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Abstract. Let S be a finite collection of compact convex setsRA. Let D(S) be the
largest diameter of any member 8f We say that the collectio8 is ¢-separatedf, for

every 0 < k < d, anyk of the sets can be separated from any other k of the sets
by a hyperplane more tharD(S)/2 away from alld of the sets. We prove thatd is an
e-separated collection of at led$ts) compact convex sets iR and every 8+ 2 members
of S are met by a hyperplane, then there is a hyperplane meeting all the mem&efithef
numberN (¢) depends both on the dimensidrand on the separation parametefhis is

the first Helly-type theorem known for hyperplane transversals to compact convex sets of

arbitrary shape in dimension greater than one.
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1. Introduction

A k-transversalto a collectionS of point sets inRY is ak-flat, i.e., an affine subspace

of dimensiork such as a point, line, or hyperplane, that intersects every memiser of

We are interested in conditions under which a collection of compact convex sets has a
k-transversal.

Vincensini [13] first posed this problem in 1935, and claimed erroneously that a finite
collection of compact convex setsi? has a line transversal if and only if every six mem-
bers of the collection have a line transversal. In fact, Saffdl] showed that for angn
there are finite collections of compact convex sef®dsuch that everyn members of the
collection have aline transversal, but the entire collection does not. Moreover, such coun-
terexamples exist even when the sets are restricted to be pairwise disjoint [8], or pairwise
disjoint line segments [10], or unit disks (although not pairwise disjoint unit disks).

Theorems of the form “If everk members of a collection have a propeRythen
the entire collection has properB/ are known as “Helly-type” theorems, after Helly's
theorem about the intersection of convex sets. Actually, Helly’s theorem itself can be
restated as a Helly-type theorem about point transversals: If everg members of a
collection of compact convex setsi{ have a point transversal, then the entire collection
has a point transversal. Samtalcounterexamples show that there is no such Helly-type
theorem for line transversals to collections of compact convex siés However, he was
able to give such a theorem for line transversals to collections of axis-parallel rectangles
in R? and, more generally, for hyperplane transversals to axis-parallel parallelepipeds
in RY [11]. This led to the exploration of Helly-type theorems for transversals of other,
specialized collections of compact convex sets. In 1957 Danzer [4] proved a conjecture
by Hadwiger that if every five members of a collection of pairwise disjoint unit disks in
R? have a line transversal, then the entire collection has a line transversal.

Grunbaum [7] conjectured that Danzer’'s theorem generalized to any collection of
pairwise disjoint translates of a single compact convex set in the plane. Little progress
was made on this conjecture for the next 25 years. Finally, in 1986, Katchalski [9] proved
a Helly-type theorem for line transversals of pairwise disjoint translates in the plane but
with a Helly number of 128. Three years later, Tverberg [12] provedh@aum’s con-
jecture, showing that if every five members of a collection of pairwise disjoint translates
in R? have a line transversal, then the entire collection has a line transversal. (See [6] for
a more detailed history.)

Katchalski has conjectured that Danzer’s theorem generalizes to line transversals of
unitballs inR3. In other words, Katchalski conjectured that there is some Helly number
such thatif everynmembers of a collection of pairwise disjoint unit ball&#have aline
transversal, then the entire collection has a line transversal. This conjecture is still open.

Instead of generalizing ime transversals i3, Danzer’s theorem can be generalized
to planetransversals irR3. The condition of pairwise disjointness is now no longer
sufficient. The examples of collections of unit disks in the plane, where endrsve
a transversal, but the entire collection does not, can be lifted to pairwise disjoint unit
balls inR3, where everyn have a plane transversal but the entire collection does not. A
stronger condition is needed. We conjecture that this condition is that the collection of
unit balls has no triples with line transversals. A collection of compact convex sgts in
no three of which have a line transversal, is calefaratedEquivalently, a collectios
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of compact convex sets Ik is separated if each convex sedican be strictly separated
from any two other sets il by a plane. We conjecture that there is some numbsguch

that if everym members of a separated collection of unit balls have a plane transversal,
then the entire collection has a plane transversal [2]. This conjecture is also open.

In this paper we show that if we bound the separation distance from below, we can
indeed get a Helly-type theorem for plane transversals. More precisely, a collection of
unit balls inR? is e-separatedf each ball inS can be separated from any two other balls
in S by a plane that lies at distance more tliaaway from all three balls. We prove that
if S is a finitee-separated collection of at lealst(¢) unit balls inR® and every eight
members ofS have a plane transversal, th&rhas a plane transversal.

