International Journal on Software Tools for Technology Transfer (2023) 25:747-764
https://doi.org/10.1007/s10009-023-00727-w

FOUNDATIONS FOR MASTERING CHANGE —

®

Check for
updates

Special Section: Rigorous Engineering of Collective Adaptive Systems

Coordinating and programming multiple ROS-based
robots with X-KLAIM

Lorenzo Bettini' - Khalid Bourr? - Rosario Pugliese’ - Francesco Tiezzi'

Accepted: 10 October 2023 / Published online: 2 November 2023
© The Author(s) 2023

Abstract

Software development for robotics applications is still a major challenge that becomes even more complex when considering
multi-robot systems (MRSs). Such distributed software has to perform multiple cooperating tasks in a well-coordinated manner
to avoid unsatisfactory emerging behavior. This paper provides an approach for programming MRSs at a high abstraction
level using the programming language X-Kra1m. The computation and communication model of X-KraA1Mm, based on
multiple distributed tuple spaces, permits coordinating with the same abstractions and mechanisms both intra- and inter-robot
interactions of an MRS. This allows developers to focus on MRS behavior, achieving readable, reusable, and maintainable
code. The proposed approach can be used in practice by integrating X-Kra1m and the popular robotics framework ROS.
We demonstrate the feasibility and effectiveness of our approach by (i) showing how it scales when implementing two
warehouse scenarios allowing us to reuse most of the code when passing from the simpler to the more enriched scenario and
(ii) presenting the results of a few experiments showing that our code introduces a slightly greater but acceptable latency and
consumes less memory than the traditional ROS implementation based on Python code.

Keywords Multi-robot systems - Multiple tuple spaces - X-Klaim - ROS

1 Introduction reliability. However, an MRS requires robots to cooperate
and coordinate to achieve common goals.

The development of the software controlling a single au-
tonomous robot is still a challenge [1-3]. This becomes even
more arduous in the case of MRSs [4, 5], as it requires deal-
ing with multiple cooperating tasks to drive the robots to
work as a well-coordinated team. To meet this challenge,
various software libraries, tools, and middlewares have been
proposed to assist in and simplify the rapid prototyping of
robotics applications. Among them, nowadays, a prominent
solution is the Robot Operating System (ROS) [6], a popular
framework largely used in both industry and academia for

Autonomous robots are software-intensive systems and are
increasingly used in many different fields. Their software
components interact in real-time with a highly dynamic and
uncertain environment through sensors and actuators. To
complete tasks that are beyond the capabilities of an individ-
ual autonomous robot, multiple robots are teamed together
to form a multi-robot system (MRS). An MRS can take ad-
vantage of distributed sensing and action and has greater

B F. Tiezzi writing robot software. On the one hand, ROS provides a
francesco.tiezzi @unifi.it . :

layer to interact with many sensors and actuators for many

L. Bettini robots while abstracting from the underlying hardware. On

1 .bettini @unifi.it
orenzo-HetinEuntiLt the other hand, programming with ROS still requires dealing

with low-level implementation details; hence, robotics soft-
ware development remains a complex and demanding activ-
ity for practitioners from the robotic domain. To overcome
this issue, many researchers have proposed using higher-level

K. Bourr
khalid.bourr @unicam.it

R. Pugliese
rosario.pugliese @unifi.it

' Dipartimento di Statistica, Informatica, Applicazioni, Universita abstractions to drive the software development process and
degli Studi di Firenze, Viale Morgagni, 65, Firenze, 50134, Italy then resorting to tools for the automated generation of exe-

2 School of Science and Technology, Universita di Camerino, Via cutable code and system configuration files. Many proposals
Madonna delle Carceri, 7, Camerino, 62032, Italy in the literature are surveyed in [3, 7-9].

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00727-w&domain=pdf
mailto:francesco.tiezzi@unifi.it
mailto:lorenzo.bettini@unifi.it
mailto:khalid.bourr@unicam.it
mailto:rosario.pugliese@unifi.it

748

L. Bettini et al.

Along this line of research, we introduced in [10] an ap-
proach for programming a single-robot system. Specifically,
we propose using the language X-Kra1m [11] to program
the components of a robot’s software. This choice is moti-
vated by the fact that X-K1A1m provides mechanisms based
on distributed tuple spaces for coordinating the interactions
between these software components at a high level of ab-
straction. The integration of X-Kra1m with ROS permits
the application of the approach in practice.

In [12], we took a first step forward in this direction by
extending the approach in [10] to program MRSs. In fact,
the X-Kraim computation and communication model is
particularly suitable for dealing with both (i) the distributed
nature of the architecture of each robot belonging to an MRS,
where the software components dealing with actuators and
sensors execute concurrently, and (ii) the inherent distribu-
tion of the MRS, which is formed by multiple interacting
robots. Notably, the same tuple-based mechanisms are used
for both intra- and inter-robot communication. This sim-
plifies the design and implementation of MRS software in
terms of an X-KrLA1Mm application distributed across mul-
tiple threads of execution and hardware platforms, resulting
in better readable, maintainable, and reusable code.

In this paper, we build on our previous work [12] propos-
ing an improved programming methodology that structures
the implementation of the behavior of single robots into
different layers with clearly separated responsibilities. This
allowed us to produce clearer, more reusable, and more main-
tainable code. We illustrate our approach by implementing
two warehouse scenarios involving an MRS that manages the
movement of items through an arm robot and one or more
delivery robots. The two scenarios show how the new pro-
gramming methodology enables incremental development of
the MRS by reusing most of the code when scaling from the
first, simpler scenario to the more enriched one.

Our framework can be considered a proof-of-concept im-
plementation for experimenting with the applicability of the
tuple space-based paradigm to MRS software development.
To show the execution of the generated code, we use a sim-
ulator of robot behaviors.

We also present the results of a few experiments aimed
at determining the impact of our software framework on
the performance of MRSs. The experiments compare the
time and memory performance of our implementation of
the MRS of the warehouse scenarios based on Java code
and ROS Bridge against the traditional ROS implementation
based on Python code. The experiments show that our Java
code introduces a slightly greater but acceptable latency and
consumes less memory than the Python code.

Contribution This paper extends our previous work [10,
12] in several ways.

Springer

* We provide a more detailed description of the languages
and technologies on which our approach is based.

* We adopt an improved programming methodology pre-
scribing to structure the implementation of the behavior
of single robots into different layers with clearly separated
responsibilities, thus enabling code reuse.

* We provide a reimplementation of the warehouse example
in [12] that takes advantage of the incremental develop-
ment fostered by our programming methodology.

* We present the results of a few experiments to measure the
impact of our framework on the performance of MRSs.

Structure of the paper The rest of the paper is organized
as follows. In Sect. 2, we recall some background notions on
the languages and technologies we use in our approach, while
in Sect. 3, we describe our approach and software framework.
In Sect. 4, we show and briefly comment on our approach at
work on implementing two warehouse scenarios involving
an MRS that manages the movement of items. In Sect. 5,
we illustrate the experiments we carried out to determine the
impact of our approach on MRS performance. In Sect. 6, we
present a systematic analysis of more strictly related work,
while in Sect. 7, we conclude and touch upon directions for
future work.

2 Background notions

In this section, we recall a few background notions on the
languages and technologies we use in our approach. We re-
fer the interested reader to the cited sources for a complete
account.

2.1 Klaim

Kraim (Kernel Language for Agents Interaction and Mo-
bility, [13]) is a formal language specially devised to de-
sign distributed applications consisting of possibly mobile
software components deployed over the nodes of a network
infrastructure. KL a1m is based on process calculi [14]. It
generalizes the notion of generative communication, intro-
duced by the coordination language Linda [15], to multiple
distributed tuple spaces. A tuple space is a shared data repos-
itory consisting of a multiset of tuples. Tuples are anonymous
sequences of data items that are associatively retrieved from
tuple spaces using a pattern-matching mechanism. Commu-
nicating processes are decoupled in both space and time as
there is no need for producers (i.e., senders) and consumers
(i.e., receivers) of a tuple to synchronize. Inter-process com-
munication occurs through the asynchronous exchange of
tuples via tuple spaces: processes can indeed insert, read,
and withdraw tuples into/from tuple spaces. Tuple spaces are
identified through localities, which are symbolic addresses

Coordinating and programming ROS-based robots with X-KLAIM

749

nodeLocality

out(tuple)@nodeLocality — |

in(template)@nodeLocality

read(template)@nodeLocality ol

eval(Process)@nodelLocality

tuplel

tuple3

@otherNodes

>
Process1

tuple2
Process2

Fig.1 A Kraim node

of network nodes where processes and tuples can be allo-
cated. Localities themselves can be exchanged through inter-
process communication.

A computational node of a Kraim network is charac-
terized by its locality and a collection of running processes.
Processes are the active computational units of KLaim and
can be executed concurrently, either at the same locality or at
different localities. Processes can execute basic actions act-
ing on network nodes, process variables, and process calls,
either sequentially or in parallel. KLA1™m supports higher-
order communication since processes can exchange code and
possibly execute it. Recursive behaviors are modeled via calls
to process definitions.

Figure 1 depicts a generic KLaim node and the basic
actions which processes are made of. In these actions, pro-
cesses can use the distinguished locality self to refer to their
current hosting node.

Action out(tuple)@nodeLocality adds the tuple resulting
from the evaluation of the argument tuple to the tuple space
of the target node identified by the (possibly remote) locality
nodelocality. A tuple is a sequence of actual fields, i.e.,
expressions, localities, or processes. In general, any of these
fields can contain variables. The evaluation of a tuple consists
of evaluating the expressions it contains. Hence an evaluated
tuple cannot contain variables.

Action in(template)@nodeLocality (resp., read
(template)@nodelocality) withdraws (resp., reads) tuples
from the tuple space hosted at the (possibly remote) local-
ity nodeLocality. If matching tuples are found, one is non-
deterministically chosen. Otherwise, the process is blocked
until a matching tuple is found. These retrieval actions exploit
templates as patterns to select tuples in tuple spaces. Tem-
plates are sequences of actual and formal fields, where the
latter are used to bind variables to values, localities, or pro-
cesses. Templates must be evaluated before they can be used
for retrieving tuples. Their evaluation is like that of tuples,
where the evaluation leaves formal fields unchanged. Intu-
itively, an evaluated template matches against an evaluated
tuple if both have the same number of fields and correspond-
ing fields match; two values/localities match only if they are

identical, while formal fields match any value of the same
type. Upon a successful matching, the template variables are
replaced with the values of the corresponding actual fields
of the accessed tuple.

