
Computing (2012) 94:811–832
DOI 10.1007/s00607-012-0202-3

ASH: tackling node mobility in large-scale networks

Andrei Pruteanu · Stefan Dulman

Received: 15 November 2011 / Accepted: 12 June 2012 / Published online: 9 August 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract With the increased adoption of technologies like wireless sensor networks
by real-world applications, dynamic network topologies are becoming the rule rather
than the exception. Node mobility, however, introduces a range of problems (commu-
nication interference, path uncertainty, low quality of service and information loss,
etc.) that are not handled well by periodically refreshing state information, as algo-
rithms designed for static networks typically do. To address specifically this problem,
the main contribution of this paper is the introduction of a novel mechanism (called
ASH) for the creation of a quasi-static overlay on top of a mobile topology. It is
powered by simple, local interactions between nodes and exhibits self-healing and
self-organization capabilities with respect to failures and node mobility. We show that
the overlay mechanism works without assumptions about position, orientation, speed,
motion correlation, and trajectory prediction of the nodes. A preliminary evaluation
by means of simulation shows that ASH succeeds in tackling node mobility, while
consuming only minimal resources.

Keywords Static overlay ·Mobile networks · Clustering algorithm ·
Self-adaptive networks · Self-configuring networks

Mathematics Subject Classification 68M14 - Distributed systems

1 Introduction and motivation

Recent years have seen a significant increase in the number and the diversity of
the devices that form the wireless networks around us. The number of devices per

A. Pruteanu (B) · S. Dulman
Mekelweg 4, Delft, The Netherlands
e-mail: andrei.pruteanu@gmail.com; a.s.pruteanu@tudelft.nl

S. Dulman
e-mail: s.o.dulman@tudelft.nl

123

812 A. Pruteanu, S. Dulman

network has grown substantially, and research domains such as mobile ad-hoc networks
(MANETs) and wireless sensor networks (WSNs) have studied the corresponding
scalability issues, for example, by providing theoretical boundaries [15,16]. How-
ever, large collections of networked devices also bring in the problem of mobility;
the larger the network, the higher the probability that individual or groups of devices
become mobile. Examples range from networks in which mobility occurs relatively
rarely (e.g., static networks with occasional node relocation due to maintenance oper-
ations) to highly dynamic networks (e.g., monitoring freight in transport and logistics
applications).

For networks that exhibit low mobility, algorithms developed for static topologies
perform reasonably well. Usually, changes of the device positions are detected and the
network topology is repaired—either via a dedicated mechanism within the protocol
(as in the DSR algorithm [21]), or by simply refreshing state information period-
ically. For networks that exhibit high mobility, however, new solutions are needed
as the required rate of adaptation induces way too much (communication) overhead.
Recent research projects targeting the development of large-scale cyber-physical sys-
tems, including programmable matter [14], swarms of tiny robots [22] and amorphous
computing [2], take mobility as a default assumption. A common approach to tackle
mobility has not materialized yet; most of the research efforts are focused on the sca-
lability aspect, in particular, the need to program the network as a whole rather than
as an individual set of nodes [10,18,31].

In this paper we propose a novel mechanism (called ASH) for handling mobility
in large-scale networks; in essence we “slow down” the network by creating a quasi-
static overlay on top of the highly mobile network. A unique feature of ASH is that
it is based on the execution of local rules only: there is no knowledge of the global
structure of the network and there is no usage of additional information related to
position, speed and direction of nodes. A key idea behind ASH is that nodes are not
addressed individually, but rather that the network is composed of a set of domains—
groups of nodes—whose membership constantly changes (see Fig. 1a). By observing
their neighbors, nodes can decide themselves which domain they currently belong to;
the decision policy is tuned to lead to domains whose centers of gravity hover around
slowly, effectively providing a “quasi-static” overlay. The name ASH was inspired by
the metaphor of an ash cloud where tiny particles are floating around in the air. The
cloud is slowly traversing the sky, while the contained particles move around each
other randomly and fast. This natural phenomenon resembles the dynamics of our
mechanism; the cloud can be compared to the domains (clusters), while the volcanic
ash particles resemble the moving individual nodes.

ASH can be used directly as an efficient overlay mechanism, for example, by assign-
ing different application-level functionality to the different domains. Alternatively,
ASH can be used as a clustering protocol by adding a leader election mechanism (see
Sect. 4). ASH is—by design—very robust to node and link failures. It is based on
a combination of gossiping, which is topology agnostic, with a periodic adjustment
procedure that reconstructs local state based on the actual neighborhood. Between
state updates, message loss and node failures are simply regarded and treated as nodes
leaving the network (domain). Simulations show that ASH succeeds in providing a

123

ASH: tackling node mobility in large-scale networks 813

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150
0

50

100

150

200

250

300

350
n real

n estim

Time [rounds]

N
od

e
C

ou
nt

(a) (b)

Fig. 1 ASH geometry and time evolution

robust overlay mechanism at low cost, that is, with minimal message exchange. This
approach makes ASH extremely robust in contrast to many other existing protocols.

The domains defined by ASH are quasi-static with respect to the deployment area.
Their mobility does not increase with the increase of the speed of the nodes. From
this perspective, if applications are targeted at the domains ASH provides, rather than
at the individual nodes, then employing algorithms for static networks on top of the
overlay becomes possible.

The remainder of this paper is organized as follows. In Sect. 2 we present an over-
view of ASH, while in Sect. 4 we introduce a clustering mechanism as an application
example. The convergence of the algorithm is shown in Sect. 3. We analyze the per-
formance of ASH in Sect. 5. In Sect. 6 we describe related work. Finally, Sect. 7
concludes the paper.

2 The ASH algorithm

Since we noted that most existing networking protocols cannot handle large-scale net-
works exhibiting high node mobility, we set out to design an architecture that would
be capable of handling these networks of the future. The result is a fully decentral-
ized mechanism (ASH) that makes use only of local nodes interaction, to create a
quasi-static overlay, a virtual partitioning of the network into domains. For the sake
of clarity, we define a domain as a group of neighboring nodes that share the same
identifier (domain ID). Each domain usually spans over multiple communication hops
and has a tendency to maintain a convex shape—see Fig. 1a.

The domains in ASH can be thought of in analogy with a number of gas balloons
filling a fixed physical space (i.e., a box). Due to disturbances, the shape of the balloons

123

814 A. Pruteanu, S. Dulman

and their relative positions may change. The amount (mass) of gas in each balloon is
nevertheless constant, although the pressure in each balloon may fluctuate. Despite
the random movement of air molecules, the system will converge to a stable state.
ASH works on the same principle: each domain has a total mass M distributed over
the nodes in that domain. The share of mass a node i holds is denoted by mi . In a
domain S, we have

∑
i∈S mi =M. pi represents the local pressure of each node and

is a function of the total mass M and the number of nodes in a domain.
For a domain containing a large number of nodes, the share of the mass variable

on each node will be small (we say that the domain has a low pressure). Neighboring
domains containing a smaller number of nodes (i.e., having a higher pressure) will
extend, by pushing the boundaries of the first domain until the number of nodes in
each domain will be approximately equal—pressures will equalize.

