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Abstract. According to a theorem of L. Fejes Tóth [4], if non-crossing congruent copies
of a convex disc K cover a convex hexagon H , then the density of the discs relative to H
is at least area K/ fK (6) where fK (6) denotes the maximum area of a hexagon contained
in K . We say that a convex disc is r-fat if it is contained in a unit circle C and contains
a concentric circle c of radius r . Recently, Heppes [7] showed that the above inequality
holds without the non-crossing assumption if K is a 0.8561-fat ellipse. We show that the
non-crossing assumption can be omitted if K is an r0-fat convex disc with r0 = 0.933 or
an r1-fat ellipse with r1 = 0.741.

1. Introduction

By a convex disc we mean a compact convex set with non-empty interior and by an
n-gon we mean a polygon with at most n sides in the Euclidean plane. We denote the
interior, boundary, convex hull, and area of a disc K by int K , bd K , conv K , and area K ,
respectively. Further, let fK (n) denote the maximum area of an n-gon contained in K .
To simplify our notation, we omit the subscript if K is a unit circle. Thus

f (n) = n

2
sin

2π

n

stands for the area of a regular n-gon inscribed in a unit circle.
We consider coverings of a convex hexagon H by congruent copies K1, . . . , KN of a

convex disc K . The density of these discs relative to H is defined as
∑N

i=1 areaKi/areaH .
We say that two convex discs cross if removing their intersection from them each disc
becomes non-connected.
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According to a theorem of L. Fejes Tóth [4], (see also p. 167 in [5]) if N non-crossing
congruent copies of a convex disc K cover a convex hexagon H , then the density of the
discs relative to H is at least

area K/ fK (6).

The bound is exact for N = 1. If K is centrally symmetric, then it is also asymptotically
sharp, or in other words, it is sharp for the whole plane.

The assumption that the discs do not cross seems to be superfluous. However, as
examples by Heppes and Wegner show, we cannot simply exclude the possibility that
crossing pairs occur. Wegner [11] constructed for all N > 1 a convex hexagon H and a
convex disc K such that N congruent copies of K cover H but they cannot be rearranged
to obtain a crossing-free covering of H .

The use of crossing pairs in a covering is particularly wasteful if K is close to a circle.
L. Fejes Tóth suggested that it might be possible to eliminate the crossing-free condition
at least for “round” convex discs. A first step in this direction was recently achieved by
Heppes [7]. He called ellipses with half-axis a = 1 and 1 ≥ b ≥ b0 = 0.8561 fat, and
showed that if a convex hexagon is covered by congruent fat ellipses, then the density
of the ellipses relative to the hexagon is at least 2π/

√
27. Quite against the convention,

here and throughout the paper we use the term ellipse to denote a convex disc, rather
than a curve. Extending the notion of fatness, we say that a convex disc K is r-fat if it
is contained in a unit circle C and contains a concentric circle c of radius r . We call the
set C\c containing bd K an annulus associated to K . The common center of the circles
C and c is referred to as the center of K . Our main result is the following

Theorem 1. Let r0 = 0.933. If congruent copies of an r0-fat convex disc K cover a
convex hexagon H , then the density of the discs relative to H is at least

area K

fK (6)
.

We also weaken a little the fatness condition in Heppes’s result for ellipses:

Theorem 2. Let r1 = 0.741. If congruent r1-fat ellipses cover a convex hexagon H ,
then the density of the ellipses relative to H is at least

π

f (6)
= 2π√

27
.

If a countable system of convex discs covers the whole plane, their density can be
defined by a suitable limit (see, e.g., [6]). Recall that the covering density ϑ(K ) of a
convex disc K is defined as the infimum of the densities of all coverings of the whole
plane by congruent copies of K . Before Heppes’s result, besides the trivial examples of
space-fillers, the circle was the only convex body for whichϑ(K )was known. Theorem 1
implies the following:

Corollary. We have

ϑ(K ) = area K

fK (6)
for all centrally symmetric r0-fat convex discs.
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Principally, this enables us to determine the covering density of all r0-fat convex
discs. Of course, we still face the problem of calculating fK (6), which is a difficult task
in general, but it can be done in special cases. We give some examples in Section 5.