Action eval(Process)@nodeLocality sends Process for
execution to the (possibly remote) node identified by node-
Locality.

2.2 KLAvA and X-KLAIM

The implementation of KLA1M consists of two main com-
ponents:

¢ the Java package Krava;
¢ the programming language X-KrLA1M.

Krava (KrLaim in Java, originally introduced in [16])
provides the implementation of the Krarm concepts
(Sect. 2.1) in terms of Java classes and methods, rely-
ing on the IMC framework [17] for the communication
infrastructure. Any Java object can be stored into and re-
trieved from a KrLava tuple, and the implemented pattern-
matching mechanism keeps Java subtyping into considera-
tion. KLava strives to make Java programmers’ life eas-
ier, but programmers still have to obey the rules of Java,
particularly its verbosity. For this reason, we also devel-
oped X-Kra1m, a domain-specific language (DSL) closer
to KLa1m also providing typical high-level programming
constructs. X-Kraim (eXtended KL a1m) was initially in-
troduced in [18] and reimplemented from scratch in [11].
The X-KraiM compiler translates X-Kraim programs
into Java code that uses the Java package Krava. The pro-
duced Java code can then be compiled and executed using
the standard Java toolchain.

The new implementation of X-Kra1m [11] is based on
XTEXT [19], an Eclipse framework for developing program-
ming languages and DSLs. XTExT also provides complete
IDE support based on Eclipse: editor with syntax highlight-
ing, code completion, error reporting, and incremental build-
ing, to mention a few. Furthermore, we used another mech-
anism provided by XTEXT, that is, XBASE [20], an exten-
sible and reusable expression language. By using XBASE

Springer

750

L. Bettini et al.

in X-KrA1Mm, besides a rich Java-like syntax, we inherit
its interoperability with Java and its type system. Thus, an
X-Kra1Mm program can smoothly access any Java type and
Java library available in the project’s classpath. The interop-
erability with Java allowed us to integrate X-KrLAa1m seam-
lessly with the Java—ROS connector (see Sect. 3).

In the rest of this section, we briefly describe the main
features of X-KrA1m relevant to this paper.

An X-Kra1Mm program (a file with extension .xklaim)
can contain definitions of nets, nodes, and processes. All
these components can also be defined in separate files and
referred to through a Java-like import mechanism. As in
a standard Java program, imports are also used to import
existing Java types in an X-KLA1M program, relying on the
integration with Java mentioned above.

An X-KrLA1Mm network definition consists of net and node
definitions as shown in the following example:

net ANet {
node Nodel { ... initialization code ... }
node Node?2 { ... initialization code ... }

In particular, the name of a node also represents its locality
within the network. Each node can specify some initialization
code for creating and running a few processes, as shown in
the examples of Sect. 4. This is the simplest way of specifying
a flat network. X-Kra1m also implements the hierarchical
version of the KLa1iM model as presented in [21], but we
will not use it in this paper.

A process definition consists of a name, a list of parame-
ters (using the Java syntax for declaring parameters), and a
body:

proc AProcess(... parameters ...) { ... body ... }

The body consists of XBASE expressions, whose syntax
has been extended with the KL a1m operations that we de-
scribed in Sect. 2.1. Typical programming structures such as
if and while and OOP Java-like mechanisms such as object
creation and method invocation are already part of XBASE.

The syntax of XBASE is similar to that of Java, and it
should be easily understood by Java programmers, but it lacks
much “syntactic noise” from Java. For example, terminating
semicolons and other syntax elements like parentheses when
invoking a method without arguments are optional. More-
over, XBASE comes with a powerful type inference mecha-
nism compliant with the Java type system: the programmer
can thus avoid specifying types in declarations when they can
be inferred from the context. Variable declarations start with
val or var for final and non-final variables, respectively. The
type of a variable can be omitted if it can be inferred from
the initialization expression.

Springer

in("item", var String itemlId,

var Double x, var Double y)@self
System.err.println("Coordinates: " +x + ", " 4+ y)
out(itemld, x, y)@otherLoc
eval(new AProcess(x,y))@self
val strings = #["first", "second", "third"]
strings.stream().map([s | s.length()])

forEach([1 | System.err.println(l)])

Fig. 2 An example of X-KLA1M code

In Fig. 2, we show a simple code snippet of an X-Kra1m
process body. The code should be easily readable by a Java
programmer. We mention a few additional X-KrLA1M syn-
tax features to make the code more understandable. Such
types as String and Double are Java types since, as men-
tioned above, X-KrLA1Mm programs can refer directly to Java
types. Similarly, System. err.printlnis the standard Java
static method to print something on the screen. In most code
snippets, we omit the Java-like import statements. Here we
also see the typical KL a1Mm operations in and out, acting on
possibly distributed tuple spaces. Formal fields in a tuple are
specified as variable declarations since formal fields implic-
itly declare variables that are available in the code occurring
after in and read operations (just like in Kraim). The
X-Kra1m operation eval allows a process to start a new
process concurrently at the specified locality. X-Kraim
provides syntactic sugar for collection literals: #[... 1.
In the code snippet, strings is inferred to be of type
List<String>. In X-Kvra1m, lambda expressions have
the shape [paraml, param2, | body], where the
types of parameters can be omitted if they can be inferred
from the context. An X-Kra1m lambda expression can be
used in any Java context where a lambda expression can
be used, according to the Java type system: the type of the
lambda expression must match the target Java functional
interface. The code snippet shows standard Java stream op-
erations using X-Kra1m lambda expressions.

The X-Kraim compiler is completely integrated into
Eclipse: typical IDE mechanisms like content assist and code
navigation are available in the X-Kra1Mm editor. The same
holds for the automatic building mechanisms of Eclipse: sav-
ing an X-Kra1m file automatically triggers the Java code
generation, which in turn triggers the generation of Java byte
code. From a single X-KLA1M program, our compiler gen-
erates several Java classes (e.g., one for a net, one for each
node, and one for each process) that extend and use Krava
classes. The relation between X-Kraim elements and the
generated Java classes is handled transparently. For exam-
ple, removing a process from an X-Kraim program will
automatically remove the previously generated correspond-
ing Java class.

Finally, the X-Kra1m Eclipse support also includes the
ability to directly run or debug an X-Kra1m file with ded-
icated context menus: there is no need to run the generated

Coordinating and programming ROS-based robots with X-KLAIM

751

()=

1

Fig. 3 ROS publish/subscribe mechanism

Java code manually. Debugging an X-KrLA1M program di-
rectly is crucial when programming distributed applications
accessing remote tuple spaces. We can set a breakpoint in the
X-KLa1m program, possibly based on a condition. During
the execution of the corresponding generated Java code, the
execution is suspended on the X-KLA1M program: we can
inspect the current values of variables, either in the “Vari-
ables” Eclipse view or by hovering over a variable in the
program. The debugging mechanisms of X-Kra1m are as
powerful as Eclipse’s standard Java debugging mechanism.
For example, during an X-Kra1m debugging session, we
can evaluate expressions on the fly.

2.3 ROS

ROS! is one of the most sophisticated and popular frame-
works for writing robot software. It provides tools and li-
braries for simplifying the development of complex con-
trollers while abstracting from the underlying hardware. ROS
works with more than 100 types of robots, ranging from au-
tonomous cars to drones and humanoid robots, and integrates
many Sensors.

The core element of the ROS framework is the message-
passing middleware, which enables hardware abstraction for
a wide variety of robotic platforms. The processes of a
robotics application can exchange data, being agnostic with
respect to the source of the data. The communicated data
can be sensor readings or actuator commands, formatted in
a standardized way, produced by or directed to the robot’s
devices.

Although ROS supports different communication mech-
anisms, in this paper, we only use the most common one:
the anonymous and asynchronous publish/subscribe mecha-
nism. To send a message, a process has to publish itin a fopic,
which is a named and typed bus. A process interested in such
a message must subscribe to the topic. The subscriber will be
notified whenever a new message is published on the topic.
This decouples the production of data from its consumption.

Multiple publishers and subscribers for the same topic
are allowed. The diagram in Fig. 3 illustrates this concept.

! https://www.ros.org/.

Fig. 4 Interactions within a mobile ROS robot

In contrast, the one in Fig. 4 shows how a robot controller
interacts with the devices of a mobile robot in a black-box,
hardware-independent fashion. In the latter diagram, the con-
troller acts as both publisher and subscriber. As a publisher, it
sends a message directed to the navigation node responsible
for actuating the wheels. At the same time, as a subscriber,
it receives back messages containing the robot’s actual po-
sition. The topic /goal stands for the goal position that the
mobile robot should attempt to reach. The topic /amcl_pose
stands for the estimated pose of the robot, in a known map,
calculated from the robot sensor data with the “adaptive
Monte Carlo localization” (AMCL) approach.

3 The X-KLA1m approach to multi-robot
programming

In this section, we describe our approach and software frame-
work for programming MRS applications based on integrat-
ing ROS and X-KrLa1Mm.

A single autonomous robot has a distributed architecture
consisting of cooperating components, particularly sensors
and actuators. Such cooperation is enabled and controlled by
the ROS framework.

When passing from a single-robot system to an MRS, the
distributed and heterogeneous nature of the overall system
becomes even more evident. The software architecture for
controlling an MRS reflects such a distribution: each robot is
equipped with ROS, on top of which the controller software
runs. This allows the robot to act independently and, when
needed, to coordinate with the other robots of the system to
work together coherently.

In X-KrLa1m, the distributed architecture of the MRS’s
software is naturally rendered as a network where the differ-
ent parts are deployed. As shown in Fig. 5, we associate an
X-Kraim node to each robot of the MRS. In its turn, the
internal distribution of the software controller of each robot
is managed by concurrent processes that synchronize their
activities using tuples stored in the robot’s tuple space. Inter-
robot interactions rely on the same communication mecha-
nism by specifying remote tuple spaces as targets of com-
munication actions.

