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Abstract The authors report on the construction of a new algorithm for the weak
approximation of stochastic differential equations. In this algorithm, an ODE-valued
random variable whose average approximates the solution of the given stochastic
differential equation is constructed by using the notion of free Lie algebras. It is
proved that the classical Runge—Kutta method for ODEs is directly applicable to the
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the problem of pricing Asian options under the Heston stochastic volatility model.
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1 Introduction
1.1 Background

In applied sciences, finding numerical solutions of stochastic differential equa-
tions (SDEs) is crucial. For example, the price of a financial derivative is obtained
by the calculation of E[f(X(T,x))] where X(¢,x) is the value at time ¢ of the
N-dimensional diffusion process which describes the asset price and f is the payoff.
Therefore it is highly important to find fast and reliable algorithms for the numer-
ical evaluation of E[f(X (T, x))]. A number of studies on this problem have been
conducted [12, 15].

There are two approaches to the problem: the partial differential equation (PDE)
approach and simulation. The former involves solving the partial differential equa-
tion (1.2) numerically. This method works only when the dimension is relatively
small. We do not go into details on the subject here but refer to [21]. This condi-
tion is not necessarily satisfied in many practical problems; so we are forced to take
the other approach in which we calculate E[ f(X (T, x))] directly by using the dis-
tribution of X (7', x). When we take this approach, the problem can be classified into
the following three cases:

(1) The law of X (T, x) is known explicitly.
(2) The Fourier transform of X (T, x) is known explicitly.
(3) None of both.

In the last case, numerical schemes based on the stochastic asymptotic expan-
sion are applied in order to construct a set of random variables {X (”)(ti,x)}?zo
O=ty<t;<---<t,=T) that approximates X(¢f,x) in a precise sense.
{X ™ (1, x)}7_, is called the discretization of X (¢, x) or the discretized process of
X (t,x). Here n corresponds to the number of “ticks” included in [0, T']. This ap-
proach is called the probabilistic method or simulation. In this paper, we focus on
that approach.

Now, X® (T, x) defines an R¥ _valued function defined over a finite-dimensional
domain. We denote by D (n) the number of dimensions of the domain. Then we have a
map X(T,x)(-) : RP™ — RN D(n) is determined by the discretization scheme,
but at least it is an increasing function with respect to n, regardless of the scheme.

Using a simple volume transformation, we can reduce the problem to numerical
integration over the unit cube [0, 1], One usually calculates such integrals by
Monte Carlo or quasi-Monte Carlo methods because D(n) becomes very large in
practical problems.

Two types of approximation errors are thus involved in the calculation. One is the
difference between E[f(X(T,x))] and E[f(X(”)(T,x))] and the other is, if one
uses the Monte Carlo method, the difference between MC(f (X (T, x)), M)(w)
and E[f(X™(T,x))], or if the quasi-Monte Carlo method is used, the difference
between QMC(f(X™ (T, x)), M) and E[ f(X") (T, x))]. Here, for a random vari-
able W, MC(W, M) denotes the random variable (Z,Ai 1 Wi)/M where the W; are
independent random variables whose distributions are identical to that of W, and
QMC(W, M) = (Ziﬂil W(pi))/M where {p;}i=12,. is a deterministic sequence
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generated by a low-discrepancy sequence [24]. In this paper, we call the former error
discretization error and the latter integration error.

When the discretization error is O (p), we say that the discretization scheme is of
order p. When one simulates X (¢, x), usually the Euler—Maruyama scheme, which
is of order 1, is used. By using higher-order schemes we can reduce D(n), i.e., we
can reduce the problem to a lower-dimensional integration problem. In the case of
quasi-Monte Carlo methods, this means that the number of sample points needed for
the numerical integration of E[X (T, x)] is reduced. Detailed discussions are given
in Sect. 6.

1.2 The problem and our results
1.2.1 The problem

Let (£2,F,P) be a probability space, B(t) = ¢, and (B'(r),..., B4(t)) a
d-dimensional standard Brownian motion. C;°(R"; R") denotes the set of R"-
valued infinitely differentiable functions defined on RY whose derivatives are all
bounded. Our interest is in weak approximation, that is to say, approximations of the
function (P; f)(x) = E[f (X (¢, x))] where f € C};’o(RN; R) and X (¢, x) is a solution
to the stochastic differential equation written in Stratonovich form as

d t
X(t,x):x—i—Z/ Vi (X (s,x)) odB'(s), (1.1)
i=0 70

where V; € CR°(RN; RY) fori =0, 1,...,d. Here, V; € C;°(RY; RY) is considered
to be a vector field via

N
Vif)=Y_ Vij(x)aan_(x), for f € C°(RY; R).
J

j=1

It is well known (e.g. [14]) that E[f(X (1, x))] is equal to u(1, x) where u is the
solution to the partial differential equation, with L = Vi 4 (1/2) Z?:l Viz,

%(l,x):Lu, u(0,x) = f(x). (1.2)

Usually, the Euler-Maruyama scheme is used to discretize X (¢, x) during simu-
lations to weakly approximate X (¢, x). It is shown in [20, 25, 26, 30] that the new
higher-order scheme introduced by Kusuoka in [17] calculates some finance prob-
lems much faster than the Euler—Maruyama scheme. Lyons and Victoir extensively
developed the scheme in [23] using the notion of free Lie algebras.

Recent developments can be found in [2, 11], where weak, higher-order approx-
imation schemes for SPDEs are introduced. There an additional feature appears. In
the case of an SPDE, the size of n should be small since the larger n, the more PDEs
have to be solved.

We shall discuss the reason why higher-order schemes greatly improve the speed
of numerical weak approximation in the later part of this paper (Sect. 6).
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1.2.2 Our results

In this paper, we describe how we successfully constructed in Theorem 1.3 and Corol-
lary 1.4 anew higher-order weak approximation scheme for a broad class of stochas-
tic differential equations. This scheme owes a great deal to the scheme shown in [17]
and to the cubature method on Wiener space introduced in [23].

An intuitive explanation of our scheme is as follows. We construct an ODE (ordi-
nary differential equation)-valued random variable whose average approximates the
given stochastic differential equation. From this random variable, an ODE itself can
be drawn at one time.

This scheme has the remarkable advantage that once an ODE is drawn, the con-
ventional Runge—Kutta method can be applied so as to approximate the ODE. The
approximating random variable is constructed using Theorems 1.3 and 1.6 and can
be approximated by the Runge—Kutta method for ODEs via Theorem 4.15.

We should note that another higher-order weak approximation method based on
the same approach [17, 23] is introduced in [27]. Although the algorithm in [27]
and the new method presented in this paper share the same approach and have many
common features, the algorithms themselves differ significantly.