We prove Theorems 1 and 2 in Section 4. Their proof is prepared in the next section
by stating some known results which we shall need in the proof and in Section 3 by
proving a lemma claiming that crossing fat discs are close.

2. Some Auxiliary Results

In this section we gather some known results needed in the proof of Theorems 1 and 2.

Proposition 1 [7]. If E1 and E2 are ellipses with half-axes a1 ≥ b1 and a2 ≥ b2 such
that

min
i=1, 2

a2
i

bi
≤ max

i=1, 2

b2
i

ai
,

then E1 and E2 do not cross.

The special case when one of the ellipses is a circle is stated on p. 480 in [7]. The
proof of the general case is similar.

Proposition 2 [7]. Let q be a point on the boundary of an ellipse of half-axes a and
b, a ≥ b, let l1 be a line touching the ellipse at q and let l2 be the line orthogonal to l1

and containing the center of the ellipse. Then the maximum of the distance from q to l2

is a − b.

This is Lemma 1 in [7] (with the notation slightly changed in order to fit to ours).

Proposition 3 [7], [1]. Let K1, . . . , KN be convex discs covering a convex hexagon
H . Suppose that no pair of the discs K1, . . . , KN cross and no proper subset of them
covers H . Then it is possible to construct convex polygons D1, . . . , DN with the number
of sides n1, . . . , nN such that

Di ⊂ Ki ∩ H for i = 1, . . . , N ,

N⋃
i=1

Di = H,

(int Di ) ∩ (int Dj ) = ∅ for i, j = 1, . . . , N , i �= j,

and

N∑
i=1

ni ≤ 6N .
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The construction of polygons with the above properties was described first in [4],
however, the presentation there is very vague. A more thorough treatment can be found
on p. 170 in [5]. A very detailed description of the construction is given in [1]. A more
general statement is proved in [2].

Proposition 4 [10]. We have, for all convex discs K and for all integers n ≥ 3,

area K

π
f (n) ≤ fK (n).

For a proof see [10], [6, pp. 36–37], or [9, pp. 14–15].

Proposition 5 [3]. The sequence fK (n) is concave for all convex discs K :

fK (n + 1)− fK (n) ≤ fK (n)− fK (n − 1) for n ≥ 4.

See [3], [5, p. 169], [6, pp. 34–35], or [9, pp. 11–13] for a proof.

3. Crossing Fat Discs are Close

Intuitively it is clear that if two fat discs cross, then they are close in some sense. The
following lemma describes this precisely for different types of crossing fat discs.

Lemma.

(i) If two r-fat discs cross, then the distance between their centers is at most

2
√

1− r2.

(ii) If two ellipses with half-axes a1, b1 and a2, b2 (a1 ≥ b1, a2 ≥ b2) cross, then the
distance between their centers is at most√

(a1 + a2 − b1 − b2)
2 +

(
max
i=1,2

ai − min
i=1,2

bi

)2

.

(iii) Let K be an r-fat disc and let E be an ellipse with half-axes a and b such that
b ≤ a ≤ b2. If K and E cross, then the distance between their centers is at most√(

a − b +
√

1− r2
)2
+ (a − r)2.

Part (ii) of the lemma is due to Heppes. The proposition in [7] refers to the special
case when a1 = a2 = 1 and bi ≥ b0, however he actually proves claim (ii) of our lemma.

For the proof of (i) we consider two r -fat discs K1 and K2 with associated annuli
Ci\ci centered at pi , i = 1, 2 (see Fig. 1). We introduce Cartesian coordinates so that
the coordinates of p1 and p2 are (0,−a) and (0, a), respectively. Suppose that

a >
√

1− r2. (1)
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We shall show that then K1 and K2 do not cross.
Let

S = {(x, y)| − r < x < r, −a < y < a}
and observe that (1) implies, on one hand, that

(bd K1) ∩ (bd K2) ⊂ (C1\c1) ∩ (C2\c2) ⊂ S,

and, on the other hand, that bd K1 ∩ S is the graph of a concave function f (x) and
bd K2 ∩ S is the graph of a convex function g(x). It is then clear that (bd K1)∩ (bd K2),
if not empty, consists of a single point, of two points, or a line segment. In neither case
can K1 and K2 cross. This settles part (i) of the lemma.