In this paper, we prescribe that processes related to the be-
havior of a single robot can be structured in different logical

Springer

https://www.ros.org/

752

L. Bettini et al.

MULTI-ROBOT SYSTEM

DeliveryRobot2

DeliveryRobot1

Fig. 5 Software architecture of an MRS in X-Kra1m

layers to clearly separate their responsibilities. The top layer
defines the lifecycle of the robot’s behavior, which is typi-
cally expressed as a process that cyclically performs a main
macro activity. In a second layer, we specify the logic of the
macro activity by coordinating a specific robot’s activities,
expressed as processes interacting with the robot’s physical
devices. These latter processes are the building blocks of
the programming approach and form the bottom layer. All
layers’ processes can be parameterized to be reusable in the
same or different robotics applications.

In practice, to program the behaviors of the robots forming
an MRS, we enabled X-KrLA1M programs to interact with
robots’ physical components by integrating the X-Kra1m
language with the ROS middleware. The communication
infrastructure of the integrated framework, graphically de-
picted in Fig. 6, is based on ROS Bridge. This server is
included in the ROS framework and provides a JSON API
to ROS functionalities for external programs. This way, the
ROS framework installed in a robot receives and executes
commands on the physical components of the robot and gives
feedback and sensor data.

The use of JSON enables the interoperability of ROS with
most programming languages, including Java. As an exam-
ple, we report in Fig. 7 a message pose in the JSON format
published on the ROS topic /goal, providing information
for navigating a delivery robot to a given goal position. In
our example, the goal is the position (-0.21,0.31).

X-KvLa1m programs can indirectly interact with the ROS
Bridge server, publishing and subscribing over ROS topics
via objects provided by the Java library java_rosbridge.? In
its own turn, java_rosbridge communicates with the ROS
Bridge server via the WebSocket protocol through the Jetty
web server.3

ROS permits checking the execution of the code gener-
ated from an X-KrA1M program by means of the Gazebo*

2 https://github.com/h2r/java_rosbridge.
3 Jetty 9: https://www.eclipse.org/jetty/.
4 https://gazebosim.org/.

Springer

simulator. Gazebo [22] is an open-source simulator of robot
behaviors in complex environments that is based on a robust
physics engine and provides a high-quality 3D visualiza-
tion of simulations. Gazebo is fully integrated with ROS; in
fact, ROS can interact with the simulator via the publish/-
subscribe communication mechanism of the framework. The
use of the simulator is not mandatory when ROS is deployed
in real robots. However, even in such a case, the MRS soft-
ware design activity may benefit from using a simulator to
save time and reduce development costs.

Since the X-KrA1M compiler generates plain Java code,
which depends only on KL Ava and a few small libraries, an
X-Kra1m application can be deployed by using standard
Java tools and mechanisms. It is enough to create a JAR with
the generated Java code and its dependencies (KLAva and
Jjava_rosbridge), that is, a so-called “fat-jar” or “uber-jar”.
Such a JAR file can be deployed to every physical robot
where a Java virtual machine is already installed. In that
respect, X-Kra1m provides standard Maven artifacts and
a plugin to generate Java code outside Eclipse, e.g., in a
continuous integration server. Moreover, the dependencies
of an X-Kra1m application, including java_rosbridge, are
only a few megabytes, which makes X-KrLA1M applications
suitable also for embedded devices like robots.

4 The X-KLA1m approach at work on MRS
scenarios

To illustrate the proposed approach, in this section, we show
and briefly comment on a few interesting parts of imple-
menting two warehouse scenarios® involving an MRS that
manages the movement of items.

In Sect. 4.1, we present a simple warehouse scenario with
an MRS composed of an arm robot and a delivery robot
working together in an environment free of obstacles. Then,
in Sect. 4.2, we show an enriched version of the scenario
with multiple delivery robots and a more realistic warehouse
environment, focusing on how the code of Sect. 4.1 can be
reused and extended in only a few parts.

4.1 Simple warehouse scenario

This first simple scenario comprises an arm robot and a
delivery robot. The arm robot, positioned in the center of
the warehouse, picks up one item from the floor, calls the
delivery robot, and releases the item on top of the delivery
robot. The delivery robot delivers the item to the appropriate
delivery area and becomes available for a new delivery.

5 The complete source code of the scenarios’ implementation can
be found at https://github.com/LorenzoBettini/xklaim-ros-warehouse-
scenarios.

https://github.com/h2r/java_rosbridge
https://www.eclipse.org/jetty/
https://gazebosim.org/
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios

Coordinating and programming ROS-based robots with X-KLAIM

753

<=

java_rosbridge
library

Java
code

X-Klaim robotics
application

Fig. 6 The integrated framework

{“topic": "/robotl/move_base_simple/goal",
"msg": {"header": { ... },
"pose": {"position": {"x": —0.21, "y": 0.31,
"z": 0.0 },
"orientation": { ... } } } }

Fig. 7 Example of a JSON message for the /goal topic

net MRS_one_delivery physical "localhost:9999" {
node Arm {
eval(new ArmBehavior())@self

}

node DeliveryRobot {
val robotld = "robot"
val sector = "sector"

eval(new DeliveryRobotBehavior
(robotId, sector, Arm))@self

node Environment {...}

}

Fig. 8 The X-Kra1m net of the simple warehouse scenario

In Fig. 8, we show a part of the network for our scenario
implementation. Each robot is rendered as an X-KrLA1Mm
node, whose name represents its locality (see Sect. 2).

Each node creates its process locally, representing the
node/robot behavior, and executes it concurrently using the
X-Kra1m operation eval. The delivery robot process be-
havior is parametric concerning the identifier and the sector.
These parameters facilitate the reusability of the process,
as shown in Sect. 4.2. The node Environment provides an
interface with the simulated environment. In this scenario,
it notifies the arm robot about the presence of items to be
picked up and consumes them when delivered to the destina-
tion. While these actions are simulated here, in a real-world
implementation of the scenario they might be performed by
physical devices or human actors.

In this paper, the processes representing robot behav-
ior have a common shape. As an example, we show the
process of the arm behavior in Fig. 9. The idea is that
the behavior process defines the lifecycle while the ac-
tual implementation logic is delegated to another process
(PickAndReleaseOneItem, in this case). The process re-

Gazebo simulator

import static xklaim.arm.ArmConstants.x

proc ArmBehavior() {
eval(new PickAndReleaseOneltem())@self
in(IS.ZIN_.THE_INITIAL_POSITION)@self
eval(new ArmBehavior())@self

Fig. 9 The process representing the arm robot behavior

sponsible for implementing the logic is meant to be us-
able with different behaviors. In this example, all the be-
haviors are recursive. In fact, in Fig. 9, after the execu-
tion of the implementation logic, the ArmBehavior evalu-
ates another instance of the behavior. Hence, before starting
a new instance of the behavior, it has to coordinate with
PickAndReleaseOneItem. The latter is expected to put a
tuple in the local tuple space with an agreed string. To avoid
possible spelling mistakes when using constants in tuples, we
define the constants in a Java class ArmConstants. Note that
thanks to the integration with Java (see Sect. 2.2), X-KrLA1M
can use Java constants with standard “import static” mecha-
nisms. Recall that eval spawns another concurrent process
and is a non-blocking operation. Thus, the currently running
behavior process ArmBehavior terminates after starting an-
other instance of itself.

In Fig. 10, we show the code of the process
PickAndReleaseOneItem. This process waits for a tuple
with information concerning an item available for deliv-
ery (in our implementation this is provided by the node
Environment of Fig. 8). Then, it defines a few constants
representing trajectories. Trajectories are implemented with
plain Java objects and contain a few double numbers corre-
sponding to physical points in the scenario, some of which
depend on the item coordinates. We do not show them here
because they are not relevant to the aim of this section. The
actual logic is implemented by relying on a few reusable
processes: MoveArm and UseGripper, whose names and
usages should be self-explanatory. Both processes are pa-
rameterized with a trajectory structure, which represents
the actual movement, and are started, once again, with
eval. They notify the completion of their task by out-

Springer

754

L. Bettini et al.

proc PickAndReleaseOneltem() {
in(ITEM, var String itemld,
var String sector, var String itemType,
var Double x, var Double y)@self

val HALF_DOWN = new ArmTrajectory(...)

val COMPLETE_DOWN = new ArmTrajectory(...)
val UP = new ArmTrajectory(...)

val ROTATE = new ArmTrajectory(...)

val LAY DOWN = new ArmTrajectory(...)

val INITTAL_POSITION = new ArmTrajectory(...)
val CLOSE = new GripperTrajectory(...)

val OPEN = new GripperTrajectory(...)

eval(new MoveArm(HALF_DOWN))@self
in(MOVE_ARM_COMPLETED)@self

eval(new MoveArm(COMPLETE_DOWN))@self
in(MOVE_ARM_COMPLETED)@self

eval(new UseGripper(CLOSE))@self
in(USE_.GRIPPER-COMPLETED)@self

eval(new MoveArm(UP))@self
in(MOVE_ARM_COMPLETED)@self

out(ITEM_READY_FOR_DELIVERY ,sector)@self

eval(new MoveArm(ROTATE))@self
in(MOVE_ARM_COMPLETED)@self

in(DELIVERY_ROBOT_ARRIVED)@self

eval(new MoveArm(LAY_DOWN))@self
in(MOVE_ARM_COMPLETED)@self

eval(new UseGripper(OPEN))@self
in(USE_.GRIPPER_.COMPLETED)@self

out(GRIPPER_OPENED,itemlId,itemType)@self

eval(new MoveArm(INITIAL_POSITION))@self
in(MOVE_ARM_COMPLETED)@self

out(IS_.IN.THE_INITIAL_POSITION)@self

Fig. 10 The process with the logic of the arm robot

putting a particular tuple which is consumed by the process
PickAndReleaseOneItem before starting the execution of
the next process. On its termination, the process outputs the
tuple with IS_IN_THE_INITIAL_POSITION, expected by
ArmBehavior (Fig. 9), to notify that it has finished its tasks.

