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1. Introduction

A k-transversalto a collectionS of point sets inRd is ak-flat, i.e., an affine subspace
of dimensionk such as a point, line, or hyperplane, that intersects every member ofS.
We are interested in conditions under which a collection of compact convex sets has a
k-transversal.

Vincensini [13] first posed this problem in 1935, and claimed erroneously that a finite
collection of compact convex sets inR2 has a line transversal if and only if every six mem-
bers of the collection have a line transversal. In fact, Santal´o [11] showed that for anym
there are finite collections of compact convex sets inR2 such that everymmembers of the
collection have a line transversal, but the entire collection does not. Moreover, such coun-
terexamples exist even when the sets are restricted to be pairwise disjoint [8], or pairwise
disjoint line segments [10], or unit disks (although not pairwise disjoint unit disks).

Theorems of the form “If everyk members of a collection have a propertyP, then
the entire collection has propertyP” are known as “Helly-type” theorems, after Helly’s
theorem about the intersection of convex sets. Actually, Helly’s theorem itself can be
restated as a Helly-type theorem about point transversals: If everyd + 1 members of a
collection of compact convex sets inRd have a point transversal, then the entire collection
has a point transversal. Santal´o’s counterexamples show that there is no such Helly-type
theorem for line transversals to collections of compact convex sets inR2. However, he was
able to give such a theorem for line transversals to collections of axis-parallel rectangles
in R2 and, more generally, for hyperplane transversals to axis-parallel parallelepipeds
in Rd [11]. This led to the exploration of Helly-type theorems for transversals of other,
specialized collections of compact convex sets. In 1957 Danzer [4] proved a conjecture
by Hadwiger that if every five members of a collection of pairwise disjoint unit disks in
R2 have a line transversal, then the entire collection has a line transversal.

Grünbaum [7] conjectured that Danzer’s theorem generalized to any collection of
pairwise disjoint translates of a single compact convex set in the plane. Little progress
was made on this conjecture for the next 25 years. Finally, in 1986, Katchalski [9] proved
a Helly-type theorem for line transversals of pairwise disjoint translates in the plane but
with a Helly number of 128. Three years later, Tverberg [12] proved Gr¨unbaum’s con-
jecture, showing that if every five members of a collection of pairwise disjoint translates
inR2 have a line transversal, then the entire collection has a line transversal. (See [6] for
a more detailed history.)

Katchalski has conjectured that Danzer’s theorem generalizes to line transversals of
unit balls inR3. In other words, Katchalski conjectured that there is some Helly numberm
such that if everymmembers of a collection of pairwise disjoint unit balls inR3 have a line
transversal, then the entire collection has a line transversal. This conjecture is still open.

Instead of generalizing toline transversals inR3, Danzer’s theorem can be generalized
to plane transversals inR3. The condition of pairwise disjointness is now no longer
sufficient. The examples of collections of unit disks in the plane, where everym have
a transversal, but the entire collection does not, can be lifted to pairwise disjoint unit
balls inR3, where everym have a plane transversal but the entire collection does not. A
stronger condition is needed. We conjecture that this condition is that the collection of
unit balls has no triples with line transversals. A collection of compact convex sets inR3,
no three of which have a line transversal, is calledseparated. Equivalently, a collectionS
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of compact convex sets inR3 is separated if each convex set inS can be strictly separated
from any two other sets inS by a plane. We conjecture that there is some numberm such
that if everym members of a separated collection of unit balls have a plane transversal,
then the entire collection has a plane transversal [2]. This conjecture is also open.

In this paper we show that if we bound the separation distance from below, we can
indeed get a Helly-type theorem for plane transversals. More precisely, a collection of
unit balls inR3 is ε-separatedif each ball inS can be separated from any two other balls
in S by a plane that lies at distance more thanε away from all three balls. We prove that
if S is a finiteε-separated collection of at leastN(ε) unit balls inR3 and every eight
members ofS have a plane transversal, thenS has a plane transversal.