For a static network, the system will converge to an equilibrium at the borders
between the domains. In a dynamic network, the mobile nodes continuously fluctuate
the position of the borders, although the resulting macro-mobility of the domains does
not increase when node mobility is higher (this is somewhat similar to immiscible
fluids interaction modeling with cellular automata [5]).

In order to explain ASH in detail, we consider the abstraction of network com-
munication occurring in rounds—similarly to the work presented in [19]. Rounds are
fixed-length time intervals with each node broadcasting once every round. This model
does not reduce the generality of the solution as the rounds do not need to be synchro-
nized, avoiding cumbersome clock synchronization between nodes. In practice, this
translates to nodes performing actions approximately periodically, such that, when
averaging over a large period of time, all nodes perform equal number of actions.

During each round, each node has to perform the following three phases (see
Algorithm 1):

1. domain ID selection—nodes will decide their domain ID based on the domain IDs
and local pressures of their neighbors (see Sect. 2.2);

2. residual mass return—nodes that just changed their domain ID will distribute
their mass value to neighboring nodes from the old domain, if any (see Sect. 2.3);

3. diffusion of mass—nodes will attempt to equally distribute the mass in each domain
(i.e., equalize the pressure in each domain) by means of gossiping (see Sect. 2.4).

The second action (residual mass return) can lead to mass loss in the domains
(
∑

i∈S mi < M); nodes belonging to one domain can move out so fast that they do
not have the chance to return their share of the mass back to the old domain. This
phenomenon leads to a steady drop of mass in the domains over time—see Sect. 2.5
for a solution.

2.1 Initialization

ASH considers a fixed number of domains at start (NS). In the initialization part, the
algorithm starts by randomly assigning domain id k (k = 1..NS) and mass M to a
NS number of nodes. They act as “seeds” from which the domains will “grow”. Thus,
each domain starts out as a single node, and will expand until the whole deployment

123

ASH: tackling node mobility in large-scale networks 815

Algorithm 1 ASH algorithm.
1: function ASH(NS , nr , M)

NS – number of domains
nr – number of rounds
M – initial mass for all domains

2: for all NS domains k do � initialization
3: Pick random unassigned node j
4: node j ← domain k
5: node j ← mass M
6: end for
7: for nr rounds do � main algorithm
8: for all nodes i do � algorithm phase 1
9: node i updates its domain ID
10: end for
11: � algorithm phase 2
12: for all domain leader nodes j do
13: node j runs pressure correction phase
14: end for
15: for all nodes i do � algorithm phase 3
16: node i runs diffusion phase
17: end for
18: end for
19: end function

area is covered by domains. These special nodes play a role solely during the initial-
ization phase. They do not need to act seeds after the clusters have converged to a
stable structure.

When compared to “classic” clustering algorithms (although ASH is a more general
framework!), the fixed number of domains might seem like a limitation. Almost all
existing competing algorithms dynamically adapt the number of clusters. ASH can
be easily extended to comply with this behavior, by allowing domains to be dynami-
cally created at run-time. For example, when the pressure inside a domain is very low
(meaning that the domain is made up of a large number of nodes), a new domain can
be spawned. A similar rule based on checking the pressure level can be used to remove
unwanted domains.

Based on the current approach, we are enabling a new class of applications. The
constant number of multihop domains allows the so-called functional partitioning of a
network. Each domain will be assigned a different functionality. As individual nodes
randomly roam through domains, a scheduling policy at high level, of how many nodes
should perform a certain functionality at each given moment, is easily implementable.

2.2 Domain ID selection

Each node will decide its domain ID (“domain color” in Fig. 1a) based on a weighted
combination between majority voting—dominant domain ID of its neighbors—and
the pressure difference between neighboring domains (via a weight η ∈ [0, 1]).

Let us assume a node i has in its vicinity nodes from Di distinct domains. The
number of neighbors for node i , including itself, belonging to a domain k (where

123

816 A. Pruteanu, S. Dulman

k = 1..|Di |) is ni,k . The average pressure of the surrounding nodes in domain k is
pi,k = mi,k

ωi,k
(See Push-Sum algorithm [23]). The node i will compute a series of values

θi,k :

θi,k = (1− η) · ni,k
∑

t∈Di
ni,t
+ η · pi,k

∑
t∈Di

pi,t
. (1)

Let k̃ be the id of the domain corresponding to the maximum θi,k for node i (k̃ =
arg maxk θi,k). The node i will consider switching its domain ID to the domain k̃. Let
k0 be the previous domain id of the node i . To allow for a smooth functioning of the
network, the switch to a new domain is subject to a threshold mechanism: node i will
switch its domain only if |θi,k0 − θi,k̃ | > Δ with Δ being a predefined threshold.

Since the domain selection process is carried out independently by all nodes, it can
happen that a small domain simply disappears when all members join a neighboring
domain. If not prevented, this effect will carry through and cause all domains to even-
tually collapse into a single one, spanning the entire network. This undesirable effect
is removed by introducing a domain leader (see Sect. 4), which will be prevented from
changing its domain ID. This step is only needed at the initialization part.

2.3 Residual mass return

At this phase, nodes that decided to change their domain ID need to adjust their mass
by sending it back to the old domain and enter the new domain with mass 0. The
diffusion phase that follows ensures that mass redistributes equally in both the old and
the new domain.

The simplest way a node can return mass to the old domain is to select one or more
of its neighbors from the old domain and send them its mass. This approach works in
most cases, with one exception though. It can happen, due to various dynamics, that
a node finds itself in a situation in which it has no neighbors from the old domain
anymore. In this case, the mass on the node will actually be lost, unless a mechanism
such as routing is in place. We decided to use the simple solution of discarding the
mass in this particular case, and repairing the loss later. The reason is that we avoid
the complexity of routing in a dynamic network topology, and the repair mechanism
described in Sect. 2.5 is easy to implement.

2.4 Diffusion

At this phase of the ASH algorithm nodes diffuse the mass via gossiping in order to
flatten-out the pressure distribution. Since the nodes are not synchronized, and may
deploy sleep schedules to conserve energy (behavior common to sensor networks),
there is no guarantee that all neighbors are ready to communicate when a node enters
the diffusion phase. This situation is aggravated by nodes moving in and out of range, as
well as errors on the wireless communication channel. To handle the resulting volatility
ASH employs a gossiping style of communication on top of a periodic mechanism of

123

ASH: tackling node mobility in large-scale networks 817

neighborhood discovery (the diffusion phase may actually consist of several gossiping
rounds—see Sect. 5).