1.3 Notation

Let A = {vg,v1,...,vq} be an alphabet where d € Z>; and A* denotes the set
of all words consisting of the elements of A. The empty word 1 is the iden-
tity of A*. For u=v;, ---v;, € A*, |u| and |lu|| are defined by |u| = n and

lu]l = |u| 4+ card({k | ix = 0}) where card(S) denotes the cardinality of a set S. Here,
| - |l is related to the scaling property of the Brownian motion. A}, and A%, de-
note {w € A*| lw| =m} and {w € A*| |w| < m}, respectively. Let R(A) be the free
R-algebra with basis A* and R{{A)) be the set of all R-coefficient formal series with
basis A*. Then, R{A) is a sub-R-algebra of R{{A)). We call an element of R(A) a

non-commutative polynomial. P € R{(A)) is written as
P= Z (P,w)w or Z ayw,
weA* weA*

where (P, w) = a,, € R denotes the coefficient of w. Let
R(A) = {P € R(A) | (P, w) =0, if [w]| #m}.
The algebra structure is defined as usual, i.e.,

(Z aww>< Z bww> = Z a,byw.

E uehy
The Lie bracket is defined as [x,y] = xy — yx for x,y € R(A)). For
w=u; ---v;, €A%, t(w) denotes [v;,, [vi,, [..., [vi,_,, vi,]...]1]]. We define Lr(A)
as the set of Lie polynomials in R{(A) and L ((A)) as the set of Lie series. This means
that Lr(A) is the smallest R-submodule of R{A) including A and closed under the
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Lie bracket, and that Lr((A)) is the set of elements of R{(A)) whose homogeneous
components belong to Lr(A). We note that Lie polynomials correspond to vector
fields while general polynomials do not necessarily. For m € Z~, let j,, be the map

defined by
jm< Z aww> = Z ayWw.

weA* [lw]l<m

For arbitrary P, Q € R(A), the inner product (P, Q) is defined by
(P.Q)= ) (P.w)(Q.w).

weA*

Moreover, we let ||Pll» = ((P, P)Y/? for P € R(A). For P € R((A)) with
(P, 1) =0, we can define exp(P) as 1 + Z,fil P¥/k!. In addition, log(Q) can be
defined as 3 22 | (—1)¥~1(Q — 1)k/k for Q € R{{A)) with (Q, 1) = 1. Then we have
the relations

log(exp(P)) =P and exp(log(Q)) = Q.

We can induce the direct product topology into R((A)) by the identification
R{A)) =~ RA" ~ R®. We note that the first identification is not trivial ([9], Chap. 2,
Sect. 4). Then R{(A)) becomes a Polish space with this topology. We can also consider
its Borel o-algebra B(R({(A))), R{(A))-valued random variables, their expectations,
and other notions as usual.

Let @ be the homomorphism between R(A) and the R-algebra consisting of
smooth differential operators over RY such that

@(1)=1d,
Dy v, =Viy -V

in

foriy,...,i, €{0,1,...,d}.

Considering the scaling property of the Brownian motion, we define the rescaling
operator ¥, depending on | - ||. For s € R.q, ¥ : R{(A)) — R{(A)) is defined by

o0 o0
2 (Z Pm> =Y s"?P, where P, € R(A),.
m=0 m=0

For a smooth vector field V, i.e., an element of C}° (RN; RM), exp(V)(x) denotes
the solution at time 1 of the ordinary differential equation

dz
d—t’ =V(z), z0=x.

We also define ||V||c» for V € Ci°(RY; RY) by

VIl =sup{|V(x)

; x eRVY

[V =sup{|v @i, Un, ..., U

IVilen =i|}v0’>}|.

cxeRY and |Uj| =1, fori=1,...,n},
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Here V® denotes the kth order total differential of V, i.e.,
n

N N N
VWL Uz U =30 ) e ) - ax, U] Ul
i=1ji= Jn=1 "

1

where each ¢; denotes an N-dimensional unit vector, {eq, ..., ey} forms an ortho-
normal basis of R, and U} is the jth component of Uy € RY.

1.4 Main results

Since in this paper we deal with operators that are not necessarily linear with respect
to time ¢, we introduce the following definition.

Definition 1.1 A map g from C;° (RY; RN) to the set of all maps from RV to RY
is called an integration scheme of order m if there exists a positive constant C,, such
that

sup |g(W)(x) —exp (W)(x)| < C | W71}

cm+l
x€RN

forall W e C}° (RY; RN). Let ZS(m) be the set of all integration schemes of order .
This definition is a generalization of the usual order of approximation.

Definition 1.2 For 7z, z2 € Lr((A)), we define zoHz; as log(exp(z2) exp(z1)). Then
from the definition, for z1, z2, z3 € Lr((A)),

(21Hz2)Hz3 = log(exp(z1) exp(z2) exp(z3)) = z1H(z2Hz3),
and so we can write for z1, ..., z, € Lr((A))
ziHz2H - - Hz, = log(exp(z1) - - - exp(zn))-
We notice that zoHz| € Lr((A)) if z1, 22 € Lr((A)) from the Baker—Campbell—

Hausdorff formula ([4], Chap. II, 6.4).
The following are the main results.

Theorem 1.3 Letm > 1, M >2 and Zy, ..., Zy be Lr((A))-valued random vari-
ables. Assume that Z1, ..., Zy satisfy

Zi=jmZ; fori=1,...,M,
E[ljmZill2] <00 fori=1,....,M,

M
E|:exp<az ||¢>(WS(Zj)) ||Cm+1):| <00 foranya > 0.

j=1

(1.3)

@ Springer



New weak approximation scheme for SDEs 421

Then for p € [1, 00) and arbitrary g1, ..., gy € ZS(m), there exists a positive con-
stant Cpy p such that

|

sup |g1(P(¥(Z1))) o0 gm(®(¥(Zy)))(x)

xeRN

= exp(@ (¥ (jn (ZuH- - HZD))) || | < Coaas™V2 (1)

for s € (0, 1] where C,,,  depends only on m and M. Here for functions f and g,
f o g(x) denotes f(g(x)) as usual.

Fori=1,...,d,and j=1,..., M,let S; be R-valued Gaussian random variables
and for j, j'=1,..., M, let cj and R;j be real numbers such that
M
ch =1, E[S;] =0, and E[S}S},] =R;ié;iv (1.5)
j=I
fori,i’=1,...,d. Welet S? = c; for convenience. Taking (1.2) into account, we let

Z1, ..., Zy berandom variables such that Z; = cjvp + Z?Zl Sj.vi forj=1,...,.M
and that

d
1
E[jm(exp(Z1) - - exp(Zum))] = jm <exp (vo +3 ; v,~2>>. (1.6)

In usual ODE cases, this type of approximation technique is known as a splitting
method [13]. The stochastic versions of this technique are considered in [23, 27].