The theorem holds for finite collections of compact convex sets if we properly gener-
alize the definition ofε-separation. A finite collectionS of compact convex sets inR3 is
ε-separatedif each set inS can be separated from any other two sets inS by a plane that
lies at distance more thanεD(S)/2 away from all three sets whereD(S) is the largest
diameter of any set inS. If S is a finiteε-separated collection of at leastN(ε) compact
convex sets inR3 and every eight members ofS have a plane transversal, thenS has a
plane transversal.

The theorem further generalizes to hyperplane transversals in any dimension. A col-
lection of compact convex sets inRd, d ≥ 2, is calledseparatedif no d of the sets
have a(d − 2)-transversal. Equivalently, a collectionS of compact convex sets inRd

is separated if anyk sets ofS, 0 < k < d, can be strictly separated from any other
d− k sets ofS by a hyperplane. A finite collectionS is ε-separatedif any k of the sets
of S, 0 < k < d, can be strictly separated from any otherd − k of the sets ofS by a
hyperplane that is more thanεD(S)/2 away from alld of the sets whereD(S) is the
largest diameter of any set inS. We prove that ifS is a finiteε-separated collection of at
leastN(ε) compact convex sets inRd and every 2d+2 of the sets ofS have a hyperplane
transversal, thenS has a hyperplane transversal. The numberN(ε) depends on both the
separation parameterε and the dimensiond.

Ford = 2, our result yields a Helly-type theorem for line transversals toε-separated
collections of pairwise disjoint convex sets inR2. Hence it might appear that this con-
tradicts the Hadwiger–Debrunner examples [8] of finite collections of pairwise disjoint
compact convex sets inR2 such that everym have a line transversal but the entire col-
lection does not. Since the sets are compact and pairwise disjoint, each such collection
is, indeed,ε-separated for some value ofε. However, in each such case the collection
has fewer thanN(ε) members and so our theorem does not apply.

The next section is devoted to a proof of our main result:

Theorem 1. For each dimension d and eachε > 0, there is a number N(ε) such that
if every2d + 2 members of a finiteε-separated collectionS of at least N(ε) compact
convex sets inRd have a hyperplane transversal, then all the members ofS do.

2. Proof of the Theorem

Throughout this paper abodyis a compact convex set. Recall that a collection of at least
d bodies inRd is separated[14] if no d of the bodies have a(d − 2)-transversal, i.e.,
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there is no(d−2)-flat that meets anyd of the bodies. This is equivalent to the condition
that, if 0 < k < d, then anyk of the bodies can be strictly separated from any other
d − k of the bodies by a hyperplane. We generalize this as follows.

Definition. Givenε ≥ 0, a finite collectionS of at leastd bodies inRd is ε-separated
if, for every 0< k < d, anyk of the bodies can be separated from any otherd− k of the
bodies by a hyperplane more thanεD(S)/2 away from alld of the bodies, whereD(S)
is the largest diameter of any body inS.

Notice that forε = 0 this specializes to the condition that the bodies are separated.
For any bodyS, let S(α) be the Minkowski sum ofSwith the closed ball of radiusα

centered at the origin and letS(α) = {S(α) | S ∈ S}. Then clearlyS is ε-separated if
and only ifS(εD(S)/2) is separated, so that in particular it follows thatS is ε-separated
if and only if given any(d− 2)-flat F and anyd bodiesS1, . . . , Sd ∈ S, F is more than
εD(S)/2 away from at least one of the bodiesSi , i.e.,F avoids at least one of the bodies
Si (εD(S)/2).

Notice in particular that the definition is invariant under scaling and under rigid
motions. To simplify our presentation, we assume hereafter, without loss of generality,
thatD(S) = 2. In addition, notice that ifS is a collection ofε-separated bodies,S ′ ⊆ S,
and 0≤ δ ≤ ε, thenS ′ is alsoδ-separated.

In what follows we work inRd, with d ≥ 2 fixed. Thus in our notation we suppress
the dependence of the various “constants” ond.

Definition. The orientation of the (d + 1)-tuple (a1, . . . ,ad+1) of points inRd is
sgn〈a1, . . . ,ad+1〉, the sign of the determinant of the(d + 1) × (d + 1) matrix whose
i th row consists of thed coordinates ofai followed by 1.

