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Abstract. We prove that a set of n disjoint unit balls in Rd admits at most four dis-
tinct geometric permutations, or line transversals, thus settling a long-standing conjecture
in combinatorial geometry. The constant bound significantly improves upon the �(nd−1)

bound for disjoint balls of unrestricted radii.

1. Introduction

An oriented line � is called a line transversal for a set S of bodies in Rd if it intersects
every member of S. If the objects in S are pairwise disjoint convex bodies, then a line
transversal of S induces two linear orderings, which are the orders in which � meets the
members of S. The two orders induced by a line transversal are essentially the same (one
is the reverse of the other), and so they are together called a single geometric permutation.

Let gd(n) denote the maximum number of geometric permutations, where the max-
imum is taken over all such families S of size n in Rd . For the planar case d = 2, we
know the exact bound g2(n) = 2n − 2 [9], [4]. For d > 2, the best upper bound known
for general convex bodies is O(n2d−2) by Wenger [13]. Katchalski et al. [8] showed that
n disjoint convex bodies in Rd can realize �(nd−1) geometric permutations. Thus, there
remains a substantial gap between the known upper bound O(n2d−2) and lower bound
�(nd−1) on geometric permutations.

This gap motivated Smorodinsky et al. [11] to consider a natural, but specialized, fam-
ily of convex bodies: balls. They constructed a family of disjoint balls accepting �(nd−1)
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geometric permutations. Furthermore, they were able to prove a matching asymptotic
upper bound, thus showing that the maximum number of geometric permutations for
collections of n disjoint balls in Rd is �(nd−1). Recently Katz and Varadarajan [10]
generalized the same result to α-fat convex bodies in Rd .

An interesting special case of the problem is when all balls inS are congruent (say, unit
balls). Smorodinsky et al. [11] show that the maximum number of geometric permutations
for n unit disks in the plane is only 2, for sufficiently large n. (An independent proof of
this fact is also given by Katchalski and Asinowski [2].) It has been conjectured that unit
balls in any dimension admit only a constant number of permutations, but this conjecture
has been open for dimensions d ≥ 3.

In this paper we settle this long-standing open conjecture by proving that the maximum
number of geometric permutations for a family of n pairwise disjoint unit radius balls in
Rd is four, for n a sufficiently large constant that depends on the dimension d. The number
of permutations, however, is independent of d . Thus, the number of geometric permuta-
tions drops precipitously from �(nd−1) to a small constant if all the balls are congruent.

While in combinatorial geometry line transversals and geometric permutations have
been studied primarily for their mathematical appeal, they also find practical applications
in computing visibility information in three-dimensional computer games and architec-
tural walkthroughs. These applications decompose the space into boxes, and then try to
compute visibility between various boxes. The openings through which light can pass,
such as windows, doors and the tops of stairwells in a building model, are modeled by
axis-aligned rectangular portals on the faces of these boxes; all other objects are consid-
ered opaque. The visibility among boxes is computed from the visibility between these
portals. See [12] for details. Similar ideas are used in various video games as well.

The portal visibility approach motivated research on the problem of determining
whether a given set of objects can be stabbed by a line; that is, does the set have a line
transversal. The line transversal problem has also been studied as a generalization of
the classical Helly Theorem of combinatorial geometry [3]. For a survey of geometric
transversal theory, see [5] and [14]. Amenta [1] and Hohmeyer and Teller [6] have given
efficient algorithms for computing line transversals.

Our paper is organized as follows. In Section 2 we establish a series of properites for
line transversals, prove a key technical lemma, and introduce the concept of switched
pairs. In Section 3 we prove our major result: an upper bound on the number of geometric
permutations for congruent balls. We conclude in Section 4.

In June 2000 we circulated an earlier draft of our paper, which established an upper
bound of 16 on the number of unit ball permutations. Soon after that, Huang et al.
improved the bound to four permutations by a simple tightening of our Lemma 2.5.
After learning of their result, we also independently achieved the same improvement, as
presented in this paper. Our work was presented at SODA 2001 [15], as was the paper
by Huang et al. [7].

2. Properties of Line Transversals

In this section we establish a series of properties for line transversals of a family of
disjoint unit balls in Rd , for d ≥ 2. The key observation here is that if n, the number of
unit balls, is large enough, then all balls will line up very closely to a single line.
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Lemma 2.1. Let S be a family of n disjoint unit balls in Rd with at least one geometric
permutation. Then the distance between the centers of a farthest pair of balls is �(n),
where the constant depends on d .