Recently, it is proved in a constructive way that for any m > 2 there exists a set of
random variables Z1, ..., Zy that satisfy (1.6) ([35]).

Corollary 1.4 Suppose that the following UFG condition is satisfied:
(UFG) There exist an integer £ and ¢, € C‘b>o (RV: R) which satisfy

@(t(lxl)) = Z wu,u’(p(t(u,))

W eAL \{1,up}

for any u € A*\ {1, vp}.

For j=1,...,M let Z; be Lgr((A))-valued random variables constructed as above
and define linear operators Q) for s € (0, 1] by

Q) N®) =E[f(g(®(¥(Z1))) o+ 0g(®(¥(Zu)))(x))]
where f € C3°(RN; R) and g € ZS(m). Then
IPsf — Q) flloo < Cs 72| grad ()|

where C is a positive constant.
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Remark 1.5 In [19], it is shown that for the operator Q) defined above, there exists
a constant C such that

(Ps f)(x) — (Q(s)f)(x) = Cs(”H'l)/2 + O(S(m+3)/2)

holds. This means that the Romberg extrapolation can be applied to our new algo-
rithm.

The intuitive understanding is that once we find the random variables Z1, ..., Zy,
we can numerically approximate exp(Z; (w)) by applying the integration scheme g;
repeatedly for each i as seen in (1.4) in Theorem 1.3. Therefore, our primary interest
isin finding Zy, ..., Zy.

Theorem 1.6 Let m =5 and M = 2. Then (1.6) holds if and only if

FV20Qu—1) V22u =1
Cl=———"F", C2=1i—7 R]]ZM,
2 2 0
V22u=1)
Ro=1+u=+2Qu—-1), R12=—u$%

for some u >1/2.

Remark 1.7 We can show that in the case where m = 7 and M = 3 there is no solution
to (1.6).

Now that we have obtained the random variables satisfying (1.6) for m =5, we
need a practical way of approximating these integration schemes gi, ..., gy. We
successfully extend the applicability of the general Runge—Kutta method to ODEs to
find that it belongs to ZS (m).

Let A = (a;j)i,j=1,..xk Withajj e Rand b="(by,...,bg) € RK.If (A, b) sat-
isfies the mth-order conditions defined as (4.2) in Sect. 4, the K -stage Runge—Kutta
method of order m in the sense of [6] can be written as

K
Yi(W.s)=yo+s Y aijW(Y;(W.s)),

/= (1.8)

K
Y(yo: W.s)=yo+s Y _ bW (Yi(W.s))

i=1

for W € C2°(RN; RY), s € R, and yo € RV. Let g(W)(y) be Y (yo; W, 1). We
show that g belongs to ZS(m) in Theorem 4.15.

Remark 1.8 Our scheme is fundamentally different from the class of numerical meth-
ods sometimes referred to as stochastic Runge—Kutta methods [5, 28, 29].
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2 Proof of Theorem 1.3

For simplicity of notation, we let @ (y) denote @ (¥, (y)) for an element y € LR((A))
in the following part. We split the left-hand side of (1.4) as

| sup 81(@0(Z0) 00 g (@(Zun) ()

xeRN

= exp(®s (jn (ZuH--HZD)) || |

< H sup |exp(@;(Z1)) o+ oexp(®s(Zy))(x)
x€RN

— exp(Ps (jm (ZyuH- ~H21>))<X)|HLP

+|

sup |g1(Ds(Z1)) 00 gum(Ps(Zu)) (x)

xeRN

—exp(Ps(Z1)) o -+ o exp(Ps(Zy)) (x)|

. 2.1
L

The evaluation of each term of the right-hand side of (2.1) will be given by Lemma 2.6
or (2.9) in this section.
Proposition 2.1

€)) ForanyVGCI;’O(RN;RN),feCOO(RN;R),xeRN andn > 1,

1tk G L.
f(exp(tV)(x)):gE(ka)(x)—i—/o — (v ) (exp(s V) (x)) ds.
(2.2)
(2) Forall z € Lr((A)) andn,m > 1,
"1
sup | £ (exp(@ (jm2))(x)) — E(cb((jmz)k)f)m
xeRN k=0 """
1 .

= LA (LN IS 23)

Proof Since we have
d
Ef(exp(rm(x)) = (V) (exp(tV)(x))

from the Taylor expansion, we obtain (2.2) by integration by parts and (2.3) can be
derived from (2.2). O

Lemma 2.2 Forall n > 1, there exists a constant C,, > 0 such that
|2 (n2) [ o < Culljnzll2|grad(f)]

forall z e R((A)) and f € C®[RY;R).

cn—1
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Proof Let p,, be a map such that

o
DPm - Z ag D% — Z ag D%

||=0 |a|=m

glal

where « is a multi-index, ay € leo (RN ;R), and D¥ = PR Then we have
.)C] .XN

lwl

dw)=)Y_ pi(®w)),

i=1
for w € A*\ {1}. Since there exists a constant C,, ; > 0 such that

[pi(®@) ]l = Cui sup | D*(erad(/)].

ae(Zx)
la|=i—1

we see that there exists a constant C;, > 0 such that

oG flo= Do @]l w)

weA*
I<|lwli=n
[w]
< Y D> Cuillzw)| sup | D(grad(N)],
weA* i=1 ae(ZZo)N
1<]lw|<n la|=i—1
<Cylljnzllz sup | D*(grad(f))]
ae(Zz)N
le|<n—1
< Culljnzll2 | grad(f) | cu-i
where C, = card({w € A* |1 < |lw| <n})sup ,ea* (Zl‘ih Cu,i)- O
I<|lwli=n

Lemma 2.3

(1) There exists a constant Cy, 1 > 0 such that

sup | £ (exp(Ps(jm2))(x)) = (®5 (jm exp(jm2)) f) (x)]

xeRN
< Cots "2 (1 P jmzlla) ™™ | 2rad ()| ey 1 (2.4)

for z € Lr((A)).
(2) There exists a constant Cy, pr > 0 where M € Z>» such that

sup | £ (exp(®s (im (Gmza)H- - -HGimz1)))) ()

xeRN

—(®5 (jim exp(im (Gmza)H - HGmz1))) £) )]

M m+1
gcm,Ms<m+1>/2(1+Z||jmz,-||z> lerad(H) || cmonsn-1 - (2.5)

i=1

forzy,....zm € Lr((A)).
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Proof From the fact that for z € Lr((A)), we have
m m

