∈J−
(θ − a j )

⎛

⎝x j −
∑

i∈I j

x̄i

⎞

⎠ + s ≥ 0.

(46)

For J− = { j ∈ N \(C\k) : a j > θ}, symmetric mingling inequality (46) reduces to

∑

i∈C\k

⎛

⎝min

⎧
⎨

⎩0, ai−
∑

j∈Ji

a j+θ

⎫
⎬

⎭+
∑

j∈Ji

(a j−θ)

⎞

⎠x̄i−
∑

j∈N\(C\k)

(a j−θ)+x j+s ≥ 0,

(47)

which is the reverse continuous cover inequality [9].
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5.2 Continuous integer cover inequalities

Consider now the mixed-integer knapsack set with finite upper bounds for all integer
variables

K u≤ :=
{

(x, s) ∈ Z
N × R :

∑

i∈N

ai xi ≤ b + s, u ≥ x ≥ 0, s ≥ 0

}
,

where a > 0. A subset C of N is called a cover if λ := ∑
i∈C ai ui − b > 0. After

letting x̄i = ui − xi , i ∈ C , by rewriting the base inequality as

∑

i∈C

ai x̄i +
∑

i∈N\C

−ai xi + s ≥ λ, (48)

for I + ⊆ {i ∈ C : ai > λ} and J = N \C , we obtain the mingling inequality

∑

i∈I +
λ

⎛

⎝x̄i −
∑

j∈Ji

ūi j x j

⎞

⎠ +
∑

i∈C\I +
ai x̄i +

∑

j∈J

min

⎧
⎨

⎩λ,−a j +
∑

i∈I j

ai ūi j

⎫
⎬

⎭ x j

+ s ≥ λ. (49)

Now assume that there exists a k ∈ C such that θ = akuk − λ > 0 and λ/ak 	∈ Z.
Furthermore, let η = �θ/ak� and ρ = θ − ak�θ/ak�. Then �λ/ak� = uk − η + 1
and λ − ak�λ/ak� = ak − ρ. For I + ⊆ {i ∈ C : ai ≥ ak�λ/ak�}, the corresponding
two-step inequality for (48) with α = ak is then

∑

i∈I +
(uk − η+1)(ak − ρ)

⎛

⎝x̄i −
∑

j∈Ji

ūi j x j

⎞

⎠+
∑

i∈C\I +
µak ,λ(ai )x̄i

+
∑

j∈J

µak ,λ

⎛

⎝min

⎧
⎨

⎩λ,−a j+
∑

i∈I j

ai ūi j

⎫
⎬

⎭

⎞

⎠ x j+s ≥ (uk − η+1)(ak − ρ). (50)

Observe that if uk = 1, then we have ak − ρ = λ and η = 1. In this case, inequal-
ities (49) and (50) are the same if C \ I + = {i ∈ C : ai ≤ λ} and J̄ = ∅ because
J̄ = ∅ implies that −a j + ∑

i∈I j
ai ūi j ≥ 0 for all j ∈ J and µak ,λ(a) = a for

0 ≤ a ≤ λ < ak .
Alternatively, writing the base inequality as

∑

i∈C\k

ai x̄i +
∑

i∈N\(C\k)

−ai xi + s ≥ −θ, (51)
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for J− ⊆ { j ∈ N \(C \k) : a j > θ} and I = C \k, we obtain the symmetric mingling
inequality

∑

i∈C\k

min

⎧
⎨

⎩0, ai−
∑

j∈Ji

a j ū j i+θ

⎫
⎬

⎭ x̄i +
∑

j∈J−
(θ−a j )

⎛

⎝x j−
∑

i∈I j

ū j i x̄i

⎞

⎠+ s ≥ 0. (52)

For J− ⊆ { j ∈ N \ (C \ k) : a j ≥ ak�θ/ak�}, the corresponding symmetric two-step
inequality for (51) with α = ak is then

∑

j∈J−
(−a j + ηρ)

⎛

⎝x j −
∑

i∈I j

ū j i x̄i

⎞

⎠+
∑

j∈J\J−

(−a j +µak ,θ (a j )
)

x j

+
∑

i∈C\k

⎛

⎝ai +
∑

j∈Ji

ū j i +µak ,θ

⎛

⎝min

⎧
⎨

⎩θ,−ai +
∑

j∈Ji

a j ū j i

⎫
⎬

⎭

⎞

⎠

⎞

⎠ x̄i + s ≥ −θ + ηρ.