Proof. Let o1, o2 denote the centers of the two balls that form the farthest pair in S,
let D = dist(o1, o2), and let � be a line transversal of S. The projection of S onto � has
length at most 2 + D, and thus the set S is contained within a radius 2 cylinder of height
2 + D. If Vd denotes the volume of a unit ball in Rd , then the volume of this cylinder is
Vd−1(2 + D)2d−1. Since n unit balls are contained in this cylinder, and d is a constant
we get Vd−1(2 + D)2d−1 ≥ nVd , which implies D ≥ (Vd/2d−1Vd−1)n − 2 = �(n).
This completes the proof.

Lemma 2.2. Let B1, B2 be disjoint unit balls inRd with centers o1 and o2, respectively,
and let � be a line that intersects both of them. Let L = dist(o1, o2), and let θ denote the
angle between � and the line containing the centers o1, o2. Then we have sin θ ≤ 2/L ,
and θ achieves its maximum value when � is a common tangent of B1, B2 through the
midpoint of segment o1o2.

Proof. This is a well-known result. For completeness, we give an outline proof here.
First we reduce the problem from general dimension Rd to R2. Let �o be the line

connecting centers o1, o2. Consider the two-dimensional plane π passing through � and
parallel to �o. The intersections between plane π and balls B1, B2 are congruent disks
D1, D2 centered at o′

1, o′
2. Let �′

o be the line containing o′
1, o′

2. It is easy to see that �o is
parallel to �′

o and �′
o ⊂ π . Thus the angle between � and �o equals the angle between �

and �′
o. � intersects both D1 and D2. Now we only need to focus on the two-dimensional

plane π , thus reducing the problem from Rd to R2.
The maximum-angle line transversal for any two disjoint congruent disks in R2 must

be an inner tangent of these disks. If it is not true, then we can first translate the line such
that it passes throught the midpoint o′ of segment o′

1o′
2. The translated line intersects at

least one disk as it moves closer to one disk. Because the translated line is in a symmetric
position with respect to these disks, it intersects both disks. After the translation we rotate
the line around o′ such that it becomes tangent to both disks. The translation preserves
the angle between the line transversal with �′

o and the rotation increases its angle with
�′

o. Thus the maximum angle is achieved at the position of one inner tangent.
Equality is achieved only when the sizes of D1 and D2 are maximized and � is an

inner tangent of D1 and D2. In this case � is coplanar with o1o2. Furthermore, � is a
common tangent of B1 and B2 passing through the midpoint of o1o2. It is easy to verify
that the maximum angle θ satisfies sin θ = 2/L .

Lemma 2.3. Let S be a set of n pairwise disjoint unit balls in Rd with at least one
geometric permutation, and assume that the z-axis is the line connecting the centers of
the farthest pair of balls in S. Then the angle between any line transversal of S and the
z-axis is bounded by O(1/n); consequently, the angle between any two line transversals
of S is also O(1/n).



164 M. Katchalski, S. Suri, and Y. Zhou

Proof. Let o1, o2 denote the centers of the two balls that form the farthest pair, and
let D = dist(o1, o2). By Lemma 2.1, we have that D = �(n). Given an arbitrary line
transversal �, if θ is the angle between � and the z-axis, then by Lemma 2.2 we have
sin θ ≤ 2/D. Thus,

θ ≤ π

2
sin θ ≤ π

D
= O(1/n).

The angle between any two line transversals of S is at most twice the maximal angle
between one line transversal and the z-axis, and so the lemma follows.

2.1. One Technical Lemma

Given two disjoint unit balls in Rd , the center of gravity of these balls is the midpoint
of the segment joining the two ball centers, and lies outside of both balls. In order to
bound geometric permutations quantitatively, we need a technical lemma (Lemma 2.5)
to estimate the closeness of line transversals to center of gravities. Intuitively, the lemma
shows that if two line transversals (directed, almost parallel to each other) intersect two
balls in different orders, then those oriented lines must pass very close to the center of
gravity of these two balls. The proof of Lemma 2.5 is complicated, and it relies on the
following simple lemma.

Lemma 2.4. Let B be a unit ball in Rd with center o = (o1, o2, . . . , od). Let � =
{�(t) | t ∈ R} be the parametric equation of a line with �(t) = (t, at + b, c3, . . . , cd).
If � intersects B, then �(t0) ∈ B, where t0 = (o1 + ao2 − ab)/(a2 + 1), or equivalently

(ao1 + b − o2)
2

1 + a2
+

∑
3≤i≤d

(ci − oi )
2 ≤ 1.