In Fig. 11, we show the code of the process MoveArm.
Like UseGripper (which we do not show here), MoveArm
relies on the ROS Bridge. As already discussed in Sect. 3, the
execution of an X-Kra1Mm robotics application requires the
ROS Bridge server to run, providing a WebSocket connection
ata given URIL. The URI of the ROS Bridge WebSocket is one
of the Java constants we defined. In the code of our example
application, we consider the ROS Bridge server running on
the local machine (0.0.0.0) at port 9090.

The process MoveArm connects to the ROS Bridge and ini-
tializes a publisher for the topic related to the control of arm
movements. The process defines the trajectory for the arm
movement and publishes it. Then, the process uses the Java
API provided by java_rosbridge for subscribing to a specific
topic (we refer to java_rosbridge documentation for the used

Springer

proc MoveArm(ArmTrajectory armTrajectory) {
val bridge = new XklaimToRosConnection
(ROS-BRIDGE_SOCKET_URI)
val pub = new Publisher("/arm_controller/command",
"trajectory_msgs/JointTrajectory", bridge)
val JointTrajectory trajectory = new JointTrajectory()
.positions(armTrajectory.trajectoryPoints).joint Names(#[
"joint1","joint2","joint3","joint4","joint5","joint6"])
pub.publish(trajectory)
bridge.subscribe(
SubscriptionRequestMsg
.generate("/arm_controller/state")
.setType(
"control_msgs/JointTrajectoryControllerState")
.setThrottleRate(1).setQueueLength(1),
[data, stringRep |
val actual = data.get("msg")
.get("actual").get("positions")
var delta = 0.0
for (var i = 0;
i < armTrajectory.trajectoryPoints.size; i++)
delta += Math.pow(actual.get(i).asDouble() —
armTrajectory.trajectoryPoints.get(i), 2.0)
val norm = Math.sqrt(delta)

if (norm <= armTrajectory.tolerance) {
out(MOVE_ARM_COMPLETED)@self
bridge.unsubscribe("/arm_controller/state")

Fig. 11 The process for moving the robotic arm

API). The last argument of bridge. subscribe is a lambda
expression (see Sect. 2.2). The lambda expression will be
executed when an event for the subscribed topic is received.
In particular, the lambda expression reads some data from
the event (in JSON format) concerning the “positions.” ROS
dictates the JSON message format. To access the contents,
we use the standard Java API (data is of type JsonNode,
from the jackson-databind library). The lambda expression
calculates the delta between the actual joint positions and
the destination positions to measure the arm movement’s
completeness. The if determines when the arm has com-
pleted the rotation movement according to a specific toler-
ance. When that happens, the lambda expression notifies that
the task is completed. This is achieved by inserting a partic-
ular tuple in the local tuple space. The process in Fig. 10 will
consume this tuple and will go on by spawning the process
for the next movement. Finally, we can unsubscribe from the
topic to stop receiving notifications from the ROS Bridge.

Note that the thread executing MoveArm terminates im-
mediately after executing the bridge. subscribe call. On
the contrary, from a logical point of view, the task of the
process MoveArm terminates only after the lambda (exe-
cuted by a different thread, which is part of the java_ros-
bridge publish/subscribe mechanism) has published the tuple
MOVE_ARM_COMPLETED. This is typical of the asynchronous
multi-threaded nature of publish/subscribe frameworks. This
is the reason why, to start execution of the next process, the
process PickAndReleaseOneItem cannot simply wait for
the termination of MoveArm but leverages the coordination
mechanism provided by the tuple space.

Coordinating and programming ROS-based robots with X-KLAIM

755

proc DeliveryOneltem(String robotld,
String sector, Locality Arm) {
in(ITEM_READY_FOR_DELIVERY sector)@Arm

// the arm robot has a fized, known position
val x = —0.21

val y = 0.31

eval(new MoveTo(robotld, x, y))@self
in(MOVE_TO_.COMPLETED)@self

out(DELIVERY_ROBOT_ARRIVED)@Arm

in(GRIPPER_-OPENED,
var String itemld, var String itemType)@Arm

eval(new WaitForItem(robotld))@self
in(ITEM_LOADED)@self

// the destination has a fized, known position
val x2 = —8.0

val y2 = 0.0

eval(new MoveTo(robotld, x2, y2))@self
in(MOVE_TO_.COMPLETED)@self

out(ITEM_DELIVERED, itemld,x2,y2)@self

out(AVAILABLE_FOR_DELIVERY)@self

Fig. 12 The process with the logic of the delivery robot

The implementation of the delivery robot (see the node
DeliveryRobot in Fig. 8) follows a similar strategy. The
DeliveryRobotBehavior is similar to the behavior of
Fig. 9, and we do not show it here.

The process with the logic of the delivery robot is shown in
Fig. 12. Similarly to PickAndReleaseOneItem of Fig. 10,
this process delegates the physical actions to reusable pro-
cesses that use the ROS Bridge: WaitForItem (which we
do not show here) and MoveTo, which is parameterized over
the target destination.

We show MoveTo in Fig. 13, including the parts that deal
with mathematical computations concerning the currently
read position. The parts for using the ROS Bridge and co-
ordinating through the tuple space are similar to the ones of
MoveArm of Fig. 11. The delivery robot navigation in this
process is based on a proportional control technique that ad-
justs the robot’s linear and angular velocities depending on
its current position and orientation relative to the target. It
calculates the heading error, which is the difference between
the angle the robot is currently facing and the angle it needs
to reach the target, as well as the distance error. The linear
and angular velocities are then adjusted based on propor-
tional gain, where the distance error is proportional to the
linear velocity and the heading error is proportional to the
angular velocity. This approach is simple but effective for
navigating to a specific point in an environment free of ob-
stacles. However, it may not be suitable for more complex
scenarios that include static and dynamic objects. In those
cases, a more advanced navigation system, like 2D naviga-
tion stack provided by ROS, may be required, as shown in
Sect. 4.2.

proc MoveTo(String robotld, Double x, Double y) {
val bridge = new XklaimToRosConnection
(ROS_BRIDGE_SOCKET_URI)
val pub = new Publisher("/" + robotld + "/cmd_vel",
"geometry_msgs/Twist", bridge)
// set the tolerance for distance and angle error
val distanceTolerance = 0.1
val angleTolerance = 0.1
// create the message for sending velocity commands
val vel_msg = new Twist()
val PI = Math.PI
// gain K used to calculate the linear velocity
val double K_1 = 0.5
// gain K used to calculate the angular velocity
val double K_a = 0.5
bridge.subscribe(
SubscriptionRequestMsg
.generate("/" + robotId + "/odom")
.setType("nav_msgs/0Odometry").set ThrottleRate(1)
.setQueueLength(1),
[data, stringRep |
// extract position from the odometry sensor
var mapper = new ObjectMapper()
var JsonNode rosMsgNode = data.get("msg")
var odom = mapper
.treeToValue(rosMsgNode, Odometry)
.pose.pose
var currentX = odom.position.x
var currentY = odom.position.y
var angle = new EulerAngles(odom.orientation)
var currentTheta = angle.yaw
// calculate the error in heading and distance
var deltaX = x — currentX
var deltaY = y — currentY
// calculating the angle error
var angular = Math.atan2(deltaY, deltaX)
var headingError = angular — currentTheta
if (headingError > PI) {
headingError = headingError — (2 * PI)

}
if (headingError < —PI) {
headingError = headingError + (2 = PI)

// calculate the distance to the destination
var distance = Math.sqrt(
Math.pow((x — currentX), 2)
+ Math.pow((y — currentY), 2))
if (distance > distanceTolerance) {
// move toward the destination
if (Math.abs(headingError) > angleTolerance) {
vel_msg.linear.x = 0.0;
vel_msg.angular.z = K_a * headingError
} else {
vel_msg.linear.x = K_1 * distance
vel_msg.angular.z = 0.0;

pub.publish(vel_msg)

} else {
// the robot reached the goal and stops moving
vel_msg.linear.x = 0
vel_msg.angular.z = 0
pub.publish(vel_msg)
out(MOVE_TO_-COMPLETED)@self
bridge.unsubscribe("/" + robotld + "/odom")

Fig. 13 The process for moving the delivery robot

To recap, we propose an approach that clearly separates
the responsibilities among different processes, which can be
seen as different logical layers:

* We have a process for the high-level behavior of the robot,
like ArmBehavior of Fig. 9, which only takes care of
establishing the lifecycle of the robot.

* We have a process for implementing the main logic of the
robot, like PickAndReleaseOneItem of Fig. 10, which
relies on the reusable building blocks of parameterized

Springer

756

L. Bettini et al.

arm robot

O JAN O

delivery robot I] I delivery robot
items

sector 1 sector 2

Fig. 14 Enriched warehouse scenario

processes that are responsible for using the ROS Bridge
for communicating with the robot’s physical parts.

» These latter processes implement the main physical ac-
tions. Still, they are reusable thanks to their parameteriza-
tion. For example, we have a single process representing
the “movement of the arm”; according to the parameter, the
process will go down, go up, rotate, etc. This is quite dif-
ferent from the approach presented in [12], where we used
a different X-KrA1M process for every single movement,
e.g., GetDown, GetUp, Rotate, etc. This led to many pro-
cesses with some code duplicated across those processes,
which might become hard to read and maintain.

We believe this clear separation of responsibilities en-
hances our code’s reusability, readability, and maintainabil-
ity. This also allows us to follow an incremental approach, as
shown in this section: we start focusing on a smaller prob-
lem/scenario (one single delivery robot, one single item type,
no obstacles); then, we scale to a more complex one (two de-
livery robots, different item types, presence of obstacles),
by reusing most of the code of the simple scenario and ex-
tending/modifying only a few processes for the goal of the
advanced scenario, as we show in the next Sect. 4.2.

4.2 Enriching the warehouse scenario

In this section, we present an evolution of the simple scenario
of Sect. 4.1. Most of the code is the same as in Sect. 4.1, and
in this section, we focus on the parts that must be adapted for
the evolved scenario.