1 1
in(Exp(n2) = 3 2 Gnd) =3 25 Gy = i) ((m2)")

k=0 "~ k=2
and from (2.3) in Proposition 2.1, we see that

|f(exp(<1><jmz))<x)) — (@ (jim (exP(im2))) ) ()]

m

|® (G2 ) Flloo + |2 k],( (Gmonsry = jm) (GmD*)) £) )|,

_(m+1)‘ P

Since we have

)m+1

(jmz = (jm(m+1) - jm)(jmz)m-H’

applying Lemma 2.2 yields
| £ (exp(@ (jm2)) (X)) — (@ (jim (exp(im2))) £) ()]

m—+1

< Z ||<P (jm(m+]) —jm)((JmZ) ))f”oo

m—+1

< Cn Y | Gmenty = dm)Gm2* |5 | 2rad ()] cmons1-
k=2

. 1
< Cot (14 jmzll2)" ™ lgrad ()l cmoms -1

where C,, and G, 1 are positive constants. Thus (2.4) is proved.
Taking (jmzm)H---H(jmz1) as z above and evaluating by

m+1
> Gty = i) Ui (GimzadH -+ -HGmz)))
k=2
M m+1
< cm,M<1 + ) limzi ||2) :
i=1
we obtain (2.5). O

Lemma 2.4 There exists a constant Cp, > 0 such that

sup ‘f(exp((ps (szl)) 0---0 CXP((ps(ijM))(X))
xeRN

— (Ps (jm exp(jim (Gmza)H -+ H(imz1))) £) @)

M
< Cots ™23 (Ut i)™ | 2ad ()| w1 (26)
i=1

forzi,...,zm € Lr((A)). Here Cyy,, p depends on m and M.
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Proof We prove the lemma by induction on M. When M = 1, (2.4) and (2.6) are

equivalent. Assume that (2.6) holds for M. Splitting the left-hand side of (2.6) for
M +1 as

| f (exp(@5 (imz1)) 0 -+ 0 exp(Dy (imzamr+1)) (X))
— (D5 (m X (jim (Gmzm+1)H- - - H(imz1)))) f) ()]
< | f(exp(Ps(jimz1)) 0 -+ 0 exp(Py(imzar+1)) (x))
— (D5 (m exp(jim (Gmza)H- - HGmz1))) £) (exp(Ds (mzm+1)) (1)) |
+ [(Ps (jim exp(im (Gmzan)H - - - HGimz1)))).f) (exp(Ps Gimzm+1)) (x))
— (@5 (jim exp(jim (Gmza+ DH- - -HGimz1)))) £) )]

we can apply the induction hypothesis and (2.4) with

D (jm exp(Gmza)H -+ H(mzD)) f

instead of f to obtain

sup | £ (exp(@s(jmz1)) o -+ 0 exp(Ps (mzm+1)) (X))

xeRN

— (D5 (jim exp(jm (Gmzm+DH - HGmzD))) £) ()|
M

< Cystmh2 (Z(l + mzil12)™ "+ (U mzarer ||z)’"“>

i=1
x ”grad(f) ||Cm(m+M+1)717

where C; > 0 is a constant depending on m and M. Hence, (2.6) is proved.

From Lemmas 2.3 and 2.4, we have the following result.

Lemma 2.5 For all m > 1, there exists a constant Cp, pr > 0 such that

sup | f(exp(®s(jmz1)) o -+ 0 exp(@s (jimzm)) (%))

xeRN

— F(exp(Ds (jim (Gmza)H - - HmzD))) ()|

< Conos ™23 (14 1imzill2)" ™ erad () | comman-1
i=1

foralls € (0,1], z1, ...,z € LrR((A)), and € COO(RN; R).

Lemma 2.6 Let Zy,...,Zy be Lr((A))-valued random variables such that for

m=>1, E[||jmZill2] <oofori=1,..., M. Then, for p € [1,00) there exists a con-
stant Cpy 1 > 0 such that
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sup |exp(®s(jmZ1)) o - o exp(Ps(jmZm))(x)

xeRN

= exp(®s (jn (G ZaH- - HGZD)) W] | | = Conar s™F2 - 27)

forany s € (0, 1].

Proof Tf fori € {1,...,N}, f((x',...,xN)) =x', then ||grad(f)|l cmm+m-1 = 1 for
all m > 1. Therefore, applying Lemma 2.5 for this f, we obtain (2.7). g

We note that in [31] a similar result to this lemma is obtained.
We now start the discussion about the latter term of the right-hand side of (2.1).

Proposition 2.7 There exists a constant C > 0 such that

[gW)(x) — gW)YD)] < CUWILEL +1x = ylexp(IW 1) (2.8)
for g € ZS(m) and W € C;;O(RN; RM).
Proof Since Gronwall’s inequality gives

|exp(W)(x) —exp(W)(»)| < |x = ylexp(IWlic1),

(2.8) can be derived. O

Since g; € ZS(m) and each Z; satisfies (1.3), we see that for some C| > 0,

sup |gu (D5(Zy))(x) — exp(Ps(Zu)) ()|

xeRN

.,

< |Con |5 (Za) | ot | Lo < Cr s+,

From this fact and Proposition 2.7, there exists a constant C4 > 0 such that

sup |ga—1(Ps(Zay-1)) 0 gm (P (Zum)) (x)

xeRN

— exp(@y(Z-1) 0 exp(@:(Zi) )|,

S ‘

sup |gm—1(Ps(Zy—-1)) o exp(®s(Zu)) (x)

xeRN

— exp(@s(Zu—1) 0 exp(@(Zi) ]|

+|

sup |gm—1(®s(Zy—1)) 0 gm (D5 (Za)) (x)

xeRN

— w1 (@o(Zr-) o exp(@s(Zin) )| |
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< s V2 | ¢ @y Zu-n

- sup [gn (@o(Zan) (@) = exp(@5 (Zun)) )| exp(| @ (Zu-] 1) |,

xeRN

< Cysm D12

where C and C3 are positive constants. Inductively,

sup |g1(Ds(Z1)) 0+ 0 gm(Ps(Zu))(x)

xeRN

— exp(@y(Z) 0+ 0 exp(S(Zi) )|, = Css™ V2 29)
where C5 > 0.
Lemma 2.6 and (2.9) complete the proof of Theorem 1.3.
3 Necessary conditions for the Ly ((A))-valued random variables Z1, ..., Zy

Lemma 3.1 Fori=1,..., M, let Y; be Gaussian random variables such that
E[Y;]=0 and E[Y;Y;]=R(,j), fori,j=1,....M

where R(i, j) € R. Moreover, fori =1, ..., M let m; € Z>q be such that Zlﬂil m; is
even. Then we have