(53)

Observe that if uk = 1, then we have ρ = θ and η = 1. In this case, inequalities (52)
and (53) are the same if J \ J− = { j ∈ N \(C \k) : a j ≤ θ} and Ī = ∅ because
Ī = ∅ implies that −ai +∑ j∈Ji

a j ū j i ≥ 0 for all i ∈ I = C \ k and µak ,θ (a) = a for
0 ≤ a ≤ θ < ak .

For a cover C , Atamtürk [1,3] gives the following continuous integer knapsack
cover and pack inequalities

∑

i∈C

−�k(−ai )x̄i +
∑

j∈J

−γk(a j )x j + s ≥ (uk − η + 1)(ak − ρ) (54)

and

∑

j∈J

−�k(a j )x j +
∑

i∈C\k

−ωk(−ai )x̄i + s ≥ −θ + ηρ, (55)

where

�k(a) =

⎧
⎪⎪⎨

⎪⎪⎩

(η − uk − 1)(ak − ρ) if a < −λ,

a − µak ,b(a) if − λ ≤ a ≤ θ,

a − ηρ if a > θ,

for k ∈ N

and γk and ωk are superadditive lifting functions [2] described explicitly in these
references. By inspection, it can be verified that if I + = {i ∈ C : ai ≥ ak�λ/ak�},
then

γk(a j ) =
∑

i∈I j

ūi j (uk −η+1)(ak −ρ) − µα,λ

⎛

⎝min

⎧
⎨

⎩λ,

⎛

⎝−a j +
∑

i∈I j

ai ūi j

⎞

⎠

⎫
⎬

⎭

⎞

⎠ for j ∈ J
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and if J− = { j ∈ N \(C\k) : a j ≥ ak�θ/ak�}, then

ωk(ai ) = ai +
∑

j∈Ji

ū j i (ηρ−1) − µα,θ

⎛

⎝min

⎧
⎨

⎩θ,

⎛

⎝ai +
∑

j∈Ji

a j ū j i

⎞

⎠

⎫
⎬

⎭

⎞

⎠ for i ∈C\k.

Hence, inequalities (50) and (53) are equivalent to (54) and (55), respectively.

5.3 C-MIR inequalities

As mentioned in the Introduction, complemented MIR inequalities, given by Marc-
hand and Wolsey [10], have been successfully implemented as cutting planes in com-
mercial MIP solvers. These cuts involve obtaining a base inequality from the MIP
via constraint aggregation and then complementing some of the variables that have
finite upper bounds. An α-MIR inequality is then written for the complemented base
inequality.

Here we apply the C-MIR inequalities to the mixed-integer knapsack set K u≤ and
compare them with the mingling inequalities. Let C ⊆ N be a cover such that ā :=
maxi∈C ai > λ. Complementing xi , i ∈ C , we can then write the complemented base
inequality as

∑

i∈C

ai x̄i +
∑

i∈N\C

−ai xi + s ≥ λ, (56)

where x̄i denotes u − xi as before. Consider the ā-MIR inequality for (56)

∑

i∈C

min{λ, ai }x̄i +
∑

i∈N\C

µā,λ(−ai )xi + s ≥ λ. (57)

We now show that the mingling inequality (49)

∑

i∈I +
λ

⎛

⎝x̄i −
∑

j∈Ji

ūi j x j

⎞

⎠ +
∑

i∈C\I +
ai x̄i +

∑

j∈J

min

⎧
⎨

⎩λ, a j +
∑

i∈I j

ai ūi j

⎫
⎬

⎭ x j + s ≥ λ,

(58)

where I + = {i ∈ C : ai > λ} and J = N \C , dominates (57). By definition of I +
the coefficients for C are the same for both inequalities (57) and (58). For j ∈ N \C ,
let k j = �a j/ā�. Then

µā,λ(−a j ) = −λk j + min{λ, āk j − a j }. (59)
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On the other hand, the coefficient of x j , j ∈ J , in (58) is

σ j := −λ
∑

i∈I j

ūi j + min

⎧
⎨

⎩λ,
∑

i∈I j

ai ūi j − a j

⎫
⎬

⎭. (60)

We consider three cases: 1. if
∑

i∈I j
ūi j = k j , then σ j ≤ µā,λ(−a j ) as

∑
i∈I j

ai ūi j ≤
āk j ; 2. if

∑
i∈I j

ūi j ≥ k j + 1, then σ j ≤ µā,λ(−a j ) as min{λ,−∑
i∈I j

ai ūi j − a j }−
min{λ, āk j − a j } ≤ λ; and finally, 3. if

∑
i∈I j

ūi j ≤ k j − 1, then

σ j ≤
∑

i∈I j

(ai − λ)ūi j − a j ≤
∑

i∈I j

(ā − λ)ūi j − a j ≤(ā − λ)(k j − 1) − a j ≤µā,λ(−a j ).

