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Abstract. We exhibit a simple infinite family of series-parallel graphs that cannot be
metrically embedded into Euclidean space with distortion smaller than �(

√
log n). This

matches Rao’s [14] general upper bound for metric embedding of planar graphs into Eu-
clidean space, thus resolving the question how well do planar metrics embed in Euclidean
spaces?

1. Introduction

Some of the most interesting questions in the study of finite metric spaces are about the
relations between the structural properties of the underlying graph and of its geodetic
metric (i.e., its shortest-path distance). In this paper we address one such question, and
show a tight lower bound on the distortion of embedding a metric coming from a planar
graph into Euclidean space.

Here are some basic definitions. A finite (semi-) metric space (S, µ) is a finite set S and
a symmetric nonnegative distance function µ on S × S satisfying the triangle inequality
and µ(x, x) = 0. In what follows, we sometimes refer to µ as metric, regardless of S. A
metric is called planar if it can be obtained by restricting the geodetic (i.e., shortest-path)
metric of some weighted planar graph to a subset of its vertices. The weights should,
of course, be nonnegative. Series-parallel, tree, etc., metrics are defined similarly. For
example, one can easily check that the geodetic metric of the unit-weighted K5 is a tree
metric, while that of unit-weighted K3,3 is not a planar metric.
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Given two metric spaces (S, µ), (R, δ) and an embedding f : S −→ R, the distortion
of f is defined as

distr( f ) = max
x,y∈S

δ( f (x), f (y))

µ(x, y)
· max

x,y∈S

µ(x, y)

δ( f (x), f (y))
,

i.e., the product of the maximum expansion and the maximum contraction of f . Observe
that the distortion is never less than 1, and is equal to 1 exactly when f preserves µ up
to scaling.

Two important parameters of a finite metric µ are c2(µ) and c1(µ), the smallest pos-
sible distortion of embedding µ into real Euclidean and �1 space, respectively. Although
the fundamental structural properties of finite metrics have just begun to emerge, numer-
ous new exciting conjectures, theorems and applications (see, e.g., [8], [4], [10], [2], [3],
[12], [6], [14], and [7]) seem to indicate that c1(µ) and c2(µ) indeed do capture some
nontrivial aspects of µ.

We summarize the relevant facts about these two parameters. It always holds that
c2(µ) ≥ c1(µ), since any Euclidean metric is �1-embeddable [13]. Assuming µ is a
metric on n points, both parameters are at most O(log n) [4], which is tight. The bound
it is attained at the geodetic metric of any unit-weighted constant degree expander graph
on n points [10], [1].

Tree metrics behave significantly better: c1(µ) is 1, while c2(µ) = O(
√

log log n)

[5], [12], which is attained at the geodetic metric of the unit-weighted full binary tree
of depth log n [4], [12]. A natural next question is what happens in the case when µ is
a planar metric, or, more generally, a metric coming from a graph excluding some fixed
minor? An elegant result of Rao [14] using [9], shows that for such metrics c2(µ), and
consequently c1(µ), are at most O(

√
log n).

What are the true values of c1(µ) and c2(µ) for planar metrics? There are reasons to
believe that c1(µ) is bounded by a constant; see [7] for a related discussion, and a proof
that this is indeed the case for series-parallel and outerplanar metrics. For the last two
years it was not clear whether c2(µ) is closer to O(

√
log n), as in the upper bound of

[14], or to O(
√

log log n), as for trees [12].
In this paper we settle this question, and establish a lower bound of �(

√
log n) already

for series-parallel metrics, which are a special case of planar metrics.
In addition to the main result, we obtain as a by-product of our construction an infinite

family of weighted planar (in fact, tree-width 3) graphs Hn , so that not only the entire
geodetic metric of Hn , but even the lengths of its edges must be distorted by a factor
of �(

√
log n) by any embedding of Hn into Euclidean space. This contrasts with a

construction of [11] showing that any weighted graph of tree-width 2 can be embedded
into a line (!) so that the edges neither expand nor contract by more than a factor of 3,
and also with a theorem of Seymour [15] about the existence of edge-preserving metric
embeddings of weighted planar graphs into �1 space.

2. The Lower Bound

Define a family {Gk} of graphs in the following inductive manner, similar to the one
used in [7]:
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Fig. 2.1. The graph G3.

G0 consists of a single edge. Gi is a “refinement” of Gi−1 obtained by replacing
each edge of Gi−1 by two parallel paths, each containing two edges. See Fig. 2.1. The
length of every edge in Gi is defined as 2−i , half that of Gi−1. It is convenient to identify
V (Gi−1) with the “old” vertices of Gi . Observe that this natural identification is in fact an
isometry, i.e., the restriction of the geodetic metric of Gi to the “old” vertices is identical
with the geodetic metric of Gi−1 on these vertices.