E[y{" - Yy"]
M '
M o (m;! y
= Z Z_Zi:ldﬁ Hl—li( l; ‘ H R(i,j)dtj 3.1
{dijhzizjzsmeelmy,...mpy) HISiSjSM( i") I<i<j<M
where e(my, ..., my) is a set of {d;j}1<i<j<m satisfying that d;; € Z>q and
D dji+2di+ Y dij=m;
1<j<i i<j<M

fori=1,..., M.
Proof Let £ =" 'm;. We have

E[Y" Y]

el

z=0
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9 1 o
ZGZT1-~-82T/[M (eXp(z Z R(l’J)ZiZj))

I<i,j=M

z=0

1 5t ( Z 22
= R(i, j)z-z-) (3.2)
22/ oz BT\ R
where z = (z1,...,zy) € RM.
Let
£
322{{dij}l§i§j§M dij eZZoand Z dl‘jZE}.
l<i<j<M
Then
22
( > R(i,j)zizj>
1<i,j<M
M 2/2
= <ZR(i,i)zi2+2 > R(i,j)z,-z,-)
i=1 I<i<j<M
M
£/2)! . y
= Y U TIwead” T ez
{dijhzizj<meer + HISISISMATU T jim) 1<i<j<M
— Z &ZZKRKM‘IU
o 0
{dijhi<i<j<m€er Hlf’f-/SM(dlj')
M di2di Y dij)
x( l—[ R(i,j)dfj)(l—[Zi P S =M )
I<i<j<M i=1
Hence
a[ < Z £/2
i R(i,j)zl-z,)
8ZT]".8Z,]Z[M iy 220
£
= he.. DE=)!
(my!---my )(2>
ZZISisjsti.f
X T RG, H%i. (3.3
Z 1_[1<i<'<M(dij!) 1_[ (l J) ( )
{dijh<i<j<mee(my,...mp) StEJ= I<i<j<M
Since we have from the definition of e(m1, ..., mys) that
¢ M
R
I<i<j<M i=1
for {d;;j} € e(m1, ..., mpy), (3.1) is derived from (3.2) and (3.3). O
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We need next a simple representation of the coefficient of each v; v;, - - - vj,

in E[exp(Z1)---exp(Zy)] where (i1,...,i¢) € {0,1,...,d}* and Zi,..., Zy are
Lr((A))-valued random variables constructed with Gaussian random variables satis-
fying (1.5).

For ¢, M € Z+, let
KeM)={k=(ki,....km) € Z=0)™ | ki + - +kn = £}.

Forw=v; ---v;, € A%, let N : {0, 1,....d} x{l,..., M} x K¢(M) — Z>o be a
function such that

NY@, j, k) =card({r|ir =i for ki4+--4kj_1+1<r<ki+---+kj}).
Theorem 3.2 Let w = v;,v;, - -+ v;, € A" and
n"(@i)=card({j €(l,.... €} ]i; =i})
fori=1,...,d. Then the coefficient C(w) of w in E[exp(Zy) - --exp(Zy)] becomes
as follows:
If n™ (i) is odd for some i € {1, ...,d}, then
C(w)=0. 3.4

Ifn™ (i) is even for every i € {1, ...,d}, then

M

cawr=" 3, e [lep™ e

K=(ky,.. ) ekCe(my 1M

X li[ < Z 2~ YL dii
p=1

{dijh<i<j<m€
e(NY(p,1,K),....N¥(p,M Kk))

DL koY 0 Rd,.j>

i (3.5)

Hlflf]SM(dl/') I<i<j<M
where cj and R;j are real numbers defined in (1.5).
Proof In the case where n' (i) is odd for some i € {1,...,d}, (3.4) is directly de-
rived from (1.5). We therefore consider the other case. By the Taylor expansion of

exp(Zy) - --exp(Zy), we have that

Elexp(Z))---exp(Zu)]

00 1 d ky d ky
- B | (e Soin) o (ome Ssie) ]

i=1

@ Springer



New weak approximation scheme for SDEs 431

Hence

C(w) =(E[exp(Z1)---exp(Zy)], w)

-y 1
N Kl k!
k=(ky,....kpr)€lCe (M) ! M

i ik ok +1 iy +ky Ly 4tk gy +1 [y 44k g
XE[Sl"'Sl Syt S, Sy Sy ]
———

ki ko km

1
= Z k!

k1!
K=(k, .. k)€Ko (M) )

v w N¥(1,1,k
xE[(cl)N OLR . (ep)N" OMB) (gl 1k

« (S}W)N")(LM,]() o (Sil)Nw(d,l,k) o (S;tlll)N")(d,M,k)].

From the definition of S ; s

1
Cwy= ), K- k!

k=(k1,....kn1)
eko(M)

M d
N™(0, .k N¥(p,1,k) NY(p,M k)
x [Lep™ O T E[(s)"" P19 (sp) ™ *48)
j=1 p=1
Applying (3.1) from Lemma 3.1, we obtain (3.5). g

On the other hand, the value of the coefficient of each v;, - - - v;, in the expression
Jmexp(vg + (1/2) Z?:l viz)) can be obtained by the following result.

Proposition 3.3 Let A? = {vg, vivy, vava, ..., vgvg} C A*. Then

d
1 1
exp(vo+ E E U?) = E Ww (36)
i=1

w=w--wy

Therefore, taking {S}}izl ,,,,, d,j=1,...M to equate (3.4) or (3.5) with (3.6) for
w =V, V;, - - - v, wWith ||w|| <m, we can construct Zi, ..., Zy.
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Form =5, we take M = 2 to obtain solvable simultaneous equations which in fact
become the five equations

1 1
c1+c=1, 5(01R11+62R22)+R12=§,

1 1
E(ClR“ +cRyp) + 501(1?12 + Rp) =

)

’

Bl—= A=

1 1
g(can +coRp) + ECz(Rn + Ryp) =

1(R2+R2)+1R (Ri1 +R )+1R Rop =
24 11 22 6 12 11 22 4 11 22—8-

,,,,,

random variables can be constructed.

Remark 3.4 If we let m =5, then M must be at least two.

4 The Runge-Kutta method

We begin by briefly introducing the tree theory following [3, 6, 7]. For details of the
Runge—Kutta method, see [6, 7, 28].

All trees introduced here are called directed or rooted trees in the literature listed
above.