Definition. Theorientationof thed-tuple (a1, . . . ,ad) of points lying in an oriented
hyperplaneH with normaln is sgn〈0,a2− a1, . . . ,ad − a1,n〉.

We begin with a lemma which, strictly speaking, is not needed, but whose proof will
make that of the lemma that follows more transparent.

Lemma 1. Given points a1, . . . ,ad,a′1, . . . ,a
′
d ∈ Rd−1. If the d-tuples(a1, . . . ,ad)

and (a′1, . . . ,a
′
d) have opposite orientation, there is a(d − 2)-flat cutting all of the

segments ai a′i .

Proof. For t ∈ [0,1] let ai (t) = (1− t)ai + ta′i . Since〈a1(t), . . . ,ad(t)〉 changes sign
in [0,1] it must vanish at some value oft .

Remark. If S is a separated collection of bodies inRd, then it makes sense to speak of
the orientation of the intersections of ad-tuple of bodies ofS with an oriented hyperplane
(H,n). Indeed, no(d − 2)-flat in H can meet alld bodies, so that (by Lemma 1) the
orientation of anyd-tuple of points, one from each of thed bodies, is independent of the
choice of the points.
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Lemma 2. Suppose a1, . . . ,ad,a′1, . . . ,a
′
d ∈ Rd with a1, . . . ,ad (resp. a′1, . . . ,a

′
d) in

general position, and with |ai a′i | ≤ 1 for every i. Let H (resp. H ′) be the hyperplane
spanned by the points ai (resp. a′i ) for i = 1, . . . ,d, with unit normaln (resp. n′) chosen
so that(a1, . . . ,ad) in (H,n) and (a′1, . . . ,a

′
d) in (H ′,n′) haveoppositeorientation,

and letε be the angle betweenn and n′. Suppose0 ≤ ε ≤ π/2. Then there exists a
(d − 2)-flat F within ε of all the segments ai a′i .

Proof. If ε > 0, the two hyperplanesH andH ′ partitionRd into four quadrants, one
of which, Q+−, lies on the positive side ofH and on the negative side ofH ′. Let H(t),
0≤ t ≤ 1, be a hyperplane that rotates about the(d−2)-flat H∩H ′ from H to H ′ through
Q+− (and its opposite quadrantQ−+), with H(0) = H andH(1) = H ′. Let n(t) be the
normal toH(t), chosen so that it varies continuously witht , withn(0) = n andn(1) = n′.
Suppose the segmentsa1a′1, . . . ,aka′k lie in Q+− or Q−+, while ak+1a′k+1, . . . ,ada′d lie
in the remaining two quadrants,Q++ and Q−− (see Fig. 1). For eacht ∈ [0,1], we
choose pointsbi (t) ∈ H(t), i = 1, . . . ,d, as follows. Fori = 1, . . . , k, let bi (t) be the
intersectionof the segmentai a′i with H(t); for i = k+1, . . . ,d, letbi (t)be theprojection
of ai (t) on H(t), where (fori = k + 1, . . . ,d) ai (t) is any continuous parametrization
of the segmentai a′i with ai (0) = ai andai (1) = a′i .

Fig. 1. The four quadrants of Lemma 2.
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As t moves from 0 to 1, thed-tuple(b1(t), . . . ,bd(t)) in (H(t),n(t)) goes from one
orientation to the other. Hence for somet∗ ∈ (0,1), as in Lemma 1, we must have a
(d − 2)-flat F passing through all the pointsb1(t∗), . . . ,bd(t∗). We claim thatF lies
within ε of all the segmentsa1a′1, . . . ,ada′d.

For i = 1, . . . , k, this is clear, sinceF actuallymeetsthese segments. Supposei > k.
Since the segmentai a′i lies either inQ++ or in Q−−, and its length is bounded by 1, its
extreme points and all the points between them lie no more than one unit fromH ∩ H ′

(this is where we are using the assumption thatε ≤ π/2), hence within a distance of
sinε < ε from their projections intoH(t) for eacht ∈ [0,1]. However, fort = t∗, these
projections lie inF . Hence the distance fromF to each segmentai a′i is no more thanε.