Proof. In order for line � to intersect the unit ball B, it is necessary and sufficient that

min
t∈R

[
(t − o1)

2 + (at + b − o2)
2 +

∑
3≤i≤d

(ci − oi )
2

]
≤ 1.

We note that

f (t) = (t − o1)
2 + (at + b − o2)

2

= (a2 + 1)t2 + 2t (ab − ao2 − o1) + o2
1 + (b − o2)

2

= (a2 + 1)

(
t − o1 + ao2 − ab

a2 + 1

)2

+ (ao1 + b − o2)
2

1 + a2
.

Thus, the minimal value of f (t) is (ao1 + b − o2)
2/(1 + a2), and it is attained when t

equals t0 = (o1 + ao2 − ab)/(a2 + 1). In order for � to intersect B, it is necessary and
sufficient that �(t0) ∈ B, or equivalently

(ao1 + b − o2)
2

1 + a2
+

∑
3≤i≤d

(ci − oi )
2 ≤ 1.
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We are ready to prove the following technical lemma, which is crucial to the proofs
of Lemma 2.8 and Theorem 3.3.

Lemma 2.5. Let P and Q be two disjoint unit balls in Rd . Assume that their center of
gravity has its first coordinate equal to zero, and that the first coordinate axis z intersects
both P and Q, with P first. If another line � = {�(t) = (t, at + b, c3, . . . , cd) | t ∈ R}
intersects both P and Q, with Q first, then we must have |b| ≤ a, where a > 0.

Proof. Suppose that the centers of P and Q have coordinates (p1, p2, . . . , pd ) and
(q1, q2, . . . , qd ), respectively. From our assumptions it follows that p1 + q1 = 0, so we
can assume p1 = −ε, q1 = ε, for some constant ε. Since the first coordinate axis z
intersects P before Q, thus −ε < ε, or ε > 0.

Because z intersects both P and Q, we have∑
2≤i≤d

p2
i ≤ 1 and

∑
2≤i≤d

q2
i ≤ 1. (1)

Because line � intersects Q, by Lemma 2.4, �(t2) ∈ Q, where

t2 = ε + aq2 − ab

a2 + 1
,

and furthermore

(aε + b − q2)
2

1 + a2
+

∑
3≤i≤d

(ci − qi )
2 ≤ 1. (2)

Similarly, because � intersects P , we have �(t1) ∈ P , where

t1 = −ε + ap2 − ab

a2 + 1
,

and

(−aε + b − p2)
2

1 + a2
+

∑
3≤i≤d

(ci − pi )
2 ≤ 1. (3)

Because � intersects Q first, we have t2 < t1. By inserting in the expressions for t1, t2,
we get

ε + aq2 − ab

a2 + 1
<

−ε + ap2 − ab

a2 + 1

⇒ 2ε < a(p2 − q2) ⇒ ε <
a(p2 − q2)

2
. (4)

By adding (2) and (3) together, we get

(aε + b − q2)
2 + (−aε + b − p2)

2

1 + a2
+

∑
3≤i≤d

[(ci − qi )
2 + (ci − pi )

2] ≤ 2.
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Because

(ci − qi )
2 + (ci − pi )

2 ≥ (pi − qi )
2

2
, 3 ≤ i ≤ d,

we have

(aε + b − q2)
2 + (−aε + b − p2)

2

1 + a2
+

∑
3≤i≤d

(pi − qi )
2

2
≤ 2

⇔ (aε + b − q2)
2 + (−aε + b − p2)

2

2(1 + a2)
≤1−

∑
3≤i≤d

(pi −qi )
2

4
. (5)

Because P, Q are disjoint, we get

4ε2 +
∑

2≤i≤d

(pi − qi )
2 ≥ 4 (6)

⇔ 1 −
∑

3≤i≤d

(pi − qi )
2

4
≤ ε2 + (p2 − q2)

2

4
. (7)

By combining (5) and (7) together, we get

(aε + b − q2)
2 + (−aε + b − p2)

2

2(1 + a2)
≤ ε2 + (p2 − q2)

2

4

⇔ b2 − b(p2 + q2) + a2ε2 + p2
2 + q2

2

2
+ aε(p2 − q2)

≤ (a2 + 1)

(
ε2 + (p2 − q2)

2

4

)

⇔ b2 − b(p2 + q2) + (p2 + q2)
2

4
≤ ε2 − aε(p2 − q2) + a2 (p2 − q2)

2

4

⇔
(

b − p2 + q2

2

)2

≤
(

ε − a(p2 − q2)

2

)2

.