Periodic neighborhood discovery is done by nodes sending short “Hello” messages
containing a tuple 〈node ID, domain ID, local pressure〉. Periodic neighborhood dis-
covery is a common mechanism in mobile networks, and the functionality is provided
by the media access control (MAC) layer. For the implementation of the gossiping
mechanism, we also consider acknowledgments. This needs not be perfect due to the
fact that the pressure correction mechanism described in Sect. 2.5 compensates the
effects of message loss.

Similarly to the Push-Sum gossiping algorithm [23], each node i needs to store the
following local variables: the local mass (mi), a weight factor (ωi) and the domain ID
of the node (di). Local pressure is computed as pi = mi

ωi
via the averaging mechanism

described in the Push-Sum algorithm.
In short, the gossiping protocol works as follows. Assume a node i has the values

mi,t and ωi,t at the beginning of communication round t . Node i randomly picks a
neighbor from the same domain, and sends it and itself the set {mi,t

2 ,
ωi,t

2 }. During that
round t , the node receives updates {mr

j,t , ω
r
j,t } from a set S0 of ni neighbors, including

itself (j ∈ S0). The node updates its mass value and weight, for the communication
round t + 1, as follows: mi,t+1 = ∑

j∈S0
mr

j,t and ωi,t+1 = ∑
j∈S0

ωr
j,t . As shown

in Proposition 2.2 in [23], the sum
∑

i mi,t remains constant at each moment in time.
For fixed infrastructures, standard gossiping has a convergence time for computing

an average value across the network within accuracy e that requires Θ(n2 log e−1)

messages. The solution of constructing a spanning tree and flooding back the aver-
age in an ad-hoc network introduces a lot of overhead that leads to high message
complexity. It has been proven that any kind of mobility is beneficial, especially the
fully-random one as is the case with our scenarios [28]. Different mobility patterns
can have significantly different effects on the convergence of distributed algorithms
such as gossiping [13]. If m nodes have full mobility and the others are fixed, the
convergence time drops to Θ(n2/m log e−1).

To ensure that gossiping has enough time to converge, the diffusion phase may
actually consist of several gossiping rounds. The number of rounds that are required
depends on the application, more exactly, on the average speed of the nodes and
their density, as well as the desired domain stability. We evaluate this dependency via
simulation and present the results in Sect. 5.

2.5 Mass correction

In practice, domains lose mass over time. This happens primarily as an effect of node
mobility; when a node suddenly finds itself surrounded by neighbors all belonging to
a different domain than itself, it must switch domain ID, but cannot hand its resid-
ual mass back to the originating domain. Simulation results show that the mass loss
is small even for high mobility, across all domains. Nonetheless, if no measures are
taken, the mass in each domain will constantly drop towards 0. For the case of real
networks, mass loss may also occur due to various failures. For example, nodes that
suddenly reset or messages lost in the diffusion phase lead also to additional mass loss.

123

818 A. Pruteanu, S. Dulman

Thus, providing a mechanism for solving this problem, leads not only to a solution for
the problem of nodes having no neighbors from the same domain, but also constitutes
a self-healing mechanism for two of the most common failures met in mobile wireless
networks.

Simplistic approaches for solving the mass loss issue may rely on knowing the sta-
tistical characteristics of the network: average density and flux of nodes in and out of
domains. Based on these estimations, the mass could be periodically increased in each
domain with a precomputed amount. This mechanism, however, cannot guarantee that
the average mass across all domains is stable (may diverge to either infinities) due to
the lack of a feed-back mechanism. We propose a solution for keeping the average
mass level constant in the domains that assumes the existence of a leader in each
domain (similar to a conventional cluster head). The basic idea is that a diffusion-
based mechanism (called the ASH-NetSize algorithm) is used to estimate the number
of nodes inside a domain. By multiplying this estimate with the average mass value
obtained in the previous round, a domain leader can determine the total mass in its
domain. If it drops bellow a threshold, the leader can inject additional mass into the
domain to compensate for the loss.

ASH-NetSize is making use of the gossiping mechanism [28] to estimate the domain
size. One of the aggregates that we can compute via gossiping is the mean value of

some shared variable φ through all n nodes of domain (φ =
∑

i φi
n with i = 1..n). Let

us assume that all nodes have a value of φi = 1. The domain leader (node k) estimates
the size of the network to be ne and subtracts this value locally (φk ← 1 − ne). Via
gossiping, after a number of rounds, the set φi converges to a new set φ′i = φ′—the
new average of the distributed variable. If the network size was correctly estimated,
then φ′i = 0, ∀i . If not, then the sign and value of φ′i gives an indication on how

the estimation of the network size needs to be updated (if φ′i < 0 then ne was over-
estimated, else it was underestimated). By constantly updating it, ne will follow the
variations in the network size.

Due to space limitations, the ASH-NetSize algorithm cannot be presented in full
detail, but we do provide information on its accuracy. Figure 1b shows that the estima-
tion algorithm is able to follow the fluctuations of the domains quite closely, smoothing
out the “noise”. The traffic overhead associated with ASH-NetSize is minimal, since
the correction information is piggy-backed through the already existing mechanism
of diffusion (see Sect. 2.4). As a result, the average mass in the domains will be close
to the desired value.

3 ASH convergence

The creation of ASH clusters depends solely on local rules. At equilibrium, they con-
verge to an equilibrium of equal node count. To prove convergence, we will first
consider a general case, in which we analyze the variation of the number of nodes Ni

and N j in two neighboring clusters i and j .
The amount of nodes that switch between the two clusters i and j is proportional

to the contact border φi, j between them. Let the node density in cluster i be ρi = Ni
Si

,

123

ASH: tackling node mobility in large-scale networks 819

0 100 200 300 400 500
−100

0

100

200

300

400

500

600

time (rounds)
no

de
 c

ou
nt

model
unclustered nodes
simulation

(a) (b)

Fig. 2 ASH modeling

where Ni is the number of nodes in cluster i and the cluster surface is Si . Let ri =
√

Ni
π ·ρi

be the radius of the cluster i, given that it has a convex shape. Let the length of the
contact border between the two clusters i and j be

Li, j = fi, j · 2πri = 2 fi, j

√
πNi

ρi
(2)

where fi, j is the fraction of cluster i border that is “touching” cluster j . We can
approximate Li, j to:

Li, j ≈ K ·√Ni (3)

K is a constant resulting from the fact that ρi is also constant at equilibrium. Since
we are dealing with a spatial problem, the distance between the domains also plays
an important role. We capture it via function α(di, j) that models the relation between
domains i and j distance, and the node exchange rate between domains.