As shown in Fig. 14, in this scenario, the MRS is com-
posed of an arm robot and two delivery robots, and the ware-
house is divided into two sectors, each one served by a deliv-
ery robot. Similarly to the previous scenario, the arm robot,
positioned in the center of the warehouse, picks up one item
at a time from the ground, calls the delivery robot assigned to
the item’s sector, and releases the item on top of the delivery
robot. The latter delivers the item to the appropriate delivery
area, which depends on the item’s color, and then becomes

Springer

net MRS physical "localhost:9999" {
node Arm {
eval(new ArmBehavior())@self

node DeliveryRobot1 {
val robotld = "robot1"
val sector ="sectorl"
out(ITEM_DESTINATION,"red",—9.0,—9.0)@self
out(ITEM_DESTINATION,"blue",9.0,—9.0)@self
eval(new DeliveryRobotBehavior
(robotld, sector, Arm))@self

node DeliveryRobot2 {
val robotld = "robot2"
val sector ="sector2"
out(ITEM_DESTINATION,"red",9.0,9.0) @self
out(ITEM_DESTINATION,"blue",—9.0,9.0)@self
eval(new DeliveryRobotBehavior

(robotld, sector, Arm))@self
}

node Environment {...}

}

Fig. 15 The X-KvrA1Mm net of the enriched warehouse scenario

proc DeliveryOneltem(String robotId,
String sector, Locality Arm) {
in(ITEM_READY_FOR_DELIVERY ,sector) @Arm

val x = —0.21

val y = 0.31

eval(new MoveTo(robotld, x, y))@self
in(MOVE_TO_.COMPLETED)@self

out(DELIVERY_ROBOT_ARRIVED)@Arm

in(GRIPPER_-OPENED,
var String itemld, var String itemType)@Arm

eval(new WaitForItem(robotld))@self
in(ITEM_LOADED)@self

// the delivery destination coordinates

// must be retrieved: they are not known

read (ITEM_DESTINATION, itemType,
var Double x2, var Double y2)@self

eval(new MoveTo(robotld, x2, y2))@self
in(MOVE_.TO_COMPLETED)@self

out(ITEM_DELIVERED,itemld,x2,y2)@self

out(AVAILABLE_FOR_DELIVERY)@self
}

Fig. 16 The process with the logic of the delivery robot in the enriched
warehouse scenario

available for a new delivery. In addition, delivery robots must
deal with obstacles (e.g., pallets) that are in the warehouse.

In Fig. 15, we show a part of the network for this scenario
implementation. The network is similar to the one of Fig. 8
since we reuse the processes for the behavioral parts. The
main difference lies in the fact that, since in this scenario the
destination coordinates depend on the item type (i.e., color),
before activating the DeliveryRobotBehavior processes,
the delivery robot nodes insert in the local tuple space the
ITEM_DESTINATION tuples that define the mapping from
item type to destination coordinates.

We have to adapt the process DeliveryOneItem as
shown in Fig. 16. Comparing the code of this process with

Coordinating and programming ROS-based robots with X-KLAIM

757

proc MoveTo(String robotld, Double x, Double y) {

val bridge = new XklaimToRosConnection
(ROS_BRIDGE_SOCKET_URI)

val pub = new Publisher("/" 4+ robotld +
"/move_base_simple/goal",
"geometry_msgs/PoseStamped", bridge)

// publish the destination position

val destination = new PoseStamped()
.headerFrameld("world").posePositionXY (x, y)
.poseOrientation(1.0)

pub.publish(destination)

// waiting until the destination position is reached
bridge.subscribe(
SubscriptionRequestMsg
.generate("/" 4 robotld + "/amcl_pose")
.setType("geometry_msgs/PoseWithCovarianceStamped")
.setThrottleRate(1).setQueueLength(1),
[data, stringRep |
// the actual position from the robot’s status
var mapper = new ObjectMapper()
var JsonNode rosMsgNode = data.get("msg")
var current_position = mapper
.treeToValue(rosMsgNode,
PoseWithCovarianceStamped)
.pose.pose
// calculate the delta between the actual position
// and the destination position
// to measure the completeness of the movement
val tolerance = 0.16
var deltaX = Math.abs(
current_position.position.x —
destination.pose.position.x)
var deltaY = Math.abs(
current_position.position.y —
destination.pose.position.y)
if (deltaX <= tolerance && deltaY <= tolerance) {
val pubvel = new Publisher(
"/" 4 robotld + "/cmd_vel",
"geometry_msgs/Twist", bridge)
val twistMsg = new Twist()
pubvel.publish(twistMsg)
out(MOVE_TO_.COMPLETED)@self
bridge.unsubscribe("/" + robotld + "/amcl_pose")

}

Fig. 17 The process for moving the delivery robot in the enriched
warehouse scenario

the corresponding one of the first scenario (Fig. 12), we see
that it retrieves the destination coordinates at run-time from
the local tuple space through the ITEM_DESTINATION tu-
ples. Notably, the two robots deliver items of the same type
to different destinations.

We also have to adapt the process MoveTo as shown in
Fig. 17. This process is much simpler in this scenario, even
if it relies on a more sophisticated navigation system leverag-
ing the navigation stack packages provided by ROS. Specif-
ically, we exploit the topic move_base_simple to commu-
nicate with the ROS node of the navigation system, which
accepts messages containing the goal coordinates. This node
is an integral component of the navigation stack. It is respon-
sible for linking the global planner with the local planner
to determine the robot’s trajectory while avoiding obstacles.
The global planner generates the path as a sequence of way-
points the robot must follow. The local planner generates the
low-level plan to move from one waypoint to the next. This
mechanism relies on a map of the environment and localiza-
tion facilities to achieve this. To determine the completion of
the robot’s movement, the process MoveTo subscribes to the

topic amcl_pose, which provides an estimate of the robot’s
pose in the given map using the AMCL algorithm.

The other processes for implementing this scenario are
the same as the corresponding ones of the simple scenario.
As anticipated in Sect. 4.1, having separated responsibilities
in reusable processes allowed us to follow an incremental
approach: we reused most of the code of the simple scenario,
and we had to modify/replace only a few processes according
to the requirements of this scenario.

The screenshot in Fig. 18 shows this scenario in execution.
On the left, the Eclipse IDE with our X-Kra1m code is
shown (see the logged messages on the console). On the
right, the Gazebo simulator is shown, visualizing the arm
in the center, ready to drop the item on top of the delivery
robot’s white plate.

5 Experimental evaluation

In this section, we illustrate the experiments we carried out to
determine the impact of our approach on MRS performance.
The experiments are designed to provide a comparison of
time and memory performance of our implementation of
the MRS of the warehouse scenarios based on Java code
and ROS Bridge against the traditional ROS implementation
based on Python code.® To this aim, we exploit the warehouse
scenario in Sect. 4.2, evaluating the overall execution time
in milliseconds and memory consumption for each robot ac-
tivity while using our solution and the traditional one. To
guarantee consistency, the same hardware/software,” input,
and tasks are used in both environments. To account for vari-
ance, we ran the same experiments (i.e., the Java-based and
the Python-based code) 30 times and averaged the results.8

Time consumption We determined the average comple-
tion time for each robot activity in milliseconds using our
implementation based on java_rosbridge and the Python one
based on rospy.® We discuss here the results of the exper-
iments concerning the arm robot’s activities; the ones con-
cerning the delivery robots returned similar results. Each
activity uses a publisher for sending the message that starts
the enactment of the activity and a subscriber for receiving
sensor data.

6 The Python code and the data of all the experiments are available
at https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/
tree/master/experiments.

7 We conducted our experiments on a workstation with Intel(R)
Core(TM) i7-7700HQ (8 cores, 2.80 GHz) and 32 GB RAM, run-
ning Linux Ubuntu 20.04.5 LTS, ROS Noetic, and OpenJDK 64-Bit
Server VM 11.0.17.

8 We use averaged results because the standard deviation in these
experiments is low (data of the experimental results are available
at https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/
tree/master/experiments/Results).

9 http://wiki.ros.org/rospy.

Springer

https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments/Results
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments/Results
http://wiki.ros.org/rospy

758

L. Bettini et al.

workspace-xklaim-2.3.0 - xklaim-ros-multi-robot-wareh

Run

RO OIS~

File Edit Source Refactor Navigate Search Project

[# Package Explorer x = B 5 Mainxklaim X

1 package xklaim
2

3= import static xklaim.GlobalConsta
4 import xklaim.arm.ArmBehavior
5 import xklaim.deliveryRobot.Deliv|

e 8
&4 xklaim-ros-multi-robot-warehous
(% src/main/java

messages 6
xklaim 7= net MRS physical "localhost:9999"
: 8© node Arm {
Globalnstants.]ava 9 eval(new ArmBehavior())@s
_ Main.xklaim 10 }

% MainOneDeliveryRobot.x 11 .