Thus, without risk of confusion, we can speak of edges of Gi , and of their length,
while discussing any Gk , k ≥ i . To simplify the presentation, we also introduce the
notion of an anti-edge. Assume that the edge (a, b) of Gi−1 was replaced in Gi by edges
(a, x), (x, b) and (a, y), (y, b), respectively. The pair of vertices {x, y} ⊂ V (Gi ) will be
called the anti-edge of (a, b). Observe that the distance between x and y is 2−i , exactly
as the length of the edge (a, b) of Gi−1.

It is easily checked that Gk is a series-parallel graph containing 4k edges and (2 · 4k

+ 4)/3 vertices.

Theorem 2.1. Let µ denote the geodetic metric of Gk . Then

c2(µ) ≥ √
k + 1.

Proof. Let f : V (G) −→ R
d be an embedding of µ into Euclidean space. Due to

the scalability of Euclidean space, we may without loss of generality assume that f
is nonexpanding, i.e., ‖ f (v) − f (u)‖2 ≤ µ(u, v) for any u, v ∈ V (Gk). Let α =
minv,u∈V (Gk )(‖ f (v) − f (u)‖2/µ(v, u)). Our goal will be to show that α ≤ 1/

√
k + 1,

i.e., some distance must contract under such f by at least
√

k + 1.
First, we prove by downwards induction on i that the length of any edge of Gi ,

i = k, k − 1, . . . , 0, must contract under f by at least a factor of [1 − (k − i)α2]−1/2.
Formally, we claim that for any (a, c) ∈ E(Gi ),

‖ f (a) − f (c)‖2 ≤
√

1 − (k − i)α2 · µ(a, c).

The claim is trivially true for i = k, since f is nonexpanding. Assume we have already
demonstrated the claim for i+1; we demonstrate it for i . Recall the well known inequality
that for any four points a, b, c, d in Euclidean space the sum of the squares of the
diagonals never exceeds the sum of the squares of the sides:

‖a − b‖2
2 + ‖b − c‖2

2 + ‖c − d‖2
2 + ‖d − a‖2

2 ≥ ‖a − c‖2
2 + ‖b − d‖2

2. (2.1)
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The inequality holds since after subtracting the right-hand side from the left-hand side,
one arrives at ‖a − b + c − d‖2

2.
Now, consider an edge (a, c) of Gi , its anti-edge (b, d) and the four surrounding

edges of Gi+1: (a, b), (b, c), (c, d) and (d, a). By our inductive assumption, the images
of each of the latter pairs are at most

√
1 − (k − i − 1)α2 ·2−(i+1) apart. By the definition

of α, the images of b and d are at least α · 2−i apart. Combining this with (2.1), we get

4 · 2−2(i+1) · [1 − (k − i − 1)α2] ≥ α2 · 2−2i + ‖ f (a) − f (c)‖2
2,

from which we conclude that

‖ f (a) − f (c)‖2
2 ≤ [1 − (k − i)α2] · 2−2i = [1 − (k − i)α2] · µ2(a, c),

as claimed.
Consider the edge (s, t) of G0. The images of s and t are at least α apart by definition

of α, and at most
√

1 − k · α2 apart by the claim. Comparing the two terms we conclude
that

α ≤ 1/
√

k + 1.

Theorem 2.1 can be slightly strengthened. Observe that in our proof we have used
only the edges and the anti-edges of Gi ’s. Therefore, restoring all these pairs as edges,
and assigning them weight equal to their distance in Gk , we arrive at the graph Hk ,
whose edges must suffer distortion

√
k + 1 in any embedding of Hk into Euclidean

space. Formally:
Let H0 consist of single edge of length 1, and let Hi be obtained by taking Hi−1,

and in addition to existing vertices and edges, introducing for each edge e = (a, c) of
Hi−1 of length 2−(i−1) two new vertices be, de, a new edge (be, de) of length 2−(i−1) and
four new edges (a, be), (be, c), (c, de) and (de, a), each of length 2−i . As before, Hi−1

isometrically embeds into Hi under the natural identification of the vertices.
It turns out that Hk is still planar, and, moreover, has tree-width 3. It has (5 · 4k − 2)/3

edges and the same number of vertices as in Gk . By the preceding discussion we get

Theorem 2.2. In any embedding f of Hk into Euclidean space which does not expand
the edges, there exists an edge in E(Hk) whose length is contracted by f by at least a
factor of

√
k + 1.
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