Consider now an r -fat disc K with associated annulus C\c centered at p, and an
ellipse E with half-axes a and b, b ≤ a ≤ b2 (see Fig. 2). Since b2/a ≥ 1, Proposition 1
implies that E and C do not cross. Suppose that K and E cross. Then the set E\K
consists of at least two connected components. As E and C do not cross, one of these
components is contained in C (actually in C\c).

Let M be a connected component of E\K such that M ⊂ C . Let q1 and q2 be two
points on bd M dividing bd M into two arcs, one of which is contained in bd K and the
other one in bd E . Let l1 be the line parallel to q1q2 tangent to bd M ∩ bd E at a point,
say q . Let l2 be the line orthogonal to l1 through the center of E and let l3 be the line
parallel to l2 through p. According to Proposition 2 the distance from q to l2 is at most
a−b. The distance from q to l3 is at most

√
1− r2, hence the distance between the lines

l2 and l3 is at most a − b +√1− r2. Now (iii) follows by noting that the difference of
the distances of the centers of E and K from l1 is at most a − r .
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Fig. 2

4. Proof of the Theorems

We recall that the proof of Theorem 1 in the case when there are no crossing pairs is based
on Proposition 3. The construction mentioned there cannot be carried out if crossings
occur. We shall construct a new, crossing-free covering by successively replacing crossing
pairs by other discs.

Let K1, . . . , KN be congruent copies of an r0-fat convex disc K covering the hexagon
H . It will help to understand some steps in the proof if we recall the proof for the case when
crossings do not occur. Then, considering the polygons Di described in Proposition 3
and using Proposition 5, we have

area H=
N∑

i=1

area Di ≤
N∑

i=1

fK (ni )≤
N∑

i=1

( fK (6)+(ni−6)( fK (6)− fK (5)))≤N fK (6),

which is exactly, what we have to prove.
Suppose now that two of the discs, say K1 and K2 cross. Let Ci\ci with center pi be

an annulus associated to Ki (i = 1, 2). According to the lemma, the distance between

p1 and p2 is at most 2
√

1− r2
0 .
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Let E1 be an ellipse with half-axes

a1 = 1+
√

1− r2
0 = 1.3598 . . .

and

b1 = r2
0

a1

(
1+ f (6)

π

)
= 1.1695 . . . . (2)

Then a congruent copy of E1, placed so that its center is the midpoint of the segment
p1 p2 and its longer axis lies on the line p1 p2, covers conv(C1 ∩ C2), hence it covers
K1 ∩ K2. To see this it is enough to observe that the minimum radius of curvature of E1,



1
= b2

1/a1 = 1.0057 . . . ,

is greater than 1. For later reference we note that the maximum radius of curvature of
E1 is


1 = a2
1/b1 = 1.5812 . . . .

The choice of a1 is natural. We also need the restriction that the minimum radius of
curvature of E1 is at least 1. Another condition specifying the particular choice of b1 is
the following. Our goal is to construct a crossing-free covering of H in which a copy
of E1 substitutes two copies of K . We apply Proposition 3 to this new covering. If to a
copy of E1 a polygon D with n sides is associated, we would like to have that its area
is at most fK (n)+ fK (6). This is guaranteed by (2). Indeed, (2), Proposition 4, and the
obvious inequalities f (n) < π and area K ≥ πr2

0 imply

area D ≤ fE1(n) = a1b1 f (n) = r2
0 f (n)

(
1+ f (6)

π

)
< fK (n)+ fK (6).

Replacing the discs K1 and K2 by a congruent copy of E1 covering their union we
obtain again a covering of H . We repeat this process until no two discs from the original
covering cross. Of course, it can occur that now two ellipses or an ellipse and one of the
original discs cross. We consider first the latter case.

If a copy of E1 and a copy of K cross, then according to part (iii) of the lemma the
distance between their centers is at most√(

a1 − b1 +
√

1− r2
0

)2

+ (a1 − r0)2 = 0.6964 . . . .