= Unload.xklaim 128 node DeliveryRobotl {

L i 13 val robotId = "robotl"
xklaim.arm 14 // the robot is in charge|

[ArmConstants.java 15 val sector = "sectorl”
B ArmTrajectory) 16 out (ITEM DESTINATION,"red
LSy 17 out (ITEM DESTINATION, "blu

[33 GripperTrajectory.java 18 eval(new DeliveryRobotBeh
[ArmBehavior.xklaim ;3 }
MoveArm.xklaim 218 node DeliveryRobot2 {

|5 PickAndReleaseOneltem. 22 val robotId = "robot2"
23 // the robot is in charge|
)) 24 val sector = "sector2"
 xklaim.deliveryRobot 25 out (ITEM DESTINATION, " red
[2 DeliveryRobotConstants. 26 out(ITEM DESTINATION,"blu
= Deliveryoneltem.xklaim 27 eval(new DeliveryRobotBeh
DeliveryRobotBehvaior.x| ;g '
MoveTo.xklaim 309 node Environment {
= : : 31 // notify the arm robot a|
B WaitForitem.xklaim 32 // the info for each item
xklaim.singleDeliveryRobot 33 out(ITEM,"iteml”, "sectorl
=\ JRE System Library [JavaSE-1.8 34 out(ITEM,"item2","sector2

| UseGripper.xklaim

q 35 out(ITEM,"item3","sector2
&\ Maven Dependencies 36 out(ITEM,"item4","sectorl
% src/test/java 37
(*% src-gen 38 // activate the processes

39 // and posing them in the]

3 .settings 40 eval(new Unload(DeliveryR|

g src 41 eval(new Unload(DeliveryRl

(= target [Problems @ Javadoc [Declaration B Console X) History
1% .classpath Main (1) Dava Applicationl W s el 1 /bin/ia
|5 .gitignore Connecting to : ws://0.0.0.0:9090

[.project

| ChangelLog

[t pom.xml
Main.xklaim - xklaim-ros-multi-robot-warehouse-example/src/main/java/xklaim

terminated xklaim.arm.UseGripper-26

Gazebo

Real Time Factor: Sim Time: Real Time:

jdk-amdé64/bin/java (Feb 23

Got connect for ros: WebSocketSession[websocket=JettyAnnotatedEventDriver[messages.XklaimToRosConnection@4d339f67],bs

A | =/]

Fig. 18 Execution of the X-KrLA1M robotics application of the enriched warehouse scenario

Figure 19 shows the time consumption for the activities
of the arm robot. Each activity corresponds to an X-Kra1im
process in our approach (except for “Move down,” which
corresponds to two executions of MoveArm, with arguments
HALF_DOWN and COMPLETE_DOWN, respectively) and a class
in the Python implementation. For example, the “Rotate” ac-
tivity takes an average of 3955 milliseconds in Python and
4019 milliseconds in Java to execute. The time consumption
is similar for activities using different topics; e.g., “Open
gripper” takes 3986 milliseconds in Python and 4021 mil-
liseconds in Java. The experimental results indicate that the
Java program has a slightly greater latency than the Python
version. This is a consequence of the serialization and dese-
rialization of messages, network overhead, and connection
with the ROS Bridge server via the WebSocket protocol.
However, in the case under evaluation, the average delay dif-
ference between the two setups is at most 200 milliseconds.
Therefore, the overhead introduced by our solution does not
significantly affect the mission of the considered MRS.

Springer

Memory consumption To measure the memory con-
sumption, we employed two different tools for performance
profiling and monitoring: VisualVm!© for Java code and
Memray!! for Python.

We show here the results of the experiments on one robot’s
activity, namely “Rotate.” As shown in Fig. 20, after the start-
up phase of the activity, the heap used by Python is more than
50 MB, while Java uses almost 30 MB. The trend for the other
activities is quite similar. Even if identifying the cause of this
difference is not relevant to our investigation, we think that,
in this experiment, the difference might be attributed to more
efficient automatic memory management in Java compared
to Python. It is worth noting that our approach also requires
the execution of the ROS Bridge server, which uses around
135 KB of memory and, hence, does not significantly affect
the overall memory cost.

10 https://visualvm.github.io.
11 https://github.com/bloomberg/memray.

https://visualvm.github.io
https://github.com/bloomberg/memray

Coordinating and programming ROS-based robots with X-KLAIM

759

9000

8000

7000

6000

5000

4000

Time (ms)

3000

2000

1000

Move down

0 || II II II II I| II

Close gripper Move up Rotate Open gripper Move to initial
position
M rospy Mjava_rosbridge
Fig. 19 Time consumption
60
50
)
40
2
c
]
<
o 30
£
3 /
(%]
c
S
> 20
1
=]
£
[}
S 1
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (ms)
——rospy =java_rosbridge

Fig. 20 Memory consumption of the Rotate activity

6 Discussion and related work

Over the last few years, researchers have attempted to define
notations closer to the robotics domain to raise the abstraction
level for enabling automated code generation, behavior anal-
ysis, and property verification (e.g., safety and performance).

This section reviews several high-level languages and frame-
works for modeling, designing, and verifying ROS-based
applications and some languages for coordinating collabora-
tive MRSs. We summarize in Table 1 our considerations and
comparison with the languages more strictly related to ours.

Springer

760

L. Bettini et al.

Table 1 Features comparison of the related works

DSL Formal High-level ~Multi- Heterogenous Coordination Decentralized — Open- Compiler IDE ROS
language language robots robots coordination endedness
ART2o00l [23] v v v
ATLAS [24] v v v v v
BRIDE [25] v v S
CommonLang [26] v v v
Drona [27] N v v v N v v
FLYAQ [28] v v v
Hyperflex [29] v v v
ISPL [30] v v v v v v
Koord [31] v v v v v N v v
PROMISE [32] v v v
RobotChart [33] v v v v
ROSBuzz [34] v v v v v v v v v
RSSM [35] v v v
SCEL [36] v v v v v v v v
X-Klaim v v v v v v v v v v

High-level languages and frameworks Many DSLs for
component-based modeling of robotic systems are based on
UML and target mostly the architectural aspect of robotic
applications, e.g., RobotML [1], V3CMM [37], BRICS [38],
RoboChart [33], and SafeRobots [39]. Some of them can
be used to build ROS-based systems by either supporting a
direct translation, e.g., Hyperflex [29], or serving as a base
for other platforms. For example, in BRIDE [25], which re-
lies on BRICS, the components are modeled using UML
and converted to ROS meta-models to generate runnable
ROS C++ code. Additional meta-models (i.e., deployment
meta-model and experiment meta-model) for rapid proto-
typing of component-based systems are provided in [40].
UML has also been used to model and design robotic tasks
and missions; e.g., Art2ool [23] supports the development
cycle of robotic arm tasks in which atomic tasks are ab-
stracted with UML class diagrams. Textual languages, e.g.,
CommonLang [26], are another type of language used to
model robotic systems. For example, in [41], a DSL based on
the Python language can be used interactively, through the
Python command-line interface, to create brand new ROS
nodes and reshape existing ROS nodes by wrapping their
communication interfaces.

Some other contributions, to some extent, allow for the
verification of ROS-based systems. ROSGen [42] takes a
specification of a ROS system architecture as an input and
generates ROS nodes as an output. Using the theorem prover
Coq, the generation process is amenable to formal verifi-
cation. DeROS [43] permits describing robots’ safety rules
(and their related corrective actions) and automatically gen-
erating a ROS safety monitoring node by integrating these

Springer

rules with a run-time monitor. Another framework for run-
time verification of ROS-based systems is described in [44],
which allows generating C++ code for a monitoring node
from user-defined properties specified in terms of event se-
quences. In [45], robot systems are modeled as a network
of timed automata that, after verification in Uppaal,!? are
automatically translated into executable C++ code satisfy-
ing the same temporal logic properties as the model. Finally,
RSSM [35] enables modeling of multi-agent robots’ activi-
ties using hierarchical Petri nets. After checking for deadlock
absence on the model, RSSM can automatically generate
C++ code for ROS packages.

The approaches mentioned above have not been applied
to such complex systems as MRSs, and some are not even
suitable for such systems. Very few high-level languages for
MRSs have been proposed. For example, FLYAQ [28] is
a set of DSLs based on UML to specify civilian missions
for unmanned aerial vehicles. This work is extended in [46]
to enable the use of a declarative specification style, but
it only supports homogeneous robots. ATLAS [24], which
also provides a simulator-based analysis, takes a step further
towards coordinating MRSs but only supports centralized
coordination. PROMISE [32] allows specifying the missions
of MRSs using linear temporal logic operators for composing
robotic mission patterns. Finally, RMoM [47] allows first
using a high-level language for specifying various constraints
and properties of ROS-based robot swarms with temporal
and timed requirements and then automatically generating
distributed monitors for their run-time verification.

12 https://uppaal.org/.

https://uppaal.org/

Coordinating and programming ROS-based robots with X-KLAIM

761

Languages for coordination Coordination for MRSs
has been investigated from several diverse perspectives.
Nowadays, many techniques can be used to orchestrate the
actions and movements of robots operating in the same en-
vironment [4, 48]. Designing fully automated and robust
MRSs requires strong coordination of the involved robots
for autonomous decision making and mission continuity in
the presence of communication failures [49]. Several studies
recommend using indirect communication to cut implemen-
tation and design costs usually caused by direct commu-
nication. Indirect communication occurs through a shared
communication structure that each robot can access in a
distributed concurrent fashion. Some languages providing
communication and coordination primitives suitable for de-
signing robust MRSs are reviewed in [5]. In ISPL [30], com-
munication is obtained as an indirect result of synchronizing
multiple labeled transition systems on a specific action. In
SCEL [36], a formal language for the description and verifi-
cation of collective adaptive systems, communication is re-
lated to the concept of knowledge repositories, represented by
tuple spaces. In Buzz [50], a language for programming het-
erogeneous robot swarms, communication is implemented as
a distributed key-value store. For this latter language, inte-
gration with the standard environment of ROS has also been
developed, which is named Rosbuzz [34]. Unlike X-KrA1M,
however, Rosbuzz does not provide high-level coordination
primitives, robots’ distribution is not explicit, and it permits
less heterogeneity. Drona [27] is a framework for distributed
drones where communication is somehow similar to the one
used in ISPL. Koord [31] is a language for programming and
verifying distributed robotic applications where communi-
cation occurs through a distributed shared memory. Unlike
X-Kra1Mm, however, robot distribution is not explicit, and
open-endedness is not supported. Finally, in [51], a pro-
gramming model and a typing discipline for complex multi-
robot coordination are presented. The programming model
uses choreographies to compositionally specify and statically
verify message-based communications and jointly executed
motion between robotics components in the physical space.
Well-typed programs, which are terms of a process calculus,
are then compiled into programs in the ROS framework.

7 Concluding remarks and future work

In this paper, we have presented an approach based on
the language X-Kraim and the ROS framework for pro-
gramming robotics applications involving multiple hetero-
geneous robots. X-Kra1m has proved expressive enough
to smoothly implement MRSs’ behaviors, and its integration
with Java allowed us to seamlessly use the java_rosbridge
API directly in the X-Kraim code to access the pub-
lish/subscribe communication infrastructure of ROS. Our

experimental results show that the use of X-KrLaim and
Java_rosbridge introduces just a slightly greater but accept-
able latency than the traditional ROS implementation based
on Python code.