A sketch of the state transitions that models the system is shown in Fig. 2a. PTU,i

denotes the probability of unclustered nodes to be part of the cluster i. PTi, j shows
the probability that a node will transition from cluster i to cluster j .

PTU,i ≈ K ·√Ni (4)

PTi, j ≈ Sign(Ni − N j) · K
√

Ni · α(di, j) (5)

We approximate α(di, j) with an exponential distribution to show that the rate of
transfer between neighboring domains decreases exponentially fast with the distance
between them. Although in practice α(di, j) has a very abrupt profile, being actually
equal to 0 after a distance threshold, the exact form of the function does not influence

123

820 A. Pruteanu, S. Dulman

the convergence proof (although it certainly influences the convergence rate).

α(di, j) = e−ψ ·di, j H(di, j) (6)

where ψ is a constant and H is a modified version of the heaviside step function,
defined as following:

H(di, j) =
{

0 if di, j > 0.5

1 if di, j ≤ 0.5

From a node flow perspective, the number of nodes in a domain j varies as
following:

d N j

dt
=

N∑

i=1,i �= j

Sign(N j − Ni) · K
√

N j · α(di, j) (7)

We check the model by comparing it with simulation results as shown in Fig. 2b.
As parameters, we chose ten clusters and node mobility following a Random Walk
model. The maximum node speed was set to 20 meters per second [mps]. The average
neighborhood size was 15. For the constants, we used K = 0.1 and ψ = 3.

As shown by Fig. 2b, the number of un-clustered nodes converges fast to 0. The
results in the simulation closely match the model. In order to compute the equilibrium
point, we need to solve the system given by

d N j
dt = 0, for all clusters j in the setup.

If for all clusters j , we sum up Eq. 7 and reduce K and αi, j , we have:

0 = √
N1(Sign(N2 − N1)+ · · · + Sign(NK − N1)

+√
N2(Sign(N1 − N2)+ · · · + Sign(NK − N2))

. . .

+√
NK (Sign(N1 − NK)+ · · · + Sign(NK−1 − NK))

= f (Ni=1..K) (8)

Since the number of nodes in each cluster is strictly positive, at equilibrium,
(Sign(N2− N1)+ · · · + Sign(NK − N1) = 0, (Sign(N1− N2)+ · · · + Sign(NK −
N2) = 0, etc. For the general case, the only equilibrium point of the dynamic system
occurs only when N1 = N2 = N3 = · · · = NK = N

K , as expected.

4 Application example—ASH-cluster

In this section we show how the domains built by ASH can be used by various applica-
tions. We revert to the example of clustering, for which a large number of algorithms
have been surveyed and compared in works such as [1,33]. The performance of these
clustering schemes is evaluated with a multitude of metrics: communication overhead,
power balancing, re-clustering ripple effect, cluster formation time, etc. The large

123

ASH: tackling node mobility in large-scale networks 821

Algorithm 2 ASH cluster head election
1: function ASH- ClusterHead(ct−1) returns ct

local node variables:
gi – local gradient
ni – nr. neighbors of i
no,i – nr. neighbors of i from other domains

notations:
i – node identifier
cr – clusterhead node ID at round r
Ni – set of neighbors of i in the same domain

2: for all nodes in domain do � algorithm phase 1
3: gi ← no,i

ni+1
4: end for
5: for all nodes in domain do � algorithm phase 2
6: if i == ct−1 then
7: ct ← arg min gi ∈ Ni
8: end if
9: end for
10: end function

majority of these algorithms target static networks—as soon as mobility is involved
the clustering problem becomes increasingly more difficult to solve although possible
alternatives have been proposed [32].

The domains defined by ASH can be readily used as clusters, hence, ASH-Clus-
ter (see Algorithm 2) was developed as a natural algorithm on top of the overlay.
ASH-Cluster provides multihop clustering for mobile networks by solving the prob-
lem of re-clustering ripple effect in an elegant way, while keeping the communication
overhead at a low value. The key is that ASH-Cluster creates the domains (clusters)
independent of the election of a cluster head. This makes it superior to the large
majority of existing algorithms, in the sense that mobility of a cluster head does not
trigger re-clustering. Actually, the cluster head election is a mechanism implemented
in ASH-Cluster after the clusters have been created.

Assume node i belongs to domain Di . To establish a gradient on node i (see Fig. 3a),
we use the ratio between the number of neighboring nodes belonging to other domains
(
∑

j∈Di , j �=i ni, j) and the number of all neighboring nodes (
∑

j∈Di
ni, j).

Figure 3a shows the gradient in colors, blue indicating the center of the domains.
The probability of nodes “hosting” the cluster head agent is smallest in the red regions
and highest in the dark blue ones.

Routing of information takes place in a unidirectional way, in the sense that nodes
can send data towards the cluster head (fitting the data-collection type of applications)
as shown is [3], via the gradient mechanism described below. The communication
between the cluster heads is similar to the one used by the LEACH protocol [17].
The cluster heads form a backbone network (a spanning tree routed at the gateway)
and make use of an increased transmit power to communicate to each-other. The clus-
ter head is, in our case, a software agent that “jumps” to different nodes to perform the
data collection and communication with other agents. It is usually located in the mini-
mum gradient area, and also uses the gradient to restrict the search area (ideally to the

123

822 A. Pruteanu, S. Dulman

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3 ASH gradient

center of the domain) when looking for a new candidate to “jump to”. Nodes route data
towards the minimum gradient point, where it will be met by the cluster head agent.
The second phase of Algorithm 2, has a very low overhead. When a given cluster-head
finds in its neighborhood a node with a lower gradient value it passes the token to it. The
rule is only performed by the clusterhead node. Additionally, ASH-cluster algorithm
avoids routing deadlocks caused by the uncertainty of the cluster-head assignments.
It works such that a node will send packets in a multi-hop manner via the gradient.
There is no need for the routing tables to maintain paths towards the cluster-head.

5 ASH algorithm analysis

To evaluate the stability of ASH, we need some means of characterizing the shapes of
the domains as well as their fluctuation in size (number of nodes). We introduce four
metrics to measure the stability of domains over time: the motion of the centroid of the
node positions per unit of time (motion metric), the domain shape variation per unit of
time (variation metric), the standard deviation of the domain sizes (Std. Dev. Domain
Size metric) and the ratio between the largest domain size and the smallest domain size
(ratio metric). The domains “hover” around, somewhat similarly to Brownian motion,
at a speed significantly smaller than the average speed of the nodes in the network.
At the same time, the shapes of the domains fluctuate around a stable circular-alike
perimeter. The motion metric captures the actual mobility of the domains per unit of
time, and the variation metric captures the fluctuations in surface size per unit of time.
The stdSize metric tracks the variation of domain sizes through time and the ratio
metric shows the imbalance between the largest domain size (measured in number of
nodes) and the smallest.