The theorem holds for finite collections of compact convex sets if we properly gener-
alize the definition of-separation. A finite collectio§ of compact convex sets & is
g-separatedf each setinS can be separated from any other two setS by a plane that
lies at distance more tharD(S)/2 away from all three sets whel2(S) is the largest
diameter of any set i§. If S is a finitee-separated collection of at ledst(e) compact
convex sets iR3 and every eight members Sfhave a plane transversal, thérhas a
plane transversal.

The theorem further generalizes to hyperplane transversals in any dimension. A col-
lection of compact convex sets B, d > 2, is calledseparatedif no d of the sets
have a(d — 2)-transversal. Equivalently, a collectidhof compact convex sets iR¢
is separated if ank sets ofS, 0 < k < d, can be strictly separated from any other
d — k sets ofS by a hyperplane. A finite collectio§ is e-separatedf any k of the sets
of S, 0 < k < d, can be strictly separated from any otlder k of the sets ofS by a
hyperplane that is more tharD (S)/2 away from alld of the sets wher®(S) is the
largest diameter of any setd We prove that ifS is a finites-separated collection of at
leastN (¢) compact convex sets R and every 8 + 2 of the sets of have a hyperplane
transversal, the§ has a hyperplane transversal. The nunmdér) depends on both the
separation parameterand the dimensiod.

Ford = 2, our result yields a Helly-type theorem for line transversats$eparated
collections of pairwise disjoint convex setsif. Hence it might appear that this con-
tradicts the Hadwiger—Debrunner examples [8] of finite collections of pairwise disjoint
compact convex sets iR? such that everyn have a line transversal but the entire col-
lection does not. Since the sets are compact and pairwise disjoint, each such collection
is, indeed g-separated for some value @f However, in each such case the collection
has fewer thamN (¢) members and so our theorem does not apply.

The next section is devoted to a proof of our main result:

Theorem 1. For each dimension d and eaeh> 0, there is a number k) such that
if every2d + 2 members of a finite-separated collectio of at least N¢) compact
convex sets ilRY have a hyperplane transverséthen all the members of do.

2. Proof of the Theorem

Throughout this paperlaodyis a compact convex set. Recall that a collection of at least
d bodies inR¢ is separated14] if no d of the bodies have & — 2)-transversal, i.e.,



510 B. Aronov, J. E. Goodman, R. Pollack, and R. Wenger

there is nad — 2)-flat that meets ang of the bodies. This is equivalent to the condition
that, if 0 < k < d, then anyk of the bodies can be strictly separated from any other
d — k of the bodies by a hyperplane. We generalize this as follows.

Definition. Givene > 0, a finite collectionS of at leastd bodies inRY is ¢-separated
if, for every 0 < k < d, anyk of the bodies can be separated from any otherk of the
bodies by a hyperplane more thab(S)/2 away from alld of the bodies, wher®(S)
is the largest diameter of any body$h

Notice that fore = 0 this specializes to the condition that the bodies are separated.

For any bodys, let S() be the Minkowski sum o8& with the closed ball of radius
centered at the origin and 18(«) = {S(«) | S € S}. Then clearlysS is e-separated if
and only ifS(e D(S)/2) is separated, so that in particular it follows tisas ¢-separated
if and only if given any(d — 2)-flat F and anyd bodiesS,, ..., & € S, F is more than
¢D(S)/2 away from at least one of the bodi§si.e., F avoids at least one of the bodies
S(eD(S)/2).

Notice in particular that the definition is invariant under scaling and under rigid
motions. To simplify our presentation, we assume hereafter, without loss of generality,
thatD(S) = 2. In addition, notice that if is a collection ok-separated bodies; C S,
and 0< § < ¢, then§’ is alsos-separated.

In what follows we work inRY, with d > 2 fixed. Thus in our notation we suppress
the dependence of the various “constantston

Definition. The orientation of the (d + 1)-tuple (ay, ..., a44+1) of points inRY is
sgnay, ..., a4+1), the sign of the determinant of thid + 1) x (d + 1) matrix whose
ith row consists of the coordinates o§; followed by 1.