We believe the X-KLA1M computation and communica-
tion model is particularly suitable for programming MRSs’
behavior. On the one hand, X-Kr A1M natively supports con-
current programming, which is required by the distributed
nature of robot software. On the other hand, the organiza-
tion of an X-Kra1m application in terms of a network of
nodes interacting via multiple distributed tuple spaces, where
communicating processes are decoupled in both space and
time, naturally reflects the distributed structure of an MRS.
In addition, X-KraA1m tuples permit to model both raw
data produced by sensors and aggregated information ob-
tained from such data. This allows programmers to specify
the robot’s behavior at different levels of granularity, thus
permitting to structure the code in logical layers that provide
a systematic approach to program MRS missions. More-
over, the form of communication offered by tuple spaces,
supported by X-Kra1wm, favors the scalability of MRSs in
terms of the number of components and robots that can be
dynamically added and meets the open-endedness require-
ment (i.e., robots can dynamically enter or leave the system).
Both features are crucial in MRSs.

Our long-term goal is to design a DSL for the robotics
domain that, besides being used for automatically gener-
ating executable code, is integrated with tools supporting
formal verification and analysis techniques. These tools are
indeed highly desirable for such complex and often safety-
critical systems as autonomous robots [52]. The tools al-
ready developed for KLa1m, e.g., type systems [53-56],
behavioral equivalences [57], flow logic [58], and model
checking [59-61], could be a valuable starting point. A first
attempt to define a formal verification approach for the design
of MRSs using the KLA1M stochastic extension StoKlaim
and the relative stochastic logic MoSL [60] has been pre-
sented in [62]. Along this direction, we plan to investigate
the integration of the proposed approach with spatial model
checking [63], as done in [64] for a monitoring scenario in-
volving agents moving in physical space. For example, this
would permit to guarantee that the robots do not cross unau-
thorized zones without first signaling themselves in some
authorization area or to verify whether all items are reach-
able without crossing a given zone. In addition, as the com-
pletion time of the robots’ activities may be crucial in some
robotics scenarios, we also intend to consider the analysis of
spatiotemporal properties, as in [65].

Run-time adaptation is another important capability of
MRS:s. In [66], we have shown that adaptive behaviors can
be smoothly rendered in KLa1m by exploiting tuple-based
higher-order communication to exchange code and possi-
bly execute it. We plan to investigate to what extent we can

Springer

762

L. Bettini et al.

benefit from this mechanism to achieve adaptive behaviors
in robotics applications. For example, an X-KrLaim pro-
cess (a controller or an actuator) could dynamically receive
code from other possibly distributed processes containing
the logic to continue the execution.

X-Kra1wm has several other features that we did not use in
this work. We list here the most interesting ones, which could
be useful for future work in the field of MRSs. Non-blocking
versions of in and read are available: in_nb and read_nb,
respectively. These are useful for checking the presence of
a matching tuple without being blocked indefinitely. In that
respect, X-KrLA1Mm also provides “timed” versions of these
operations: as an additional argument, they take a timeout,
which specifies how long the process executing such action
is willing to wait for a matching tuple. If a matching tuple
is not found within the specified timeout, the programmer
can adopt adequate countermeasures. In the example of this
paper, we used the simplest way of specifying a flar and
closed network in X-KrLaim. However, X-KrLa1m also
implements the hierarchical version of the KLaim model
as presented in [21], which allows nodes and processes to
be dynamically added to existing networks so that modular
programming can be achieved and open-ended scenarios can
be implemented.

It is worth noting that in this work, we exploit both the
tuple-based communication model, which X-KrA1m inher-
its from KL a1Mm, and the publish/ subscribe one, supported
by ROS and enabled in X-KrLa1M by the java_rosbridge
library. The former communication model is used to coor-
dinate both the execution of concurrent processes running
in a robot and the inter-robot interactions. The latter model,
instead, is used to send/receive messages for given topics
to/from the ROS framework installed in a single robot. In
principle, the former model can be used to express the lat-
ter. However, this would require introducing intermediary
processes that consume tuples and publish their data on the
related topics and, vice versa, generate a tuple each time
an event for a subscribed topic is received. This would in-
troduce significant overhead in the communication with the
ROS framework, especially for what concerns the handling
of the subscriptions (as topics related to sensors usually pro-
duce message streams). In this work, we have shown how
the use of the publish/subscribe mechanism can be made
transparent to the programmer, overcoming the performance
issue by elevating the level of abstraction. The programming
framework we provide does not replace topics with tuples
but offers ready-to-use reusable processes acting as building
blocks for creating robotics applications. These processes
will hide the interactions with ROS to the programmer and
produce tuples only when events relevant to the coordina-
tion of the MRS behavior occur (e.g., a robot has reached a
given position or arequested movement has been completed).

Springer

For example, the MoveArm process performs different move-
ments of the robot’s arm depending on the argument passed
when the process is called. It notifies the completion of the
movement by emitting a given tuple in the local tuple space.

MRSs act in highly dynamic and uncertain environments,
which may lead such systems to face unpredictable or not
fully codified situations. In these cases, an advanced deci-
sion support system empowered with Al technology can be
helpful in deciding the action to take. It is possible to in-
tegrate Al functionalities in an X-Kra1m application at
different levels in different ways:

* By using an existing ROS package that provides Al func-
tionalities. This solution does not require any development
effort and is completely transparent to the X-KrA1m code,
which can activate and take advantage of the new function-
alities by resorting to the publish/subscribe communica-
tion mechanism as usual.

* By using existing Python libraries (e.g., TensorFlow,!3
Keras,# PyTorch,> scikit-learn'®) to define custom Al
models and exposing them as ROS nodes. Again, once the
ROS nodes have been created, this solution is completely
transparent to the X-Kra1m code.

* By importing an existing Java library (e.g., Deeplearn-
ing4j,'” DJL'8) or a Java wrapper of a library written in
another language. This way, the AI functionalities will
be directly and easily accessible from the X-Kraim
code, thanks to the interoperability with Java provided by
XBASE.

We plan to investigate these kinds of integration in future
work.

Finally, in this work, we have used version 1 of ROS as
a reference middleware for the proposed approach because,
currently, this seems to be most adopted in practice. We
plan anyway to investigate the possibility of extending our
approach to version 2 of ROS, which features a more sophis-
ticated publish/subscribe system based on the OMG DDS
standard.

Acknowledgements We thank the anonymous referees for their use-
ful comments.

Funding Open access funding provided by Universita degli Studi
di Firenze within the CRUI-CARE Agreement. This work was par-
tially supported by the PRIN projects “SEDUCE” n. 2017TWR-
CNB and “T-LADIES” n. 2020TL3X8X, the INdAM - GNCS
Project “Proprieta qualitative e quantitative di sistemi reversibili”
n. CUP_E55F2200027001, and the project SERICS (PE00000014) un-
der the NRRP MUR program funded by the EU - NextGenerationEU.

13 https://www.tensorflow.org.

14 https://keras.io/.

5 https://pytorch.org/.
16 https://scikit-learn.org/.

7 https://deeplearning4j.konduit.ai/.
18 https://djl.ai/.

https://www.tensorflow.org
https://keras.io/
https://pytorch.org/
https://scikit-learn.org/
https://deeplearning4j.konduit.ai/
https://djl.ai/

Coordinating and programming ROS-based robots with X-KLAIM

763

Declarations

Competing Interests The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest. All authors con-
tributed equally to this work.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Dhouib, S., et al.: RobotML, a domain-specific language to design,
simulate and deploy robotic applications. In: Proc. of SIMPAR.
LNCS, vol. 7628, pp. 149-160. Springer, Berlin (2012)

2. Frigerio, M., Buchli, J., Caldwell, D.G.: A domain specific lan-
guage for kinematic models and fast implementations of robot dy-
namics algorithms. In: Proc. of DSLRob’11. CoRR (2013). arXiv:
1301.7190

3. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A
survey on domain-specific modeling and languages in robotics.
Softw. Eng. Robot. 7, 75-99 (2016)

4. Doriya, R., Mishra, S., Gupta, S.: A brief survey and analysis
of multi-robot communication and coordination. In: Int. Conf. on
Computing, Communication, Automation, pp. 1014-1021 (2015)

5. De Nicola, R., Di Stefano, L., Inverso, O.: Toward formal models
and languages for verifiable multi-robot systems. Front. Robot. Al
5,94 (2018)

6. Quigley, M., et al.: ROS: an open-source robot operating system.
In: ICRA Workshop on Open Source Software (2009)

7. Nordmann, A., Hochgeschwender, N., Wrede, S.: A survey on
domain-specific languages in robotics. In: SIMPAR. LNCS,
vol. 8810, pp. 195-206. Springer, Berlin (2014)

8. de Aratjo Silva, E., Valentin, E., Carvalho, J.R.H., da Silva Barreto,
R.: A survey of model driven engineering in robotics. Comput.
Lang. 62, 101021 (2021)

9. Casalaro, G.L., et al.: Model-driven engineering for mobile robotic
systems: a systematic mapping study. Softw. Syst. Model. (2021)

10. Bettini, L., Bourr, K., Pugliese, R., Tiezzi, F.: Writing robotics
applications with X-Klaim. In: ISoLA 2020. LNCS, vol. 12477,
pp- 361-379. Springer, Heidelberg (2020)

11. Bettini, L., Merelli, E., Tiezzi, F.: X-Klaim is back. In: Models,
Languages, and Tools for Concurrent and Distributed Program-
ming. LNCS, vol. 11665, pp. 115-135. Springer, Berlin (2019)

12. Bettini, L., Bourr, K., Pugliese, R., Tiezzi, F.: Programming multi-
robot systems with X-Klaim. In: Leveraging Applications of For-
mal Methods, Verification and Validation. Adaptation and Learn-
ing. LNCS, vol. 13703, pp. 283-300. Springer, Berlin (2022)

13. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel lan-
guage for agents interaction and mobility. IEEE Trans. Softw. Eng.
24(5), 315-330 (1998)

14. Milner, R.: Communication and Concurrency. PHI Series in Com-
puter Science. Prentice Hall, New York (1989)

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Gelernter, D.: Generative communication in Linda. ACM Trans.
Program. Lang. Syst. 7(1), 80-112 (1985)

Bettini, L., De Nicola, R., Pugliese, R.: Klava: a Java package
for distributed and mobile applications. Softw. Pract. Exp. 32(14),
1365-1394 (2002)