The motion metric is equal to the distance traveled by the centroid of the node posi-
tions, in a domain. The centroid is defined as (xc, yc) = (1

n

∑
i xi ,

1
n

∑
i yi), i = 1..n,

where xi and yi are the coordinates of the nodes. The motion metric is defined as
m1 = ||(xc,t+1; yc,t+1), (xc,t ; yc,t)||.

123

ASH: tackling node mobility in large-scale networks 823

Let dt be the mean value of the distances between the centroid of a domain and all
the nodes in the domain, at time round t . The variation metric is equal to the differ-
ence: m2 = dt+1 − dt . This metric will show increasing values with the fluctuations
of the sizes of the domains.

We simulated ASH and ASH-Cluster using Matlab. We considered mobile nodes
deployed in a square deployment area with an edge length of 1,000 m. The transmis-
sion range of the nodes is set to 100 m based on a disk communication model. We set
ASH to operate with ten domains in our simulations (cf. Fig. 1a). One might argue that
such a high-level simulation is not a true representation of an actual deployment since a
lot of problems occur from unexpected places (software bugs, hardware failures, com-
munication interference, scalability issues etc). The scope of the paper is to present a
mechanism that is agnostic to the lower layers such as MAC and PHY. To preserve the
generality, we model all low-level errors as mass loss, with the implication that these
simplified assumptions do not affect the overall stability of ASH. The high-level, more
abstract nature of our work does not presume that a complete implementation would
not be affected by various engineering problems. On the contrary, we acknowledge
this limitation and claim that, due to the nature of the systems we simulate (highly
mobile), an implementation on an actual embedded platform is expensive and difficult
to realise and, most of the times, it is affected by potential problems caused by various
implementation choices. This fact can potentially invalidate some high-level assump-
tions. On the other hand, algorithmic wise, it would not bring a tremendous insight
for our work. Since our modeling of failures is straightforward, it is highly unlikely
that this would happen. We considered Matlab due to its built-in analytic capabilities
and easy of usage.

Node travel with a speeds ranging from a minimum of 10 m/round (0.5 mps) to a
maximum of 100 m/round (20 mps). In our simulations, we use four mobility models:
Random Walk [6], Random Direction [27], Random Waypoint [6] and Slaw [25]. The
choice was made such that they cover a wide range of behaviors, from nodes traveling
all over the deployment area (Random Waypoint) to nodes moving in a localized man-
ner (Random Walk) to realistic human mobility (SLAW). Each experiment consisted
of simulations running for 500 time rounds, for each mobility case.

For the case of the Random Walk model [6], also named Markovian Mobility model,
nodes move freely anywhere in the simulation area. The direction of the movement
ϕ is taken from a uniform distribution in the interval [0..2π]. The speed values ϑ
follow a uniform distribution. Once the node reaches a destination, it chooses a new
direction and starts moving toward it after a randomly chosen time interval, taken from
an exponential distribution.

The Random Direction model [27] operates similarly to the random walk, except
that nodes continue to travel until they are within some distance of the simulation
space boundary. Then they stop and choose new, random destinations.

In the Random Waypoint model [6] a node randomly chooses a destination point
in the deployment area, moves with constant speed υ (chosen uniformly from a given
interval) on a straight line then pauses for a random time before it again chooses a new
destination.

SLAW mobility model [25] describes social contexts that occur among people
sharing common interests or those in a single community such as university campus,

123

824 A. Pruteanu, S. Dulman

 160

 180

 200

 220

 240

 260

 280

 300

 0 5 10 15 20 25

RW
RWP

RD
SLAW

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25

RW
RWP

RD
SLAW

Fig. 4 Node speed influence. Network size: 477 nodes

companies and theme parks. It expresses the mobility patterns involving these contexts
by fractal waypoints and heavy-tail flights on top of the waypoints.

5.1 Influence of network mobility

The Random Waypoint (RWP) mobility leads to the formation of more stable domains
when compared to other mobility patterns (see Fig. 4a, b). The results are similar to
well known experiments, such as those presented in [7]. This is caused by the position
distribution of the nodes, which is higher in the center of the deployment area, when
compared to the other two models.

The Random Waypoint mobility model is used in many prominent simulation stud-
ies for ad-hoc network protocols. Although its ability to produce realistic mobility
patterns is debatable, the flexibility of the model determines its adoption by a lot of
simulation scenarios. The Random Direction model provides a uniform distribution
of nodes over the deployment space. As seen in our simulation results, this mobility
model leads to comparable results with the Random Waypoint model. The Random
Walk model causes ASH to perform the worst due to the lack of correlation between
neighboring nodes motion. The SLAW model produces to human-alike mobility and,
as such, creates clusters that are more stable (reduced speed around specific points).
ASH performs best for this model.

Figure 4 shows that the increase in node speed has basically no influence on the
overall stability of ASH for all mobility models except Random Walk. In fact, both
variation and motion metrics exhibit a similar behavior. This is the most important
characteristic of our algorithm. For the Random Walk model, on the other hand, ASH
shows a steadily increasing degradation in performance with the increase of speed.
This happens for a high node speed due to the fact that the second term in the domain
selection formula leads to irregular shapes of the domains, affecting the stability of the
algorithm. Above 12 meters per second [mps], the clusters are less stable for the case
of Random Walk model. Network size was set to 477 nodes in order to maintain an
average node density of 15. The authors of [9] showed that the idea of a critical radius

123

ASH: tackling node mobility in large-scale networks 825

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

-1 0 1 2 3 4 5 6 7 8 9 10 11

RW
RWP

RD
SLAW

Fig. 5 The influence of gossiping on the stability of ASH. Network size: 477 nodes. Mobility model: RWP

(smallest possible transmission radius, to minimize the amount of consumed energy
for transmission, without compromising connectivity) being determined solely on the
given node density is not accurate. For the case of uniform mobility models [20], it is
expressed as a function of the node velocity, as well. The benefits of the uniform node
density and resulting connected graph dependence on the node velocity parameters
are greatly influencing the performance of the algorithms.

Figure 4b shows the influence of average node speed on the the average domain
movement (the motion metric). The average speed of the center of mass of the domains
is not increasing with the average node speed.

5.2 ASH communication mechanism

Transmission-wise, wireless communication is inherently a broadcast medium. This
property has some advantages on the sending side, since there is no need to transmit
multiple packets towards individual nodes in the one-hop vicinity when disseminating
information. The usage of broadcasting, leads to faster diffusion of information.