Let E2 be an ellipse with half-axes

a2 = 1
2


a1 + 1+

√(
a1 − b1 +

√
1− r2

0

)2

+ (a1 − r0)2


 = 1.5281 . . .

and

b2 = r2
0

a2

(
1+ 2 f (6)

π

)
= 1.5118 . . . . (3)



136 G. Fejes Tóth

We note that the extreme values of the radius of curvature of E2 are



2
= b2

2/a2 = 1.4956 . . . and 
2 = a2
2/b2 = 1.5446 . . . .

As 

2
> a1, the union of a unit circle and a circle of radius a1 whose centers are at a

distance of

√
(a1 − b1 +

√
1− r2

0 )
2 + (a1 − r0)2 apart can be covered by a congruent

copy of E2. Therefore, the union of a crossing pair of copies of E1 and K can be covered
by a copy of E2. Using this, we successively eliminate all such crossing pairs by replacing
them by an appropriate copy of E2.

In the covering obtained thus, four different types of crossings can occur: Two copies
of E1 or two copies of E2, as well as a copy of E1 and a copy of E2 can cross. Finally,
a copy of E2 and a copy of K can cross. Using the lemma and considerations similar to
the above, one can see that the union of any of these types of crossing pairs of discs can
be covered by a circle of radius

R = r0

√
1+ 3 f (6)

π
= 1.7407 . . . . (4)

We continue to replace all crossing pairs of the system by circles of radius R. We
end up with a covering of H consisting of four types of discs, in which, as can be easily
checked, crossings can occur only among an r0-fat disc from the original covering and a
circle of radius R. If such a crossing occurs, say a copy of K with associated annulus C\c
centered at p and a circle C of radius R centered at q cross, then the distance between
p and q is at most

d =
√

1− r2
0 + (R − r0)2 = 0.8842 . . . .

An easy computation shows that then the length of the common chord of C and C is
at most

1

d

√
4R2d2 − (R2 + d2 − 1)2 = 1.4168 . . . < 2r0

and, moreover, C contains the greater of the two segments of C determined by this
common chord. Thus C\C can be covered by a circle of radius r0. Now, in our covering
whenever a circle of radius R and a copy of K cross, we discard the latter and introduce
a circle of radius r0 to cover the part of the discarded copy of K that was left uncovered
by the circle of radius R.

A circle of radius r0 introduced thus cannot cross an ellipse or a circle. Still, it can
occur that such a circle and one of the original discs cross. We observe that a circle of
radius r0 is itself an r0-fat disc, therefore the union of such a crossing pair can be covered
by a congruent copy of E1, and we can start doing the whole procedure over again. Since
the number of the original discs decreases in each cycle, the procedure ends in finitely
many steps.

The final result of the procedure is a new covering of H consisting of, besides some
of the original discs, ellipses congruent to E1 or E2, as well as of circles of radius r0 and
R. It might occur that one of these discs is contained in the union of the others. If this
happens, we discard it.
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As the new covering is crossing-free, we can now apply Proposition 3 to them. Let
D11, . . . , D1N1 , D21, . . . , D2N2 , D31, . . . , D3N3 , D41, . . . , D4N4 , and D51, . . . , D5N5 be
the polygons associated to the original discs, the circles of radius r0, the ellipses congruent
to E1, the ellipses congruent to E2, and the circles of radius R, respectively. Denoting
by ni j , 1 ≤ i ≤ Nj , 1 ≤ j ≤ 5, the number of sides of Di j we have

5∑
i=1

Ni∑
j=1

ni j ≤ 6
5∑

i=1

Ni . (5)

We note that ultimately in the new covering a copy of E1 replaces two original discs,
a copy of E2 replaces three copies of K , and, finally a circle of radius R replaces at least
four discs from the original covering. Hence,

N1 + N2 + 2N3 + 3N4 + 4N5 ≤ N . (6)

Our next goal is to give upper bounds for the areas of polygons contained in different
types of discs. We have, by definition,

area D1 j ≤ fK (n1 j ) for 1 ≤ j ≤ N1. (7)

Obviously, area K ≥ r2
0π , hence in view of Proposition 4

r2
0 f (n) ≤ fK (n). (8)

Therefore

area D2 j ≤ r2
0 f (n2 j ) ≤ fK (n2 j ) for 1 ≤ j ≤ N2. (9)