Definition. Theorientationof thed-tuple (ay, ..., aq) of points lying in an oriented
hyperplaneH with normaln is sgn0, a; — a3, ..., a4 — &g, N).

We begin with a lemma which, strictly speaking, is not needed, but whose proof will
make that of the lemma that follows more transparent.

Lemmal. Given points a,...,aq4,a;,...,8; € RY-1, If the d-tuples(ay, ..., aq)
and (a;, ..., &) have opposite orientatigrihere is a(d — 2)-flat cutting all of the
segments;a; .

Proof. Fort € [0, 1] leta; (t) = (1 —t)a +ta]. Since(ay(t), ..., aq(t)) changes sign
in [0, 1] it must vanish at some value of O

Remark. If Sis a separated collection of bodiesRA, then it makes sense to speak of
the orientation of the intersections adduple of bodies of with an oriented hyperplane
(H, n). Indeed, nad — 2)-flat in H can meet ald bodies, so that (by Lemma 1) the
orientation of anyd-tuple of points, one from each of tidbodies, is independent of the
choice of the points.
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Lemma?2. Supposef...,aq,8;,...,8; € RY with ay, . .., ag (resp a,...,a)in
general positionand with|a;a/| < 1 for every i Let H (resp H’) be the hyperplane
spanned by the points &esp a/) fori = 1, ..., d, with unit normaln (resp n") chosen
so that(ay, ..., ag) in (H,n) and(ay, ..., a)) in (H', n") haveoppositeorientation
and lete be the angle betweemand n’. Supposéd < ¢ < m/2. Then there exists a
(d — 2)-flat F within ¢ of all the segments; &.

Proof If ¢ > 0, the two hyperplanesl andH’ partitionRY into four quadrants, one
of which, Q. _, lies on the positive side dfi and on the negative side bf'. Let H (1),

0 <t < 1, beahyperplane thatrotates aboutthe 2)-flat H"H’ from H to H’ through
Q. _ (and its opposite quadraft_, ), with H(0) = H andH (1) = H’. Letn(t) be the
normal toH (t), chosen so that it varies continuously witvithn(0) = nandn(1) = n'.
Suppose the segmerts,, . . ., &g liein Q,_ or Q_, whilea, 13, ,, ..., agay lie
in the remaining two quadrant§.. and Q__ (see Fig. 1). For each € [0, 1], we
choose pointd; (t) € H(t),i =1,...,d, asfollows. Foi = 1,...,Kk, leth;(t) be the
intersectiorof the segmers; &' with H (t); fori = k+1, ..., d, letb; (t) be theprojection
of g (t) on H(t), where (fori = k+ 1, ..., d) & (t) is any continuous parametrization
of the segmend; & with g (0) = & anda; (1) = &/.

Fig. 1. The four quadrants of Lemma 2.
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Ast moves from 0 to 1, thd-tuple (by(t), ..., by(t)) in (H(t), n(t)) goes from one
orientation to the other. Hence for sortfee (0, 1), as in Lemma 1, we must have a
(d — 2)-flat F passing through all the pointg(t*), ..., bg(t*). We claim thatF lies
within ¢ of all the segmentaya;, .. ., aga;.

Fori =1, ..., k, thisis clear, sinc& actuallymeetghese segments. Suppase k.
Since the segmeia; lies either inQ.., orin Q__, and its length is bounded by 1, its
extreme points and all the points between them lie no more than one unitfronk’
(this is where we are using the assumption that 7/2), hence within a distance of
sine < ¢ from their projections intd (t) for eacht € [0, 1]. However, fort = t*, these
projections lie inF. Hence the distance froifi to each segmerg & is no more tham.

Finally, if ¢ = 0, the two hyperplaneBl andH’ are parallel, and all the segments
are of the first type. LeH (t) move monotonically fronH to H’, remaining parallel to
H, and apply the argument of Lemma 1; the result is aRlatittingall of the segments
aa (i=1,...,d). O

Recall that thevidth, width X, of a compact seX is the leasiw > 0 for which there
is a hyperplanégd with unit normaln such thatX lies betweerH andH + wn. Notice
that, by this definition, if the affine dimension &fis smaller than the dimension of the
ambient space, its width is automatically 0. Sometimes, however, we need to measure
the width widthg X of X relative to a k-flat F> X—we define it to be the minimum
distance between two paraligd — 1)-flats in F containingX between them.