The costs of information exchange and time synchronization are important prob-
lems in wireless sensor networks. For this reason, we do not assume that all nodes
are awake or that they have any sort of time synchronization. Still, at every diffusion
step (equal spaced in time) the nodes are sending “Hello” messages. At all times, we
assume that only a subset of the one-hop neighbors receive the packets. To compensate
for this reduction in diffusion speed, several gossiping rounds are performed. As seen
in Fig. 5, when all the nodes are listening and are perfectly synchronized with the
senders, the domains become more stable (corresponds to the value 0 on the X axis).
Otherwise, ASH compensates the reduction of diffusion speed with more gossiping
steps. As seen in Fig. 5, the performance achieved when using a perfect broadcasting
mechanism is equaled by performing five or more rounds of gossiping steps.

5.3 Domain selection stability

The domain selection mechanism (see Sect. 2.2) combines majority voting and the
difference between “pressure” levels of the domains. The two terms have different

123

826 A. Pruteanu, S. Dulman

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

RW
RWP

RD
SLAW

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 0.2 0.4 0.6 0.8 1

RW
RWP

RD
SLAW

(a) (b)

Fig. 6 ASH Sensitivity to η. Network size: 477 nodes

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9 10 11

 ASH
 RCC

 DGMA

Fig. 7 ASH Sensitivity to different mobility models for various node mobility levels and node density

influences. Majority voting smooths out the edges at the borders of the domain, while
the difference of pressure mechanism ensures the dynamic equilibrium between the
domains such that all of them will converge to the same size.

We checked the stability of the static overlay mechanism by varying the weight η,
see Fig. 6. We found that if majority voting dominates (η→ 0), one or more domains
may disappear due to the lack of “pressure” influence on the decision. That is, a domain
may keep enlarging since there is no feed-back mechanism to limit its growth, while
the others will gradually shrink—see Fig. 6b. On the other hand, if the difference of
pressure mechanism dominates (η→ 1), the edges are more rough and the shapes of
the domains are highly irregular and keep changing frequently. This time, although
the domains are balancing each other, any small difference in the pressure levels at
the borders can trigger frequent changing of the domain ID values for the nodes at the
border. Figure 6a confirms this by showing great fluctuations in the standard deviation
of the domain sizes for η /∈ (0.2, 0.6) and stability for η ∈ (0.2, 0.6).

Another important factor of the stability analysis is the network density. As seen
in Fig. 7a it has an important influence on the overall stability of ASH. Given a fixed
transmission range of 100 m, at lower node densities, the variation metric shows a

123

ASH: tackling node mobility in large-scale networks 827

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9 10 11

 ASH
 RCC

 DGMA

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

ASH
RCC

DGMA

(a) (b)

Fig. 8 Algorithm comparison for various node speed. Mobility model: RWP

high fluctuation of the domain sizes. Only after the node density is higher than ten
nodes per transmission radius we see a stable behavior.

As shown previously, for fixed infrastructures, standard gossiping has a conver-
gence time for computing an average value across the network within accuracy e that
requires Θ(n2 log e−1) messages. As expected, our simulations indicate that given
enough gossiping time, the global variables converge faster for the case of mobile
networks (see Fig. 4a).

5.4 Comparison to similar mechanisms

Although there has been a lot of research on clustering algorithms for wireless net-
works [1], the emphasis on resilience to node mobility has been more or less neglected
due to various causes such as difficulty of the problem, experimental limitations such
as the lack of an easy way to use/deploy mobile test-beds, scarcity of envisioned
applications for civilian use etc. We selected two clustering algorithms that were spe-
cifically designed to cope with node mobility, to compare ASH with. The first one
is called RCC (Random Competition based Clustering) [30]. The nodes use timers
before broadcasting recruit messages in order to reduce contention. If multiple recruit
broadcast messages are received, the rule of the lower-id takes place—the node with
a lower node id becomes cluster head. RCC is a multi-hop clustering scheme, so the
chances of getting two cluster-heads within communication range with each other is
lower compared to one-hop clusters. The other scheme that we chose to compare ASH
with is the Distributed Group Mobility Adaptive Clustering Algorithm for Mobile Ad
Hoc Networks (DGMA) [34]. Compared to RCC, it only forms one-hop clusters so it
is more prone to be affected by re-shuffling due to topology dynamics. An important
assumption it makes is that nodes use position information.

As seen in Fig. 8b, the influence of node mobility is tremendous for RCC and
DGMA. ASH is almost not influenced at all by the increase of the the node mobility.
This is a tremendous achievement since the re-clustering effect is one of the most
detrimental effects.

123

828 A. Pruteanu, S. Dulman

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

 ASH
 RCC

 DGMA

 0

 5

 10

 15

 20

 5 10 15 20 25 30

 ASH
 RCC

 DGMA

(a) (b)

Fig. 9 Algorithm comparison for various node density. Mobility model: RWP

An important aspect is to look at the number of nodes that change cluster assignment
due to re-shuffling caused by node mobility. As seen in Fig. 8a, due to the fact that
both RCC and DGMA produce much less stable clusters and member nodes change
their assignment much more frequently, the churn metric shows that ASH is around
five times more stable. One would expect node speed to affect the same metric more
than the node density. In Fig. 9a we notice a much more pronounced influence of an
increased node density compared to an increased node speed. Again, ASH is signifi-
cantly more stable. The motion metric though shows no significant difference between
the competing algorithms for an increased node density (Fig. 9b).

When searching for competing algorithms, we had a hard time finding one that
targets mobile networks. Additionally, most of the algorithms are either simplistic or
make use of strong assumptions such as having knowledge of node positions. The rea-
son we think both competing algorithms perform considerably worst compared to ASH
is due to the underlying assumption that the network is always mobile. There is no time
for them to converge to a stable overlay then slowly adapt to small changes in topology.

Both RCC and DGMA algorithms have O(N) message complexity. It means they
require a low message complexity for the control traffic needed to maintain the clus-
ters. An important property of ASH is that all algorithmic steps are piggybacked on
one underlying gossiping scheme. The creation of the gradient, the election of the
cluster-head, the return of mass between clusters etc. are not adding-up to message
complexity. On the other hand, when considering broadcasting, the number of mes-
sages that are received by each node is a function of the local node density ρi . The
message complexity for ASH is O(N) when no messages are lost. For the case of
multicasting (it models the broadcast with message loss), the number of messages that
are received by each node is a fraction of node density K · ρi where K is the fraction
of nodes that receive the messages at one gossiping step.

5.5 Discussion

ASH shows a number of attractive features making it a good choice for the design of
networking algorithms. First of all, ASH uses no node position or movement infor-

123

ASH: tackling node mobility in large-scale networks 829

mation. Secondly, the scheme scales well with the size of the network. There are no
limitations in terms of upper network size (our simulations involve thousands of nodes
already). Thirdly, communication failures are modeled as nodes that travel with high
speed and do not need special handling.