Further, it follows from (2), (3), (4), (8), and the obvious inequality f (n) < π , that

area D3 j ≤ fE1(n3 j ) = a1b1 f (n3 j ) ≤ fK (n3 j )+ fK (6) for 1≤ j≤N3, (10)

area D4 j ≤ fE2(n4 j ) = a2b2 f (n4 j ) ≤ fK (n4 j )+ 2 fK (6) for 1≤ j≤N4, (11)

and

area D5 j ≤ R2 f (n5 j ) ≤ fK (n5 j )+ fK (6) for 1≤ j≤N5. (12)

Inequalities (7), (9), (10), (11), and (12) imply that

area H ≤
5∑

i=1

Ni∑
j=1

area Di j ≤
5∑

i=1

Ni∑
j=1

fK (ni j )+ (N3 + 2N4 + 3N5) fK (6). (13)

By Proposition 5 and inequality (5) it follows that

5∑
i=1

Ni∑
j=1

fK (ni j ) ≤
5∑

i=1

Ni fK (6). (14)

Combining (13) and (14) and taking into account (6) we get

area H ≤ N fK (6).

Multiplying both sides by area K and rearranging we get the claim of Theorem 1.
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The proof of Theorem 2 is similar. We introduce two ellipses and a circle. In their
definition the function

g(k, n) = k f (6)+ (n − 6)( f (6)− f (5))

f (n)
, (15)

defined for integers k ≥ 1 and n ≥ 3, plays an important role. It is easy to check that

min
n≥3

g(2, n) = g(2, 7) = 1.9745 . . . , (16)

min
n≥3

g(3, n) = g(3, 8) = 2.9115 . . . , (17)

and
min
n≥3

g(4, n) = g(4, 9) = 3.8214 . . . . (18)

Let E1 be an ellipse with half-axes

a1 = 1+
√

5

2
(1− r1) = 1.2895 . . .

and

b1 = r1

a1
g(2, 7) = 1.1374 . . . . (19)

Let E2 be an ellipse with half-axes

a2 = 1
2

(
1+ a1 +

√
(1+ a1 − r1 − b1)2 + (a1 − r1)2

)
= 1.4875 . . .

and

b2 = r1

a2
g(3, 8) = 1.4503 . . . . (20)

Finally, let E3 be a circle of radius

R =
√

r1g(4, 9) = 1.6827 . . . . (21)

We note that the extreme values of the radius of curvature of E1 are



1
= b2

1/a1 = 1.0032 . . . and 
1 = a2
1/b1 = 1.4620 . . .

and those for E2 are



2
= b2

2/a2 = 1.4140 . . . and 
2 = a2
2/b2 = 1.5257 . . . .

Let E be an r1-fat ellipse with half-axes 1 and b, r1 ≤ b ≤ 1. Using the lemma it can
be checked that if two congruent copies of E cross, then their union can be covered by a
copy of E1, and if a copy of E and a copy of E1 cross, then their union can be covered
by a copy of E2. Further, if any two copies of E , E1, or E2 cross, then their union can
be covered by a copy of E3.
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Consider now N congruent copies of E covering a convex hexagon H . We construct
a new, crossing-free covering of H consisting of congruent copies of E , E1, E2, and
E3 as follows. We start by replacing step-by-step all crossing pairs of copies of E by
appropriate copies of E1 covering their union. We continue by successively replacing
all crossing pairs of a copy of E and a copy of E1 by appropriate copies of E2. If there
are still crossing pairs of ellipses in the covering, we replace them, again step-by-step,
by copies of E3. Since R is greater than the maximum radius of curvature of any of the
ellipses E , E1, or E2, no copy of E3 can cross a copy of these ellipses. Thus, the resulting
system is crossing-free. Finally, we reduce the covering by discarding any disc which is
contained in the union of some others.