Throughout the remainder of this paper, by the width of a collection of sets we mean
the width of their union.

Lemma 3. Any compact set X of affine dimension dRif contains a subset of size
d + 1 and width at leastwidth X)/c, where c= c(d) > 0is a dimension-dependent
constant

Proof. We explicitly construct theéd + 1)-tuple P = {px, ..., pa+1} Of points incre-
mentally. Start with an arbitrary poiml; € X. Suppose we have already constructed
P1, ..., pi, forsomei, 1 < i < d. Then letp;;; be a point ofX farthest from the
(i — D-flat F = aff{ps,..., pi}. Leth; = d(pi;1, F), whered(., -) denotes the
Euclidean distance.

We proceed to prove th&has the desired property. For convenienceilet convP.
First, observe that; > h;j, 1, for1 <i < d — 1. Secondly, voh = (1/d!) ]_[id:1 hi.

We now construct a hyperrectangk containing X, as follows: We start with a
sequence of cylindrical objec®,i = 1,...,d, each containing(. Specifically, let

Ci={xeR!|dx F)<h.

We now approximat€; by a parallel slal§ > C; whose medial hyperplarid; passes
throughF, and whose width ist&. This does not fully specifii: there is still some
freedom in choosing its orientation. We arrange it so that the sklase mutually
orthogonal. Indeed$y is fully specified, as its medial hyperplah = Fq is fixed.
Hq_1 and Hg meet in Fq_1, and Hyg_1 can be rotated around th{gl — 2)-flat. We
rotate it so that it is orthogonal tbly. The process is then repeated: Having fixed the
position for all but the first slabs, we fix the position 0§ by noting thatH;, as all
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H; for j > i, passes through th@ — 1)-flat i and Hi1, ..., Hy have been chosen
to be mutually orthogonal. Hence there exists one more hyperplane orthogonal to all of
them and containing;—that is howH; is chosen. The intersection of theslabs is a
hyperrectangld? with vol R = ]—[id:1 2h; = 249d!vol A.

As the smallest dimension @& is 2hy, width X < width R = 2hg4. On the other
hand, widthP = width A > 2r, wherer is the radius of the largest sphere inscribed
in A. In fact, volA = r - areaA/d, where area is the surface area af, i.e., the
(d — 1)-dimensional volume of the boundary af. As A ¢ R and both are convex,
areaA < areaR < 2d ]’[id;f 2h; = d(vol R)/ hy. Hence

2d vol A - 2d(vol R/24d!) _ 2hy - width X

idth P > 2r = _
WA = & = —read ~ dWolR/hg ~ 29! — 29d1

as claimed. O

For a hyperplandi, let 7y denote orthogonal projection té. We then have:

Lemma 4. There exists a sufficiently large-e c¢(d) > 2x, so that for anye < 7/2,

the following holdslf P is a set of d bodies iRY each of diameter at mog&tand such

that widthy (H N P) > c/e for every hyperplane transversal H &f, then any two
hyperplane transversals meeting the bodies in the same orientation are within an angle
¢ of each other

Proof At first glance, the lemma appears ill-stated, since the definition of orientation
for a collection ofd bodiesn an oriented hyperplane requires separation. Hence we begin
by observing thaP is indeed separated. If that were not the c@sepuld have dd — 2)-
transversal, and since the diameter of any sBtisat most 27 would be contained in the
cylinderC of radius 2 around thigd — 2)-transversal, so that fanyhyperplaneH, we
would have widthy (H NP) < widthy 7wy (P) < widthy 7y (C) = widthC =4 < ¢/e,
contradicting our width assumption.

Fix an arbitraryreference poinin each set oP. Let(H, n) be the oriented hyperplane
spanned by thd reference points, and IeH’, n") be any oriented hyperplane transversal
toP suchthatthe orientation {iH’, n") of the (ordered) collectiohl’ NP agrees with the
orientation of (the ordered set of) the reference point$inn). We argue that the angle
betweem andn’ does not exceeg/2, if c is large enough. This will finish the proof.