Definition 4.1 A labeled tree t is a pair of finite sets (V (t), E(t)) that satisfies the
conditions

(HVycZ,Vit)y£0,and E(t) C{(x,y) e V(t) x V(t) : x < y}.
(2) Foreach x € V(t),if (x, y) € E(t) and (x’, y) € E(t), then x = x'.
(3) For two distinct elements x, y € V (t), one of the followings holds:
(1) There exists a path from x to y.
(i1) There exists a path from y to x.
(iii) For some z € V (t) \ {x, y}, there exist paths z to x and z to y.
Here a path from p; to p, is a sequence (p1, p2), (p2, P3), .-, (Pe—1, pe) of
elements of E(t).

An element of V (t) is called a vertex of t and that of E(t) is called an edge of t.
A particular labeled tree t; is that with card(V (7)) = 1 and E(7,) = 0.
For a labeled tree t = (V (t), E(t)), let r(t) be card(V (t)). We define T as the set

of all labeled trees.

Proposition 4.2 Foreacht = (V(t), E(t)), there exists a unique vertexr € V (t) such
that for any x € V(t) \ {r}, there is a path from r to x.

Such a vertex r is called the root of t. Here, t; consists of only the root.
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Definition 4.3 For i = 1,...,n, let t; = (V(t;),E(t;)) € T be such that
V)N V(t;)) =0 if i # j. Then [t ---t,] is defined as t = (V(t), E(t)) € T such
that

Viy={rjUV(t)U.--UV(t,),

E® ={(rr),....(rnr) UEt) U UE(ty),
where each r; denotes the root of t; and r = min{ry, ..., r,} — 1.
Remark 4.4 For t,...,t, € T, we have that
[ti- -t ] =[tmq) tom]
for any permutation @ € G,,.

Definition 4.5 Let t; = (V(t;), E(t;)) € T for i = 1,2. We say that t; and t, are
isomorphic, written as t;~t, if there exists a bijection @ : V(t;) — V(t2) such that
(x,y) € E(ty) if and only if (= (x), w (y)) € E(t2).

In particular, when t;~t; and V (t;) = V(tp), that is, & is a permutation, we say
that t; and t, are equivalent and write t; ~ t;.

Proposition 4.6 Both ~ and ~ are equivalence relations.

Proposition 4.7 Let t; = (V(t;),E(t;))) € T and v; = (V(u;), E(w;)) € T for
i=1,...,n.Suppose that t;~u; fori =1, ...,n and that

V)NV =¥ and V@)NV@u;)=0¢

ifi # j.Then

[t -t ]~[wg---u,].

Definition 4.8 We define 7 = T/~. An element ¢ € T is called a non-labeled tree.
For a labeled tree t € T, [t| denotes the corresponding non-labeled tree t € T'.

Then, from Proposition 4.7, the following result can be derived.

Proposition 4.9 Under the same condition as Proposition 4.7,
[t tal| = [[u1 - wy]|

holds.

By virtue of Proposition 4.9, we can define a non-labeled tree t = [¢#; - - - #,,] for
f,...,t, € T as |[t;---t,]| where t; € T is a representative labeled tree such that
[t;| = ¢;. In particular, we let T = |t¢].
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Proposition 4.10 For any t € T \ {1}, there exist t|,...,t, € T such that
t=1t1---1,]. Moreover

(i1 ]l =ltwq)  tom)]

for any permutation w € G,,.
Here, [tI”1 .-ty denotes [ty ---t;---ty---t,] where t; e T fori =1, ..., n.
~—— ——
mi mp

Definition 4.11

(1) For t = (V(t),E(®)) € T, we define o« : T — Z>1, r:T — Z>1, and
0:T — Z>1 by

a(t) = card({u € T|u~twhere t € T is a representative element with |t| = t})
r(t) = card(V (1)),
o 1 iftr=rt
o(t)= )
M milo @™ ife=[a" 1)), €>1.

(2) Let Abe the set of K x K real matrices. We inductively define derivative weights
;:TxA— Rfori=1,...,K by

Zj-;la,‘j ift=‘L’,
YR @i e Gt A) it =[], €21

where A = (a;j); j=1,...k. We notice that « is well defined because o denotes
the number of ways a tree may be labeled. In addition, we define the elementary
differentials D : C;°(RV; RV) x T — C°(RY; RY) by

i(t; A) =

D(W,1)(x) =W(x)
and fort =[t1tp---1t¢], £>1,

D(W,1)(x) = WO @) (DWW, 1) (x), D(W, 1)(x), ..., D(W, 1) (x)).

Let y(W, s) be a solution to the ODE

d
%)’(W,S)=W()’(W,S)), y(W,0) = yo 4.1
where W € CgO(RN; RM) and yo € RV.
Let T,, ={t €T :r(t) =m} and T<,, = |_|;,_o Tn for m > 0 with Ty = . Then

we have the following lemmas essentially proved in [7], pp. 139-145.

Lemma 4.12 For m € Z>,

YW, s)= " D(W,[t])(y(W,s)).
teT,,
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Let A,y € A denote A in (1.8) for the explicit Runge-Kutta method. Then
Y;(W,s) is definitely determined by A, with a;; =0 if i < j and so Y (yo; W, s)
can be constructed with b and Y; (W, s) as both seen in (1.8).

Lemma 4.13 Let m > 1. If there exists a constant Cy,, > 0 such that

'Yi<W,s>—<yo+ > Sr(t)Ci—(I)D(W,l)(YO)>

ot
ZETgmfl ( )

< Cuns" [WIIEm

fori=1,..., K, then there exists a constant Cp,+1 such that

v Tleey G (00
WEW.) - ), SOTEEEEDW0G0)

t=[t1-1]€T<m

1 1
< Cpprs" WAL

Applying these lemmas to evaluations of the solution to (4.1) and the Runge—Kutta
method (1.8), we obtain the following result.

Theorem 4.14 For y satisfying (4.1), there exists a constant Cp, 1 such that
57O
r(n!

exp (sW)(y0) — (yo+ Y T —a)D(W, t)@o))’

teT<y

1 +1
S Cm—H Sm+ ” W”’g»H»l .

On the other hand, for the Runge—Kutta method (1.8) there exists a constant C,, 41
such that

Y (yo: W.s) — (yo + Z

Z:l ,m—1
1=1011g)€T<p

s7®
o(r) 4

Zb H;,(rk, Aex) D(W, t)(yo)>‘

/ +1 +1
< Cppy "I

We say that (A, b) satisfies mth-order conditions if
at) YK billis G0 A)
r@)! o(t)

forallt =[t;---te] € T<p.
From Theorem 4.14, the following result can be directly derived.