On the other hand, the only assumption that causes an overhead is the periodic
neighborhood discovery protocol. From a practical point of view (i.e., implementing
ASH on a real mobile network), a deployment will have to consider the analysis and
the tweaking of several parameters such as weights (majority voting, gradient, round
lengths, etc.), as well as their correlation with the deployment conditions (maximum
node speed and transmission range). Also, of particular importance is the choice of the
MAC protocol and the associated transmission scheme (TDMA, CSMA/CA, etc.) that
best suits the application requirements in terms of latency, bandwidth, and tolerance
to possible congestions and information loss.

A possible drawback comes from the fact that the protocol is based on local rules
only, is that nobody keeps track of the routes towards other nodes. This leads to direc-
tionality in the communication, since data can only be sent from the nodes towards the
cluster heads in a multi-hop fashion, following the gradient mechanism. The cluster
head that forwards data towards a particular node needs to find a route to that node
first. We plan to address this issue in the future.

Based on these considerations, a number of applications can be deployed on top
of ASH. They target mainly data collection protocols but can be easily extended to
localization protocols (given that a domain is fixed to some geographical region or
close to some ‘event’), clustering protocols (see Sect. 4) and further on to routing, etc.
Additionally, one could develop a functional partitioning of the network, where nodes
in different domains perform different actions (nodes in one domain surrounding an
event can collect data, while nodes in another one can perform in-network processing
of the data).

All these possibilities can be achieved by virtue of the stability exhibited by the
ASH algorithm on top of the raw network mobility. The two metrics used for analysis
of the stability of ASH (the mobility and variation metric) showed that it is insensitive
to variations in the maximum speed of the nodes (cf. Fig. 4b). In terms of the values
needed for weights, the domain are stable and do not increase the fluctuate of the
shapes with the increase of node speed (see Sect. 5.3).

The motion metric does not describe the motion of the cluster heads. It describes
the motion of the centroids for each cluster. It it a measure of the aggregate movement
of the clusters per unit of time (seconds in our scenarios). The stabilizing properties
of ASH are more evident for high node speed where the motion of the centroids is
follow a logarithmic like curve.

6 Related work

In ASH, individual mobile nodes are using simple behavioral rules (i.e., periodic
local exchange of a set of variables) to generate a pattern at the collective level (i.e.,
a static overlay) that is more intricate than the simple, one-hop interactions from
which it emerges. From this perspective, ASH resembles algorithms met in the area of

123

830 A. Pruteanu, S. Dulman

complex systems [26], such as the techniques inspired by biological systems, which
are based on simple local interactions and are fully decentralized. For example, the
firefly-inspired synchronization [29] has several striking features that make it attractive
for large-scale networks. To synchronize with each other, nodes execute very simple
computations and interact in a simple manner, maintaining no internal state regarding
neighbors or network topology. The synchronism provably emerges in a completely
decentralized manner, without any explicit leaders and regardless of the starting state.
The algorithm is very robust to network topology changes. On the other hand, desyn-
chronization is the logical opposite of synchronization; instead of nodes attempting to
perform periodic tasks at the same time, nodes perform their tasks at moments in time
equally spaced apart from each other. Desync [11] is such a self-maintaining desyn-
chronization primitive and achieves desynchronization in a single-hop network. Other
types of emergent algorithms, similar to ASH, exist as well. In the MIT amorphous
computing project [2], researchers used the peer pressure algorithm to regularize the
regions of a surface covered by smart paint, smooth the edges and fill in the surface
holes. Similar to the assumptions ASH makes, the myriad of computational elements
are uniform-randomly distributed throughout the smart paint.

ASH uses gossiping as the basis for its communication mechanism. Gossiping (also
known as epidemic algorithms) is a simple randomized procedure, finding its use in
disseminating information in large-scale networks. It was firstly introduced to main-
tain consistency for distributed databases when performing updates [8], offering a
resource-efficient and robust alternative to complex deterministic algorithms. From
a communication perspective, the underlying communication mechanism of ASH is
related to the work presented in [24], where epidemic algorithms were proposed to for-
ward information in mobile networks with intermittent communication links. Similar
mechanisms, such as random walks, are explored in more recent work [4]. The focus
in these approaches is on algorithms that reliably spread information in large-scale
networks, while minimizing the energy usage [36].

When dealing with the challenges introduced by network mobility, there exist few
alternative techniques to constructing a static overlay (as ASH proposes) or a net-
work hierarchy in general. The simplest one is flooding: flooding small-sized packets
in the network is a common practice in routing algorithms such as DSR [21], but
induces big overheads for large networks. A second alternative is using knowledge
on the geographical position of the nodes—as is the case of geographical routing
algorithms [12,35]. Geographical routing algorithms have the default assumption that
sensor nodes have a means to determine their locations and usually come with the
overhead that the position of the final destination of a message is explicitly included
in the message. Unfortunately, in the case of wireless sensor networks, location infor-
mation acquired through GPS is usually expensive energy-wise and unavailable for
indoor applications.

7 Conclusions

The problem of node mobility is one of the most difficult topics in wireless networks
research. There are many approaches toward solving it, unfortunately with rather poor
results in terms of assumptions and performance.

123

ASH: tackling node mobility in large-scale networks 831

In this paper, we introduced ASH, a mechanism for constructing a quasi-static over-
lay network on top of a mobile infrastructure. By the means of information diffusion
and a mechanism inspired by the equilibrium of gases inside a container we are able
to partition the network into stable domains that “hide” the node mobility for certain
classes of applications. Additionally, we introduced a design example in the form of
the ASH-Cluster clustering mechanism. Algorithms developed for static wireless net-
works can be applied on top of the overlay ASH builds, even if the support network
is large-scale and highly-mobile. This is an important property, as most of the algo-
rithms developed for wireless sensor networks do not work properly for high network
mobility.

ASH provides two major improvements with respect to other approaches. First,
ASH is a fully decentralized scheme as it makes use only of local interactions between
nodes. Secondly, it uses no strong assumptions like knowledge about absolute or
relative node positions (e.g., through GPS or any other estimator), correlated (group)
motion, and motion prediction. As a result we can apply ASH to totally random motion
scenarios. Besides the practical application that we showcase, ASH is an example of
applying self-organizing, self-assembling principles to algorithms in mobile wireless
networks.