With the help of (4), the preceding inequality immediately implies that∣∣∣∣b − p2 + q2

2

∣∣∣∣ ≤ a(p2 − q2)

2
− ε. (8)

From (1) and (6), we get

∑
2≤i≤d

(pi + qi )
2 = 2

[ ∑
2≤i≤d

(p2
i + q2

i )

]
−

[ ∑
2≤i≤d

(pi − qi )
2

]
.

≤ 4 − (4 − 4ε2) = 4ε2. (9)

Equation (9) implies that |p2 + q2| ≤ 2ε. By combining it with (8), we get

|b| ≤ |p2 + q2|
2

+ a(p2 − q2)

2
− ε ≤ a(p2 − q2)

2
≤ a.

Since p2 and q2 are less than or equal to 1, this completes the proof.
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B1

B2

Fig. 1. An example of a switched pair (B1, B2).

2.2. Switched Pairs

We say that a pair of balls B1, B2 forms a switched pair in S if there exist two directed
line transversals � and �′ that meet B1, B2 in different orders. All the transversal lines
are directed such that they pass through ball a before ball b, with balls a, b having the
farthest distance among the family of balls. Figure 1 shows an example of a switched pair
(B1, B2). Switched pairs are obviously central to geometric permutations, and the next
lemmas establish key properties that allow us to bound their number. The first lemma
gives an upper bound on the distance between two balls forming a switched pair. The
distance between two balls P and Q is defined as their pointwise minimum distance:
dist(P, Q) = minp∈P,q∈Q dist(p, q).

Lemma 2.6. The distance between two balls making a switched pair is O(1/n2).

Proof. Let S be a set of disjoint unit balls in Rd with (B1, B2) a switched pair of S. Let
o1, o2 be the centers of B1, B2, respectively, and let z be the line passing through o1, o2.
Denote δ = dist(B1, B2) and D = dist(o1, o2). Thus, D = 2 + δ. Because (B1, B2) is
a switched pair, there exist two directed line transversals � and �′ that meet B1 and B2

in different orders. Let 2ϕ be the angle between � and �′. Furthermore, let θ denote the
angle between � and z, and θ ′ denote the angle between �′ and z. See Fig. 2.

By Lemma 2.2, both θ and θ ′ are bounded from above by θ0. Here

sin θ0 = 2

D
= 2

2 + δ
�⇒ δ = 2

(
1

sin θ0
− 1

)
. (10)

It is easy to show that θ + θ ′ + 2ϕ ≥ π . Figure 2 gives an illustration for d = 2, where
equality holds. Therefore

2θ0 + 2ϕ ≥ θ + θ ′ + 2ϕ ≥ π �⇒ θ0 ≥ π

2
− ϕ �⇒ sin θ0 ≥ cos ϕ. (11)

By combining (10) and (11) together, we obtain

δ = 2

(
1

sin θ0
− 1

)
≤ 2

(
1

cos ϕ
− 1

)
= 4 sin2 (ϕ/2)

cos ϕ
≤ ϕ2

cos ϕ
= O(ϕ2) = O(1/n2).
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O

2B1

2φ

l’
l

θ
1 ’θ  O 2

B

Fig. 2. The distance between B1, B2 must be very small as �, �′ are almost parallel.

In the above inequalities we used the relations 1−cos ϕ = 2 sin2 ϕ/2 and sin ϕ/2 ≤ ϕ/2.
For the last inequality, we used the fact ϕ = O(1/n), which is based on Lemma 2.3. In
addition, we used the fact that 1/cos ϕ is bounded as ϕ is close to 0.

The above lemma immediately implies:

Lemma 2.7. Let (B1, B2) be a switched pair in S, and let o1, o2 be the centers of
these balls. If � is a line transversal of S, then the line � is nearly perpendicular
to the line passing through o1, o2. More specifically, the angle between � and −−→o1o2

is π/2 − O(1/n).

The following lemma establishes one of the central properties of switched pairs.

Lemma 2.8. Let S be a set of n pairwise disjoint unit balls in Rd , where n is greater
than a sufficiently large constant depending on d . Then a ball of S can appear in at most
one switched pair.