4.2)

Theorem 4.15 Suppose that an explicit Runge—Kutta method (A.y, b) satisfies the
mth-order conditions (4.2). Let g(W)(yo) =Y (yo; W, 1), where Y (yo; W, 1) is the
Runge—Kutta method defined in (1.8). Then

g€IS(m).
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5 The new simulation scheme and Corollary 1.4

Corollary 1.4 indicates the new implementation method of the new higher-order
scheme proposed by Kusuoka in [17, 18].

This implementation method seems to be distinct mainly because it has two ad-
vantages. One is that the approximation operator can be obtained by numerical calcu-
lations if the Runge—Kutta method is applicable to the calculation of each exp (Z)),
whereas the tediousness in symbolical calculations of the operator might be an ob-
stacle for practical application, which can be observed in [20, 26, 30]. The other
advantage is that the partial sampling problem discussed in [20, 26] can be resolved
by using quasi-Monte Carlo methods. More precisely, the following two points make
an effective use of low-discrepancy sequences, which are essential to quasi-Monte
Carlo methods [24]:

— In this implementation, Sj. can be taken to be a continuous random variable.

— The scheme itself is characterized by the need for a smaller number of discretiza-
tion time steps, which leads to a reduction in the number of dimensions of the
numerical integration.

6 Application

In this section we present a numerical example in order to illustrate the implementa-
tion method proposed in Corollary 1.4 and compare it with some existing schemes.

6.1 Simulation

Let X (¢, x) be the diffusion process defined by (1.1). The most popular scheme of first
order is the Euler—Maruyama scheme, which is shown in [15, 34], for an arbitrary C 4
function f, to satisfy

L (0] = B[ (X 10)] | £ €

where X M7, denotes the Euler-Maruyama scheme approximating X (z, x). We
note that this inequality holds for measurable f if {V;};=1 .4 satisfies some more
conditions [1, 16].

The construction of a higher-order scheme is based on the higher-order It6—Taylor
formula [8, 15]. When the vector fields {V; }?zo commute, higher-order schemes can
be simplified to a direct product of one-dimensional problems as seen in [15]. In con-
trast, for non-commutative {Vi}f'lzo’ the acquisition of all iterated integrals of Brown-
ian motion is required, which is very demanding. This is done in [17, 20, 22, 32, 33]
and generalized as the cubature method on Wiener space [23].

Once a pth-order scheme {X (Ordp)’"k /n}k=0,...n 1s obtained and expanded with
some constant K ¢ as

,,,,,

1 1
E[f(X(ordP)Jll)] _ E[f(X(l,x))] = Kfn_p + 0<W>1
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the (p + 1)th-order scheme can be derived as

2P
20 —1

1
2P —1

E[f(X(ordp),Zn 1)] _

E[f(X(ordp),n])].

This boosting method is called Romberg extrapolation and is shown to be applicable
to the Euler—Maruyama scheme under certain conditions [34].

The simulation approach must be followed by the numerical calculation of the ex-
pectation E[ f (X ©4P)-m,)]. However, when n x d is large, it is practically impossible
to proceed with the integration by using the trapezoidal formula and so we fall back
on the Monte Carlo or the quasi-Monte Carlo method [24]. Here we make only a few
remarks on each method. For a more detailed analysis, see [27].

Remark 6.1 Aslong as we use the Monte Carlo method for numerical approximation
of E[f(X(1,x))], the number of sample points needed to attain a given accuracy is
independent of the number of the dimensions of integration, namely both the number
n of partitions and the order p of the approximation scheme.

Remark 6.2 In contrast to the Monte Carlo case, the number of sample points needed
for the quasi-Monte Carlo method for numerical approximation of E[f(X (1, x))]
heavily depends on the number of the dimensions of integration. The fewer the di-
mensions, the fewer the samples that are needed.

6.2 The algorithm and competitors
6.2.1 The algorithm of the new method

We take the algorithm which is proposed in Theorem 1.6 and Corollary 1.4 with
u = 3/4. From Corollary 1.4, we can implement the second-order algorithm with
a numerical approximation of exp(Z;) of at least fifth-order Runge—Kutta method
because the order m for an integration scheme attained by Z; and Z; is five and so
the order of the new implementation method becomes two. As a result of the same
argument it can be shown that at least a seventh-order explicit Runge—Kutta method
has to be applied to the approximation of exp(Z;) when we boost the new method to
the third order by Romberg extrapolation. Details of these Runge—Kutta algorithms
used here are given in the Appendix.

6.2.2 Competing schemes

There are numerous studies on the acceleration of the Monte Carlo methods ([12]).
We choose for the following reasons only the crude Euler—Maruyama scheme and the
algorithm introduced in [27], which we refer to in the remainder of this paper as N-V
method, both with and without Romberg extrapolation, as competitors:

(i) Only these two schemes can be recognized as being comparable to the new
method, since they are model-independent.

(i) Almost all variance reduction techniques and dimension reduction techniques
applicable to the Euler—Maruyama scheme are also applicable to the new method.
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6.3 Numerical results
We provide an example on financial option pricing in the following part of this paper.
6.3.1 Asian option under the Heston model

We consider an Asian call option written on an asset whose price process follows the
Heston stochastic volatility model. Comparison with the N—V method will also be
given as well from the result shown in [27].

The non-commutativity of this example should be noted here.

Let Y| be the price process of an asset following the Heston model

t t
Yi(t, x) :x1+/ ,qu(s,x)ds—i—/ Yl(s,x)\/Yg(s,x)dBl(s),
0 0
t
Ya(t, x) =x2+/ a0 — Ya(s,x))ds (6.1)
0

t
+ [ BV (pdB 6) 41 - B ).
0

where x = (x1, x2) € (R=0)?, (BL(¢), B2(¢)) is a two-dimensional standard Brownian
motion, —1 < p <1, and «, 6, u are some positive coefficients such that

2060 — B2 >0 6.2)

to ensure the existence and uniqueness of a solution to the stochastic differential
equation [10]. Then the payoff of an Asian call option on this asset with maturity T
and strike K is max(Y3(7T,x)/T — K, Q) where

t
Y3(t,x):/ Yi(s,x)ds. (6.3)
0

Hence, the price of this option becomes D x E[max(Y3(T,x)/T — K, 0)] where D is
an appropriate discount factor that we do not focus on here. Weset 7 =1, K = 1.05,
u=0.050=2.0,8=0.1,6 =0.09, p =0, and (x1, x2) = (1.0,0.09) and take

E[max(Y3(T,x)/T — K,0)] = 6.0473534496 x 10~*

that is obtained by the new method with Romberg extrapolation and the quasi-Monte
Carlo with n =96 + 48, and M = 8 x 108 where M denotes the number of sample
points.