If C is chosen to be a minimal 0-1 cover, (57) is the familiar 0-1 knapsack cover
inequality

∑

i∈C

λxi +
∑

i∈N\C

−µā,λ(−ai )xi ≤ λ(|C | − 1) + s (61)

lifted using the MIR function µā,λ. The numerical example below illustrates the coef-
ficients of xi , i ∈ N \C for (61) and (43) for comparison.

Example 2 Consider a mixed 0-1 knapsack set given by

13x1 + 10x2 + 9x3 + 8x4 + 5x5 + ax6 ≤ 42 + s, x ∈ {0, 1}6, s ≥ 0.

For cover C = {1, 2, 3, 4, 5}, we have λ = 3 and ā = 13. Writing the knapsack
inequality as

5∑

i=1

ai (1 − xi ) − ax6 + s ≥ λ, (62)

we see that the corresponding complemented ā-MIR inequality (61) is

5∑

i=1

λxi − µ13,λ(−a)x6 ≤ 4λ + s. (63)

For the base inequality (62), we have I + = {1, 2, 3, 4, 5}. The mingling set for x6
is a function of its coefficient a. For instance, if 32 < a ≤ 40, then I6 = {1, 2, 3, 4},
Ji = {6} for i = 1, . . . , 4, and J5 = ∅. Rewriting the base inequality (56) as

4∑

i=1

ai [(1 − xi ) − x6] + a5(1 − x5) +
(

−a +
4∑

i=1

ai

)
x6 + s ≥ λ, (64)
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−

Fig. 1 Coefficients of mingling and C-MIR inequalities compared

we obtain the corresponding mingling inequality

4∑

i=1

λ[(1 − xi ) − x6] + λ(1 − x5) + min

{
λ,−a +

4∑

i=1

ai

}
x6 + s ≥ λ (65)

or, equivalently,

5∑

i=1

λxi +

�(a)︷ ︸︸ ︷(
4λ − min

{
λ,−a +

4∑

i=1

ai

})
x6 ≤ 4λ + s. (66)

In Fig. 1 we plot the coefficient of x6 as a function of a for mingling and comple-
mented MIR inequalities. In general, we have �(a) ≥ −µā,λ(−a) for all a ≥ 0.

5.4 Two-step inequalities

We next consider the case when variables do not have finite upper bounds. In this case,
let I + ⊆ {i ∈ I : ai > b}, I + 	= ∅, and let ā := a1 = max{ai : i ∈ I +}. As ui = ∞
for all i ∈ I +, we have J̄ = ∅, and therefore p( j) = 1 and I j = {1} for all j ∈ J .
Furthermore, J1 = J and Ji = ∅ for i > 1. Letting

k j := ū1 j = −�a j/ā�, and r j := a j − ā�a j/ā�, j ∈ J,

inequality (21) becomes

b

⎛

⎝x1 +
∑

j∈J

�a j/ā�x j

⎞

⎠ +
∑

i∈I +\{1}
bxi +

∑

i∈I\I +
ai xi +

∑

j∈J

min{b, r j }x j + s ≥ b,

123



Mixed-integer rounding with bounds 337

which, if I + = {i ∈ I : ai > b} reduces to

s +
∑

j∈J

(min{b, r j } + b�a j/ā�)x j +
∑

i∈I

min{ai , b}xi ≥ b,

or, equivalently, the ā-MIR inequality

s +
∑

j∈J

µā,b(a j )x j +
∑

i∈I

µā,b(ai )xi ≥ µā,b(b) = b

applied to the base inequality. In addition, for α > 0 such that α�b/α� ≤ min{ai : i ∈
I +} inequality (31) becomes

s+
∑

i∈I +
µα,b(b)xi +

∑

i∈I\I +
µα,b(ai )xi +

∑

j∈J

[µα,b(min{b, r j })−µα,b(b)k j ]x j ≥µα,b(b),

which is the two-step MIR inequality developed by Dash and Günlük [7] when applied
to a base inequality ax ≥ b that has maxi∈N {ai } = 1 > b.

6 Final remarks

Mingling is a simple procedure for incorporating upper bound information into MIR
cuts. The fact that many strong inequalities for the fundamental knapsack sets can also
be obtained via mingling suggests that mingling may be effective as a cut generation
procedure for solving general MIPs. Furthermore, because mingling uses only MIR
functions to describe the cuts, mingling inequalities can be easily implemented using
existing MIR routines.

We also note that (symmetric) mingling and two-step mingling inequalities can (and
should) be applied after aggregating constraints of the MIP to form base inequality
that defines the knapsack set. An effective approach to achieve this has been described
by Marchand and Wolsey [10] for MIR inequalities.
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