Proof. We prove the unique pairing argument by contradiction. Suppose that S is a set
of disjoint unit balls in Rd with at least one directed line transversal. Let z-axis denote
the line connecting the centers of two farthest balls of S. Suppose that ball B forms
switched pairs with at least two other balls. Specifically, assume that both (B, B1) and
(B, B2) are switched pairs, where B, B1, B2 are distinct balls in S, with centers o, o1, o2,
respectively.

By Lemma 2.6, dist(B, B1) = O(1/n2) and dist(B, B2) = O(1/n2). Because n is
sufficiently large, dist(o, o1) and dist(o, o2) are close to 2. By Lemma 2.7, −→oo1 and −→oo2 are
almost perpendicular to the z-axis. If π is the plane passing through o and perpendicular
to z, then both o1, o2 are very close to π . Let g1 be the midpoint of oo1, and let g2 be the
midpoint of oo2. Then g1g2 is parallel to o1o2 and thus very close to π . Figure 3 illustrates
this in the limiting case of n = ∞. In addition, dist(g1, g2) = dist(o1, o2)/2 ≥ 1. By
Lemma 2.5, any line transversal � must pass close to g1, the center of gravity of (B, B1),
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2

1
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π

Fig. 3. Illustration of the unique pairing property with n = ∞.

as well as g2, the center of gravity of (B, B2). Because � is very close to both points g1 and
g2, it is almost parallel to the line joining g1g2. Equivalently, � is almost perpendicular
to z. This is a contradiction, as the angle between � and z is bounded by O(1/n), from
Lemma 2.3.

The preceding lemma shows that switched pairs are properly defined. For every
ball in S, either it belongs to a unique switched pair, or it does not belong to any
switched pair. If we consider the balls in one switched pair as one object, then ev-
ery oriented line transversal will meet all the objects in a fixed order. For geometric
permutations, its order is fixed among all the single balls and switched pair objects.
The only variation will be the order among balls inside switched pairs. Each switched
pair introduces two possible orders for the oriented line transversal to meet the corre-
sponding two balls. If there are m switched pairs, then there are at most 2m possible
variations, thus at most 2m geometric permutations. In summary, we get the following
lemma.

Lemma 2.9. Let S be a set of n disjoint convex objects in Rd where the unique pairing
property holds for switched pairs. Then two members forming a switched pair must
appear consecutively in all geometric permutations ofS. If there are a total of m switched
pairs, then S admits at most 2m different geometric permutations.

3. Geometric Permutations of Unit Balls

In this section we establish the major result, a constant bound on geometric permutations
for unit balls in Rd , for d > 2. We achieve our goal by bounding the number of switched
pairs. In order to bound the number of switched pairs, we prove both a lower bound and
an upper bound for the distance between different switched pairs.
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Lemma 3.1. Consider two different switched pairs: P = (B1, B2) and P ′ = (B ′
1, B ′

2).
Then there must exist two line transversals � and �′ that meet both switched pairs in
different orders. In other words, there exist line transversals � and �′ such that � meets
B1 before B2 and B ′

1 before B ′
2, while �′ meets B2 before B1 and B ′

2 before B ′
1, possibly

after interchanging B1 and B2 and/or B ′
1 and B ′

2.

Proof. By definition, for the switched pair P = (B1, B2), there exists two line transver-
sals � and �′ such that � meets B1 before B2 and �′ meets B2 before B1. Now consider
the order in which � and �′ meet the pair P ′ = (B ′

1, B ′
2). If they meet the balls of P ′ in

different orders, then � and �′ are our desired line transversals. Otherwise, without loss
of generality, we assume that � and �′ both meet B ′

1 before B ′
2.

For the switched pair P ′ = (B ′
1, B ′

2), there exists a line transversal �′′ that meets B ′
2

before B ′
1. Now consider the order in which �′′ meets the balls of P = (B1, B2). If �′′

meets B1 before B2, then �′ and �′′ are the desired line transversals. Otherwise, �′′ meets
B2 before B1, in which case � and �′′ are the desired line transversals. This completes
the proof.

We need one more technical lemma.

Lemma 3.2. The distance between the centers of gravity of two switched pairs has a
lower bound of

√
2 − ε(n), where ε(n) > 0 and limn→∞ ε(n) = 0.