Let Y(¢,x) ='(Y1(t, x), Ya(t, x), Y3(¢, x)). Transformation of the stochastic dif-
ferential equations (6.1) and (6.3) gives the Stratonovich-form stochastic differential
equations

2
Y(t,x)= Z/O Vi (Y (s, x)) odB'(s),
i=0
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Table 1 Number of dimensions

involved in each method Method Number of dimensions
Euler-Maruyama dn
N-V n + dn (n-Bernoulli and (d x n)-Gaussian)
New method 2dn
where
t t 2 pB B 2
Vo', y2.93)) =" mi{ n— 5= )e@ -y =),

Vi(' 1. y2. 3)) :l(ylm, PB/ Y2, 0),

Va(' 1, y2. y3)) =’<0, By (1 —02)y2,0>-

We note that the vector fields in the Heston model violate the differentiable condi-
tion at the origin. We can, however, avoid the problem by approximating the vector
fields by smooth vector fields because the process never touches the origin under the
condition (6.2).

6.3.2 Dimensions of integrations

As mentioned in Remarks 6.1 and 6.2, the dimensions of integrations in these meth-
ods affect the quasi-Monte Carlo method. The relation among the number d of fac-
tors, the number n of partitions, and the dimensions of integration of each method
can be summarized as in Table 1.

6.3.3 Discretization error

The relation between discretization error and the number of partitions of each algo-
rithm is plotted in Fig. 1. We can observe from this figure that for 10™* accuracy the
new method with Romberg extrapolation takes the minimum number of partitions as
n =142 whereas n = 16 for the Euler—-Maruyama scheme with the extrapolation.
Even without the extrapolation, the new method attains that accuracy with n = 10
while the Euler—Maruyama scheme takes n = 2000. Moreover, it may be said that the
N-V method shows slightly worse performance than the new method.

6.3.4 Integration error

Looking at Fig. 2, we can compare convergence errors of respective methods for
each number M of sample points. For the Monte Carlo case, 20 of 10 batches is
taken as convergence error while for the quasi-Monte Carlo method, the absolute
difference from the value to be convergent is considered. For 10™* accuracy with
95% confidence level (20), M = 10® is taken for the Monte Carlo method. On the
other hand, if we apply instead the quasi-Monte Carlo method, the new method and
the N—V method require M =2 x 10° sample points, while M =5 x 10° has to be
taken for the Euler—-Maruyama scheme.
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Discretization Error and Num. of Partitions

001 ————1— — —— — —
| Euler-Maruyama —+—
Euler-Maruyama + Romberg ---x---
Ninomiya-Victoir ------
Ninomiya-Victoir + Romberg &
New Method --®--
0.001 | New Method + Romberg ---o--- -
O(1/nz) ~— =
L X o(1/m’) -
m . e-0
5e-06 ——
1e-04 b
g
=
1e-05 - .
\ \‘. \\
[N X
1e-06 | EOY .
o .
1e-07 . A . P . A . A . A
1 10 100 1000 10000 100000

Num. of Partitions

Fig. 1 Error coming from the discretization

6.3.5 Overall performance comparison

The number of partitions, the number of samples, and the amount of computation
time required for 10™* accuracy for each method are summarized in Table 2. The
CPU used in this experiment is Athlon 64 3800+ by AMD.

Since the amount of time required to carry out the calculation for each sample
point is proportional to the number of partitions, the total time spent on calculations
is proportional both to the number of partitions and to the number of samples. We
can see from Table 2 that the speed of the new method is approximately 100 times
faster than that of the Euler—Maruyama scheme when Romberg extrapolation and the
quasi-Monte Carlo are applied to each. Even when the extrapolation is not applied,
the new method enables calculations some 37 times faster than the Euler—Maruyama
scheme with Romberg extrapolation and the quasi-Monte Carlo method. This fact
shows that the reduction in the number of partitions sufficiently compensates for the
slowness of one step of the new method at least in the present study.

Lastly, Remarks 6.1 and 6.2 should be emphasized to reiterate that the advan-
tage of the new method is deeply related to the properties of the quasi-Monte Carlo
method.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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[ QMC : New Method + Rorlnberg, 1At=2 —+—
QMC : Ninomiya-Victoir + Romberg, 1/At=4 ---x---
QMC : New Method, 1/At=10 ---*---
QMC : Ninomiya-Victoir, 1/At=12 &
01k QMC :Euler-Maruyama + Romberg, 1/At=16 —-#-- |
S [ o MC : Euler-Maruyama ---©---
s [ x e 5¢-05 -
a O M 5e-06 ---------
S o
§ 001
C
o
2
:’_é
(0]
5 0001 |
o
[%2]
Qo
<
o
c
° qeo04 |
o e
=
S
J=1
8V}
1e-05 |
1e-06 . P B P P B P NG
10 100 1000 10000 100000 1e+06 1e+07

Num. of Sample points

Fig. 2 Convergence error from quasi-Monte Carlo and Monte Carlo

Table 2 # partitions, # samples, dimension, and CPU time required for an accuracy of 1074

Method # Part. Dim. # Samples CPU time (s)
E-M + MC 2000 4000 108 1.72 x 10°
E-M + Romb. + QMC 16438 48 5% 10° 1.27 x 102
N-V + QMC 16 32416 2x10° 438

N-V + Romb. + QMC 442 1246 2% 10° 1.76

New method + QMC 10 40 2 x 10° 3.4

New method + Romb. + QMC 241 12 2x10° 1.2

Appendix: The fifth-order and the seventh-order Runge—Kutta algorithms

We present here the concrete algorithms of the explicit fifth- and seventh-order
Runge—Kutta methods applied in Sect. 6.2. The fifth-order method is taken from [6]
as

2 11 5 1 3
a = -, a = —, =
21 5 31 64
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15 3 9 6
0522_6_4a 053=§’ a54=1_6a 062257 a63=§7
12 8
0642_7a a65=§a
a;j =0 otherwise,
(Lo 2 B2y
90 90 90 90 90
The seventh-order method is taken from [7] as
1 1 1 3 148
6121=g, a32=§, a4]=§, a43=§, 051=ﬁ,
150 56 404 170
053=ﬁ1 a54:_ﬁ1 a61:_%s 063=—7»
4024 10648 2466 1242
064=m, a65=m, aﬂZTOI’ 1173:%,
19176 51909 1053
Cl74=—m, a75=—m, a76=m7
5 96 1815 405
6181:15—4, 6184=%1 085=—m, a86=—m,
49 113 195 32
6187=m, a91=—3—2, a93=—5, a94=7,
29403 729 1029 21
GQSZW, a96=—m, a97=m7 6198:E7

a;j =0 otherwise,

32 1771561 243 16807 77 11)
105 6289920 1560 74880 1440 70/

b:<0 00
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