To the resulting covering of H , consider the convex polygons described in Propo-
sition 3. Let D11, . . . , D1N1 , D21, . . . , D2N2 , D31, . . . , D3N3 , and D41, . . . , D4N4 be the
polygons associated to the copies of E , E1, E2, and E3, respectively. Denoting by ni j ,
1 ≤ i ≤ Nj , 1 ≤ j ≤ 4, the number of sides of Di j we have

4∑
j=1

Nj∑
i=1

ni j ≤ 6
4∑

j=1

Nj . (22)

The construction of the new covering readily implies that

N1 + 2N2 + 3N3 + 4N4 ≤ N . (23)

We continue to give upper bounds for the areas of the polygons Di j . The definition
of fE (n), together with Proposition 4, yields that

area D1 j ≤ fE (n1 j ) ≤ fE (6)+ (n1 j −6)( fE (6)− fE (5)) for 1 ≤ j ≤ N1. (24)

Using relations (15)–(21) we get

area D2 j ≤ fE1(n2 j ) = a1b1 f (n2 j ) = r1 f (n2 j )g(2, 7) ≤ b f (n2 j )g(2, n2 j )

= 2 fE (6)+ (n2 j − 6)( fE (6)− fE (5)) for 1 ≤ j ≤ N2, (25)

area D3 j ≤ fE2(n3 j ) = a2b2 f (n3 j ) = r1 f (n3 j )g(3, 8) ≤ b f (n3 j )g(3, n3 j )

= 3 fE (6)+ (n3 j − 6)( fE (6)− fE (5)) for 1 ≤ j ≤ N3, (26)

and

area D4 j ≤ fE3(n4 j ) = R2 f (n4 j ) = r1 f (n4 j )g(4, 9) ≤ b f (n4 j )g(4, n4 j )

= 4 fE (6)+ (n4 j − 6)( fE (6)− fE (5)) for 1 ≤ j ≤ N4. (27)

The combination of inequalities (22)–(27) readily yields

area H=
4∑

i=1

Ni∑
j=1

area Di j ≤ fE (6)
4∑

j=1

Nj∑
i=1

j+( fE (6)− fE (5))
4∑

j=i

Ni∑
j=1

(ni j−6)≤N fE (6).

This completes the proof of Theorem 2.
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5. Remarks

In our theorems we gave r0 and r1 to three decimals. In fact, these are rounded up values
of the solutions of the equations

(
1+ f (6)

π

)2

r4
0 =

(
1+

√
1− r2

0

)3

and

(g(2, 7))2r2
1 =

(
1+
√

5

2
(1− r1)

)3

,

respectively, with which the theorems still hold. More accurate values are

r0 = 0.93242333 . . . and r1 = 0.74039619 . . . .

The fatness condition in Theorem 1 can be weakened a little further. It is easy to
see that the bound for the distance of the centers of crossing r -fat discs in part (i) of
the lemma is best possible. However, it can also be seen that if two congruent copies
of an r -fat disc K cross and the distance between their centers is d ≤ 2

√
1− r2, then

area K ≥ rd/2 + r2(π − arctan(d/2r)). In the proof of Theorem 1 we used the lower
bound πr2

0 for area K . Using instead the information above, we can show that the density
bound of Theorem 1 holds for 0.93125458-fat convex discs. We omit the proof, since it
is more involved and the improvement it gives is very slight.

Let Pn denote a regular n-gon inscribed in a unit circle. Pn is r0-fat for n ≥ 9. The
regular octagon P8 is not r0-fat, and it misses the fatness-bound 0.93125458, as well.
However, repeating the argument of the proof of Theorem 1 and taking into account that
the area of P8 is considerably greater than the area of the circle inscribed into it, we can
see that the density-bound of the theorem holds for P8 without the assumption that the
octagons do not cross. It is easy to find the hexagon of maximum area contained in Pn .
Its vertices are vertices of Pn and the difference between the lengths of its sides is as
small as possible under this condition. Using this we get that

ϑ(P6k) = k sin(π/3k)

sin(π/3)

and

ϑ(P6k±2) = (3k ± 1) sin(π/(3k ± 1))

2 sin(kπ/(3k ± 1))+ sin((k ± 1)π/(3k ± 1))

for all k ≥ 1.
Mount and Silverman [8] gave an algorithm which determines the value of fK (6) in

O(n) time if K is a convex n-gon. Their algorithm can now be applied to determine the
covering density of a centrally symmetric r0-fat n-gon in O(n) time.

Finally we note, that using the method developed by Böröczky Jr. in [2], a slight
modification of our proof yields that the bounds for the density in Theorems 1 and 2 hold
if H is an arbitrary convex disc, provided that the number of discs is sufficiently large.
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