Proof. Let P = (B1, B2) and P ′ = (B ′
1, B ′

2) be two switched pairs with centers of
gravity g and g′, respectively. Balls B1, B2, B ′

1, B ′
2 have their corresponding centers

o1, o2, o′
1, o′

2. Because g is the midpoint of segment o1o2, thus

dist(o′
1, o1)

2 + dist(o′
1, o2)

2 = 2 dist(o′
1, g)2 + dist(o1, o2)

2

2
≥ 8,

dist(o′
2, o1)

2 + dist(o′
2, o2)

2 = 2 dist(o′
2, g)2 + dist(o1, o2)

2

2
≥ 8.

In the above inequalities we used the fact that all the balls are pairwise disjoint. Add
these two inequalities together, we get

dist(o′
1, g)2 + dist(o′

2, g)2 + dist(o1, o2)
2

2
≥ 8. (12)

Because g′ is the midpoint of segment o′
1o′

2, thus

dist(o′
1, g)2 + dist(o′

2, g)2 = 2 dist(g, g′)2 + dist(o′
1, o′

2)
2

2
. (13)

By combining (12) and (13) together,

dist(g, g′)2 ≥ 4 − dist(o1, o2)
2 + dist(o′

1, o′
2)

2

2
. (14)
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From Lemma 2.6, dist(o1, o2) = 2 + O(1/n2) and dist(o′
1, o′

2) = 2 + O(1/n2). By
plugging in these estimations into (14), we get

dist(g, g′) ≥
√

4 − (2 + O(1/n2)) =
√

2 − O(1/n2) =
√

2 − ε(n).

This completes the proof.

Theorem 3.3. Let S be a set of n pairwise disjoint unit balls in Rd that admits at least
one line transversal. With n sufficiently large, the number of switched pairs in S is at
most 2.

Proof. Suppose that S admits a total number of m switched pairs, with m > 1. If we
consider each switched pair (two balls) as one object, then every oriented line transversal
meets these switched pairs in a fixed order. Let P1, P2, . . . , Pm denote all the switched
pairs with the corresponding sorted order. Thus for any oriented line transversal, it meets
P1 first and Pm last.

By Lemma 3.1, there exist two oriented line transversals �, �′ such that the orders
in which they meet the balls of P1 and Pm are switched. Let us choose � as the first
coordinate axis, and consider the orthogonal projection of �′ onto a plane normal to �.
Choose the direction of this projection as the second coordinate axis. We can write the
equations for �, �′ in the following form:

�: {�(t) = (t, 0, . . . , 0) | t ∈ R},
�′: {�′(t) = (t, at + b, c3, . . . , cd) | t ∈ R},

where a, b, c3, . . . , cd are all constants.
Let gi denote the center of gravity for the i th switched pair Pi , and xgi is the first

coordinate of gi , for i = 1, . . . , m. Because line � intersects these switched pairs in
increasing order, thus xg1 < xg2 < · · · < xgm . � and �′ have different transversal orders
for these two balls consisting of switched pair P1. By Lemma 2.5, |axg1 + b| ≤ a.
Similarly, we apply Lemma 2.5 to Pm and get |axgm + b| ≤ a. By combining these two
inequalities together, we get a|xgm − xg1 | ≤ 2a, or xgm − xg1 ≤ 2.

By Lemma 3.2, the minimal distance between the centers of gravity of two switched
pairs is at least

√
2−ε(n). In the limit, when n approaches infinity, all line transversals of

S will converge to a line z, which contains all the centers of gravity gi , for i = 1, . . . , m.
Thus xgi+1 − xgi is an infinite approximation of the distance between gi+1 and gi and
xgi+1 − xgi ≥ √

2 − ε(n) for i = 1, . . . , m − 1. Since m is the total number of switched
pairs, we must have

m − 1 ≤ 2√
2 − ε(n)

=
√

2 + ε′(n).

Since m is an integer, we conclude that m ≤ 2 when n is sufficiently large. Thus, in
any dimension d , when n is sufficiently large, the set S can have at most two switched
pairs.
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We can now state our main theorem.

Theorem 3.4. A setS of n pairwise disjoint unit balls inRd admits at most four distinct
geometric permutations, when n is sufficiently large.

Proof. The theorem follows directly by combining Lemma 2.9 and Theorem 3.3.

4. Concluding Remarks

We resolved an open conjecture in this paper by showing that a set of n unit balls in Rd

admits at most four geometric permutations. This constant bound significantly improves
upon the previous known bound of O(nd−1) for general balls.
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