The current paper is presents a mechanism that makes use of node mobility for the
creation of quasi-static overlays in wireless networks. We plan to address some of the
short-comings that we encountered: mass loss estimation, increased resistance to node
failures and extend our work toward localizing some of the virtual domains around
fixed geographical positions and/or events.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Abbasi AA, Younis M (2007) A survey on clustering algorithms for wireless sensor networks. Comput
Commun 30(14–15):2826–2841

2. Abelson H, Allen D, Coore D, Hanson C, Homsy G, Knight TF Jr, Nagpal R, Rauch E, Sussman GJ,
Weiss R (2000) Amorphous computing. Commun ACM 43(5):74–82

3. Akyildiz IF, Estrin D, Culler DE, Srivastava MB (eds) (2003) In: Proceedings of the 1st international
conference on embedded networked sensor systems, SenSys 2003, Los Angeles, California, USA,
November 5–7, 2003. ACM

4. Avin C, Brito C (2004) Efficient and robust query processing in dynamic environments using random
walk techniques. In: IPSN 2004, pp 277–286

5. Bastien C, Michel D (2005) Cellular automata modeling of physical systems. Cambridge University
Press, Cambridge

6. Bettstetter C (2001) International workshop on modeling analysis and simulation of wireless and mobile
systems. In: MSWIM 2001, pp 19–27

7. Camp T, Boleng J, Davies V (2002) A survey of mobility models for ad hoc network research. Wirel
Commun Mobile Comput 2(5):483–502

8. Chaintreau A, Le Boudec J-Y, Ristanovic N (2009) The age of gossip: spatial mean field regime.
In: SIGMETRICS/Performance 2009, pp 109–120

9. Chu T, Nikolaidis I (2004) Node density and connectivity properties of the random waypoint model.
Comput Commun 27(10):914–922 (Protocol engineering for wired and wireless networks)

123

832 A. Pruteanu, S. Dulman

10. De Rosa M, Goldstein S, Lee P, Pillai P, Campbell J (2008) Programming modular robots with locally
distributed predicates. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on pages 3156–3162. IEEE

11. Degesys J, Rose I, Patel A, Nagpal R (2007) Desync: self-organizing desynchronization and tdma on
wireless sensor networks. In: IPSN 2007

12. Dhurandher SK, Singh GV (2005) Weight based adaptive clustering in wireless ad hoc networks.
In: ICPWC 2005, pp 95–100

13. Dimakis A, Rabbat M (2005) Gossip and message-passing algorithms for sensor networks. IEEE Trans
Inf Theory 58(3):1731–1742

14. Goldstein Seth C, Campbell JD, Mowry TC (2005) Programmable matter. IEEE Comput 38(6):99–101
15. Grossglauser M, Tse David NC (2002) Mobility increases the capacity of ad hoc wireless networks.

IEEE/ACM Trans Netw 10(4):477–486
16. Gupta P, Kumar PR (2000) The capacity of wireless networks. IEEE Trans Inf Theory 46(2):388–404
17. Heinzelman WR, Ch A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless

microsensor networks. In: HICSS 2000, pp 3005–3014
18. Hnat TW, Sookoor TI, Hooimeijer P, Weimer W, Whitehouse K (2008) Macrolab: a vector-based

macroprogramming framework for cyber-physical systems. In: SenSys 2008
19. Iwanicki K, van Steen M (2010) Gossip-based self-management of a recursive area hierarchy for large

wireless sensornets. IEEE Trans Parallel Distrib Syst 21(4):562–576
20. Jardosh A, Belding-Royer EM, Almeroth KC, Suri S (2003) Towards realistic mobility models for

mobile ad hoc networks. In: MobiCom 2003
21. Johnson DB, Maltz DA (1996) Dynamic source routing in ad hoc wireless networks. In: Mobile Com-

puting 1996
22. Karpelson M, Wei G-Y, Wood RJ (2009) Milligram-scale high-voltage power electronics for piezo-

electric microrobots. In: ICRA 2009
23. Kempe D, Dobra A, Gehrke J (2003) Gossip-based computation of aggregate information. In: FOCS

2003
24. Khelil A, Becker C, Tian J, Rothermel K (2002) An epidemic model for information diffusion in

manets. In: MSWiM 2002, pp 54–60
25. Lee K, Hong S, Kim SJ, Rhee I, Chong S (2009) Slaw: a mobility model for human walks. In:

INFOCOM 2009, IEEE, pp 855–863
26. Mitchell M (2009) Complexity: a guided tour. Oxford University Press, Inc., New York
27. Royer EM, Melliar-Smith PM, Moser LE (2001) An analysis of the optimum node density for ad hoc

mobile networks. In: ICC 2001, pp 857–861
28. Sarwate AD, Dimakis AG (2009) The impact of mobility on gossip algorithms. In: INFOCOM 2009,

IEEE 10
29. Werner-Allen G, Tewari G, Patel A, Welsh M, Nagpal R (2005) Firefly-inspired sensor network syn-

chronicity with realistic radio effects. In: SENSYS 2005
30. Xu K, Hong X, Gerla M (2002) An ad hoc network with mobile backbones. In: Communications,

2002. ICC 2002. IEEE international conference on vol 5. IEEE, pp 3138–3143
31. Yamins D (2008) A theory of local-to-global algorithms for one-dimensional spatial multi-agent sys-

tems. PhD thesis, Harvard, Cambridge, MA, USA, Adviser-Nagpal, Radhika
32. Youssef MA, Youssef A, Younis MF (2009) Overlapping multihop clustering for wireless sensor net-

works. In: IEEE transactions on parallel and distributed systems, pp 1844–1856
33. Yu JY, Chong PHJ (2005) A survey of clustering schemes for mobile ad hoc networks. IEEE Commun

Surv Tutor 7(1):32–48 (qtr. 2005)
34. Zhang Y, Ng JM, Low CP (2009) A distributed group mobility adaptive clustering algorithm for mobile

ad hoc networks. Comput Commun 32(1):189–202
35. Zorzi M, Rao RR (2003) Geographic random forwarding (geraf) for ad hoc and sensor networks:

energy and latency performance. In: IEEE Transactions on Mobile Computing, 2003
36. Zuniga M, Avin C, Hauswirth M (2010) Querying dynamic wireless sensor networks with non-revis-

iting random walks. In: EWSN 2010, pp 49–64

123

	ASH: tackling node mobility in large-scale networks
	Abstract
	1 Introduction and motivation
	2 The ASH algorithm
	2.1 Initialization
	2.2 Domain ID selection
	2.3 Residual mass return
	2.4 Diffusion
	2.5 Mass correction

	3 ASH convergence
	4 Application example---ASH-cluster
	5 ASH algorithm analysis
	5.1 Influence of network mobility
	5.2 ASH communication mechanism
	5.3 Domain selection stability
	5.4 Comparison to similar mechanisms
	5.5 Discussion

	6 Related work
	7 Conclusions
	References