Let F be the(d — 2)-flatH N H’. (If H" || H, n” = £n. By a continuity argument
similar to the one given belowm’ = —n is impossible.) ProjecH, H’, P, and F
orthogonally to the 2-flat (i.e., plan€)‘. Refer to Fig. 2. Since wid{h H NP is at least
c¢/e, the projections of the reference points span a segment of length atleast4
on the line¢ = H N FL. Thus¢ and¢’ = H’ N F! are both line transversals of
the projection ofP, which is a collectiorl?” = wg.(P) of convex sets each of which
fits in a disk of radius 2 centered at a point 4fdisk centers are spread out for a
distance at least/¢ — 4 along¢. Hence the angle between the two lines (and thus the
two hyperplanes) is such that gin< 4/(c/e — 4). Sincef < m/2, we conclude that
0 < (r/2)sind < 2r/(c/e — 4) < ¢/2 for an appropriate choice of

Without loss of generality, suppose tlias horizontal and (the projection af)points
vertically upward. To finish the argument, we must show that (the projectiam afyo
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Fig. 2. Orthogonal projection td=-; the figure illustrates the case where each set is a unit ball and the
reference points coincide with ball centers, for ease of visualization.

points into the upper halfplane, which, together with the fact that the directioharad
¢ are withing /2 of each other, implies that the same holdsrfandn’.

To argue this, we replace each body7fwith a ball of radius 2 centered at the
corresponding reference point, obtaining a collec@nf d sets inRY. The argument
thatP is separated given in the beginning of this proof is easily seen to apglyas
well, with a slightly larger value of (the only difference being that it takes a cylinder of
radius 4, and not 2, to enclogkifitis not separated). LaD’ = 7. (Q). Itis a collection
of disks of radius 2 centered at points on the linkine ¢’ also meets all disks. Itis easy
to verify that under these assumptiati€an be rotated inté around the point of their
intersection while remaining a transversal @the rotation is through the smaller
angle between the lines, i.e., at meg2. This means thatl’ can be rotated intél while
remaining a transversal @I. However, by continuity, such a rotation cannot change the
orientation of the intersection @ with the hyperplane, for otherwig@ would have a
(d — 2)-transversal. HencéH, n) can be obtained froriH’, n’) by a rotation through
an angle of at most/2, as claimed. O

Corollary 1. The conclusion of Lemn#galso holds for collection® of d bodiegeach
of diameter at mos2) with the property that there somehyperplane Gnot necessarily
a transversal of?) with widthg 7 (P) > ¢'/e, for some constant ¢ ¢, where c is the
constant of LemmaA.

Proof. Let P be a set ofil points, one from each body @f. Let H = aff P. Note that
the affine dimension o cannot be smaller thasth— 1, for otherwiseP would fit into a
cylinder of radius 2 aroun#l and no projection oP to a hyperplane would have width
larger than 4—this would contradict our width assumption, sitice ¢ > 2r. Hence
H is a hyperplane.

It is now sufficient to prove that widthP > c/e. Indeed, it is easy to see that
widthg 7g(P) < widthg mg(P) + 4 and that width =g (P) < widthy P. Hence
widthy H NP > widthy P > ¢//e — 4 > c/¢, for an appropriate choice @f > ¢
(namelyc’ = ¢ + 2r). O

Proposition 1. For eache > 0, there is a number ) such that every-separated
collection of at least Ne) bodies inRY contains d bodies such that any two oriented
hyperplanes each meeting these d bodies in positively oriented sets make an angle of
less thare.
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Proof. Inview of the fact that-separation implieg-separation for G< § < ¢, we may
assume without loss of generality thatOe < 7 /2. Letw = c/¢, for an appropriate
choice ofc = c(d), to be specified below.

Let S be ane-separated collection, as above, of size at &gt = (d — 1)(c +
2¢2)?/(me*). We first argue that its orthogonal projectiop (S) to some hyperplankl
has width, relative tdH, at leastw.

Indeed, suppose there is no such hyperplane. SHieis in some parallel slab of width
lessthanw. LetH be one of the bounding hyperplanes of the slab. Since width(S) <
w, it follows thatS is contained in an open region which is the Cartesian product of a
w X w square with somé&d — 2)-flat F. By the definition of-separation, ned — 2)-flat
can meet more thad — 1 sets ofS(e). Hence, if we projectS(e) to the orthogonal
complement off, the projected collection is confined to a region of area less than
(w + 2¢)?, covers it no more thand — 1)-fold, and consists of sets of area at least
we? each. SAS| < (d — )(w + 2¢)%/(we?) = (d — 1)(c + 2¢%)?/(we*) = N(e), a
contradiction.