Bettini, L., De Nicola, R., Falassi, D., Lacoste, M., Loreti, M.: A
flexible and modular framework for implementing infrastructures
for global computing. In: DAIS. LNCS, vol. 3543, pp. 181-193.
Springer, Berlin (2005)

Bettini, L., De Nicola, R., Pugliese, R., Ferrari, G.L.: Interactive
mobile agents in X-Klaim. In: WETICE, pp. 110-117. IEEE Com-
puter Society, Los Alamitos (1998)

Bettini, L.: Implementing Domain-Specific Languages with Xtext
and Xtend, 2nd edn. Packt Publishing (2016)

Efftinge, S., Eysholdt, M., Kohnlein, J., Zarnekow, S., von Massow,
R., Hasselbring, W., Hanus, M.: Xbase: implementing domain-
specific languages for Java. In: GPCE, pp. 112-121. ACM, New
York (2012)

Bettini, L., Loreti, M., Pugliese, R.: An infrastructure language for
open nets. In: SAC, pp. 373-377. ACM, New York (2002)
Koenig, N.P., Howard, A.: Design and use paradigms for Gazebo,
an open-source multi-robot simulator. In: IROS, pp. 2149-2154.
IEEE Press, New York (2004)

Estévez, E., et al.: ART2o00l: a model-driven framework to generate
target code for robot handling tasks. Adv. Manuf. Technol. 97(1-4),
1195-1207 (2018)

Harbin, J., et al.: Model-driven simulation-based analysis for multi-
robot systems. In: 24th Int. Conf. on Model Driven Engineering
Languages and Systems (MODELS) (2021)

Bubeck, A., et al.: BRIDE - a toolchain for framework-independent
development of industrial service robot applications. In: ISR,
pp- 137-142. VDE, (2014)

Rutle, A., Backer, J., Foldgy, K., Bye, R.T.. CommonLang: A
DSL for defining robot tasks. In: Proc. of MODELS18 Workshops.
CEUR Workshop Proc., vol. 2245, pp. 433-442 (2018)

Desai, A., Saha, 1., Yang, J., Qadeer, S., Seshia, S.A.: Drona:
a framework for safe distributed mobile robotics. In: 8th Intern.
Conference on Cyber-Physical Systems, pp. 239-248 (2017)
Ciccozzi, F., et al.: Adopting MDE for specifying and executing
civilian missions of mobile multi-robot systems. IEEE Access 4,
6451-6466 (2016)

Brugali, D., Gherardi, L.: Hyperflex: a model driven toolchain
for designing and configuring software control systems for au-
tonomous robots. In: Robot Operating System. Studies in Com-
putational Intelligence, vol. 625, pp. 509-534. Springer, Berlin
(2016)

Lomuscio, A., Qu, H., Raimondi, F.: Mcmas: an open-source
model checker for the verification of multi-agent systems. Softw.
Tools Technol. Transf. 19(1), 9-30 (2017)

Ghosh, R., et al.: Koord: a language for programming and veri-
fying distributed robotics application. Proc. ACM Program. Lang.
4(O0PSLA), 1-30 (2020)

Garcia, S., et al.: High-level mission specification for multiple
robots. In: 12th ACM SIGPLAN Int. Conf on Software Language
Engineering, pp. 127-140 (2019)

Miyazawa, A., et al.: RoboChart: modelling and verification of the
functional behaviour of robotic applications. Softw. Syst. Model.
18(5), 3097-3149 (2019)

St-Onge, D., Varadharajan, V.S., Li, G., Svogor, 1., Beltrame,
G.: ROS and Buzz: consensus-based behaviors for heterogeneous
teams CoRR (2017). arXiv:1710.08843

Figat, M., Zielifiski, C.: Robotic system specification methodology
based on hierarchical Petri nets. IEEE Access 8, 71617-71627
(2020)

De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal ap-
proach to autonomic systems programming: the SCEL language.
ACM Trans. Auton. Adapt. Syst. 9(2), 7 (2014)

Springer

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/arXiv:1301.7190
http://arxiv.org/abs/arXiv:1301.7190
http://arxiv.org/abs/arXiv:1710.08843

764

L. Bettini et al.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Alonso, D., et al.: V3CMM: a 3-view component meta-model for
model-driven robotic software development. J. Softw. Eng. Robot.
1, 3-17 (2010)

Bruyninckx, H., et al.: The BRICS component model: a model-
based development paradigm for complex robotics software sys-
tems. In: SAC, pp. 1758-1764. ACM, New York (2013)
Ramaswamy, A., Monsuez, B., Tapus, A.: SafeRobots: A model-
driven approach for designing robotic software architectures. In:
Proc. of CTS, pp. 131-134. IEEE, New York (2014)

Kumar, P, et al.: ROSMOD: a toolsuite for modeling, generating,
deploying, and managing distributed real-time component-based
software using ROS. In: Int. Symp. on Rapid System Prototyping
(RSP) (2015)

Adam, S., Schultz, U.P.: Towards interactive, incremental program-
ming of ROS nodes. In: Workshop on Domain-Specific Languages
and Models for Robotic Systems (2014)

Meng, W., Park, J., Sokolsky, O., Weirich, S., Lee, 1.: Verified
ROS-based deployment of platform-independent control systems.
In: NASA Formal Methods Symposium, pp. 248-262. Springer,
Berlin (2015)

Adam, S., Larsen, M., Jensen, K., Schultz, U.P.: Rule-based dy-
namic safety monitoring for mobile robots. J. Softw. Eng. Robot.
7(1), 121-141 (2016)

Huang, J., et al.: ROSRV: runtime verification for robots. In:
Int. Conf. on Runtime Verification, pp. 247-254. Springer, Berlin
(2014)

Wang, R., Guan, Y., Song, H., Li, X., Li, X., Shi, Z., Song, X.:
A formal model-based design method for robotic systems. IEEE
Syst. J. 13(1), 1096-1107 (2018)

Dragule, S., Meyers, B., Pelliccione, P.: A generated property spec-
ification language for resilient multirobot missions. In: SERENE.
LNCS, vol. 10479, pp. 45-61. Springer, Berlin (2017)

Hu, C., Dong, W., Yang, Y., Shi, H., Zhou, G.: Runtime verifica-
tion on hierarchical properties of ROS-based robot swarms. IEEE
Trans. Reliab. 69(2), 674-689 (2019)

Yan, Z., Jouandeau, N., Ali, A.: A survey and analysis of multi-
robot coordination. Int. J. Adv. Robot. Syst. 10, 1 (2013)
Farinelli, A., Iocchi, L., Nardi, D.: Multirobot systems: a classifi-
cation focused on coordination. IEEE Trans. Syst. Man Cybern.,
Part B, Cybern. 34(5), 2015-2028 (2004)

Pinciroli, C., Lee-Brown, A., Beltrame, G.: A tuple space for data
sharing in robot swarms. EAI Endorsed Trans. Collab. Comput.
2(9), 2 (2016)

Majumdar, R., Yoshida, N., Zufferey, D.: Multiparty motion coor-
dination: from choreographies to robotics programs. Proc. ACM
Program. Lang. 4(OOPSLA), 134 (2020)

Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.:
Formal specification and verification of autonomous robotic sys-
tems. ACM Comput. Surv. 52, 1-41 (2020)

Springer

53. De Nicola, R., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for
access control. Theor. Comput. Sci. 240(1), 215-254 (2000)

54. Gorla, D., Pugliese, R.: Enforcing security policies via types. In:
SPC. LNCS, vol. 2802, pp. 86—100. Springer, Berlin (2003)

55. Gorla, D., Pugliese, R.: Resource access and mobility control
with dynamic privileges acquisition. In: ICALP. LNCS, vol. 2719,
pp. 119-132. Springer, Berlin (2003)

56. DeNicola, R., Gorla, D., Pugliese, R.: Confining data and processes
in global computing applications. Sci. Comput. Program. 63(1),
57-87 (2006)

57. De Nicola, R., Gorla, D., Pugliese, R.: Basic observables for a
calculus for global computing. Inf. Comput. 205(10), 1491-1525
(2007)

58. De Nicola, R., et al.: From flow logic to static type systems for
coordination languages. Sci. Comput. Program. 75(6), 376-397
(2010)

59. De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM
Trans. Comput. Log. 5(1), 79-128 (2004)

60. De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.:
Model checking mobile stochastic logic. Theor. Comput. Sci.
382(1), 42-70 (2007)

61. Eckhardt, J., Miihlbauer, T., Meseguer, J., Wirsing, M.: Semantics,
distributed implementation, and formal analysis of KLAIM models
in Maude. Sci. Comput. Program. 99, 24-74 (2015)

62. Gjondrekaj, E., et al.: Towards a formal verification methodology
for collective robotic systems. In: ICFEM12. LNCS, vol. 7635,
pp. 54-70. Springer, Berlin (2012)

63. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA:
A spatial model checker for declarative image analysis. In: TACAS
2019. LNCS, vol. 11427, pp. 281-298. Springer, Berlin (2019)

64. Basile, D., ter Beek, M.H., Ciancia, V.: An experimental toolchain
for strategy synthesis with spatial properties. In: ISoLA 2022.
LNCS, vol. 13703, pp. 142-164. Springer, Berlin (2022)

65. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M.,
Massink, M.: Spatio-temporal model checking of vehicular move-
ment in public transport systems. Int. J. Softw. Tools Technol.
Transf. 20(3), 289-311 (2018)

66. Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F.: Modeling
adaptation with a tuple-based coordination language. In: SAC12,
pp. 1522-1527. ACM, New York (2012)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

	Coordinating and programming multiple ROS-based robots with X-KLAIM
	Abstract
	Introduction
	Contribution
	Structure of the paper

	Background notions
	Klaim
	Klava and X-Klaim
	ROS

	The X-Klaim approach to multi-robot programming
	The X-Klaim approach at work on MRS scenarios
	Simple warehouse scenario
	Enriching the warehouse scenario

	Experimental evaluation
	Time consumption
	Memory consumption

	Discussion and related work
	High-level languages and frameworks
	Languages for coordination

	Concluding remarks and future work
	Acknowledgements
	References