Thus, for a large enoughtseparated collectio§, there always exists a hyperplane
H with widthy 7 (S) > w. By Lemma 3, there is a subsBtof d points inzy (S)
with widthy P > w/(29d!). Pick d distinct sets ofS, each containing a point whose
projection belongs td?; note that since® has large width inH, the projection of no
single body ofS could contain more than one point Bf Let P be the resulting set af
bodies. Hence widih (P) > widthy P > ¢/(29d! ¢), so that the corollary applies,
providedc is large enough. This is the desired setidfodies. O

The following definitionis not the standard one, but the “Local Realizability Criterion”
on p. 140 of [3] shows that they are equivalent, at least in the case we are interested in,
where the sets are in general position.

Definition. A rank-r oriented matroian afinite seM consists of a positive or negative
orientation assigned to eacttuple of distinct elements d¥l so thatr -tuples that differ

by an even (resp. odd) permutation have the same (resp. opposite) orientation and so
that each subset of sizet 2 isrealizablein R' 1. This means that every + 2)-subset

M’ of M is in 1-1 correspondence with @n+ 2)-subsetP’ of points inR" ! so that
corresponding-tuples have the same orientation.

The oriented matroid structure derived from a finite set of poini&ris called the
order typeof the set.

We recall the following “generalized Hadwiger theorem” of Goodman and Pollack
from [5].

Generalized Hadwiger Theorem. A finite separated collectio§ of bodies inRY has

a hyperplane transversal if and only if there is an oriented matroid of rank § sach
that every dt 1 members of are met by an oriented hyperplane consistently with that
oriented matroid

We are now able to present our proof of Theorem 1.
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Proof of Theoreni. We may assume without loss of generality that /2, since
e-separated bodies are als@eparated for ever§yy < ¢. This being the case, it follows
in particular that < 7 — &.

By Proposition 1, we may chooskbodiesS], ..., §j from § such that any two
oriented hyperplanes each meeting them in positively oriented sets make an angle
smaller thare. For everyd + 2 bodiesS,, ..., S,,, of S, there is a transversdl =
T(1,...,lg2) 105}, ..., §, S,, ..., S, (if some indices are repeated in this list, en-
large this collection to contairt2+ 2 distinct sets of in anarbitrary way and then pick a
transversal); fix it, choosing a unit normal veatdiy, . . . , ig12) sothatSfNT, ..., §N
T have positive orientation. Since any two transversal§;, ..., iq, ig+1, ig+2) and
Ty, ...,0d.ig,4,1G,,), make an angle smaller than it follows (by Lemma 2) that
they meetS,, ..., §, with the same orientation—since the presence of two transversals
(meeting them in opposite orientations) with “nearby” normal vectors would imply the
existence of &d — 2)-flat that lies within distance of each ofS,, . . . S,. (Note that here
we use the factthat < = —¢.) Thus, for eacld-tupleiq, .. ., ig, we have a distinguished
orientation, and the collection of these orientations determines an oriented nidtroid
since restricted to any + 2 they agree with the order type in which the corresponding
bodies are met by the transversal in our collection for tlthge2 bodies.

Now by the Generalized Hadwiger Theorem, since ewery 1 of our bodies,

S., ..., S4.., have a transversal (just taR€iy, .. ., ig42) for anychoice ofigy;,) such
that all the order types are consistent with thos#oft follows thatall the bodies have
a common transversal. O

3. Remarks

In Theorem 1 we gave a Helly-type theorem with a fixed Helly number (namely,2).
Note that the conclusion holds only ferseparated collections of cardinality that grows
rapidly with decreasing. Using similar methods, it is possible to give a different Helly-
type theorem, which applies to collections of much smaller cardinality, but at the cost of
having the Helly number depend en

In [1] Amenta showed a connection between Helly-type theorems and linear-time
algorithms. Perhaps our Helly-type theorem suggests a linear-time algorithm for finding
hyperplane transversalsdeseparated convex sets under a suitable model of computation.

Katchalski's conjecture that there is a Helly-type theorem for line transversals to
collections of pairwise disjoint unit balls iR® remains open. Similarly, the conjecture
that there is a Helly-type theorem for plane transversals to separated collections of
unit balls inRR3 is also open. More generally, are there such Helly-type theorems for
line transversals to collections of pairwise disjoint translates or plane transversals to
separated collections of translatesRi#f?
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