Finally, if ε = 0, the two hyperplanesH and H ′ are parallel, and all the segments
are of the first type. LetH(t) move monotonically fromH to H ′, remaining parallel to
H , and apply the argument of Lemma 1; the result is a flatF cuttingall of the segments
ai a′i (i = 1, . . . ,d).

Recall that thewidth, width X, of a compact setX is the leastw ≥ 0 for which there
is a hyperplaneH with unit normaln such thatX lies betweenH andH + wn. Notice
that, by this definition, if the affine dimension ofX is smaller than the dimension of the
ambient space, its width is automatically 0. Sometimes, however, we need to measure
thewidth widthF X of X relative to a k-flat F⊃ X—we define it to be the minimum
distance between two parallel(k− 1)-flats in F containingX between them.

Throughout the remainder of this paper, by the width of a collection of sets we mean
the width of their union.

Lemma 3. Any compact set X of affine dimension d inRd contains a subset of size
d + 1 and width at least(width X)/c, where c= c(d) > 0 is a dimension-dependent
constant.

Proof. We explicitly construct the(d + 1)-tuple P = {p1, . . . , pd+1} of points incre-
mentally. Start with an arbitrary pointp1 ∈ X. Suppose we have already constructed
p1, . . . , pi , for somei , 1 ≤ i ≤ d. Then let pi+1 be a point ofX farthest from the
(i − 1)-flat Fi = aff{p1, . . . , pi }. Let hi = d(pi+1, Fi ), whered(·, ·) denotes the
Euclidean distance.

We proceed to prove thatP has the desired property. For convenience, let1 = convP.
First, observe thathi ≥ hi+1, for 1≤ i ≤ d − 1. Secondly, vol1 = (1/d!)

∏d
i=1 hi .

We now construct a hyperrectangleR containing X, as follows: We start with a
sequence of cylindrical objectsCi , i = 1, . . . ,d, each containingX. Specifically, let

Ci = {x ∈ Rd | d(x, Fi ) ≤ hi }.

We now approximateCi by a parallel slabSi ⊇ Ci whose medial hyperplaneHi passes
throughFi and whose width is 2hi . This does not fully specifySi : there is still some
freedom in choosing its orientation. We arrange it so that the slabsSi are mutually
orthogonal. Indeed,Sd is fully specified, as its medial hyperplaneHd = Fd is fixed.
Hd−1 and Hd meet in Fd−1, and Hd−1 can be rotated around this(d − 2)-flat. We
rotate it so that it is orthogonal toHd. The process is then repeated: Having fixed the
position for all but the firsti slabs, we fix the position ofSi by noting thatHi , as all
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Hj for j > i , passes through the(i − 1)-flat Fi and Hi+1, . . . , Hd have been chosen
to be mutually orthogonal. Hence there exists one more hyperplane orthogonal to all of
them and containingFi —that is howHi is chosen. The intersection of thed slabs is a
hyperrectangleR with vol R=∏d

i=1 2hi = 2dd! vol1.
As the smallest dimension ofR is 2hd, width X ≤ width R = 2hd. On the other

hand, widthP = width1 ≥ 2r , wherer is the radius of the largest sphere inscribed
in 1. In fact, vol1 = r · area1/d, where area1 is the surface area of1, i.e., the
(d − 1)-dimensional volume of the boundary of1. As 1 ⊂ R and both are convex,
area1 ≤ areaR≤ 2d

∏d−1
i=1 2hi = d(vol R)/hd. Hence

width P ≥ 2r = 2d vol1

area1
≥ 2d(vol R/2dd!)

d(vol R/hd)
= 2hd

2dd!
≥ width X

2dd!
,

as claimed.

For a hyperplaneH , letπH denote orthogonal projection toH . We then have:

Lemma 4. There exists a sufficiently large c= c(d) ≥ 2π , so that, for anyε < π/2,
the following holds: If P is a set of d bodies inRd each of diameter at most2 and such
that widthH (H ∩ P) > c/ε for every hyperplane transversal H ofP, then any two
hyperplane transversals meeting the bodies in the same orientation are within an angle
ε of each other.

Proof. At first glance, the lemma appears ill-stated, since the definition of orientation
for a collection ofd bodiesin an oriented hyperplane requires separation. Hence we begin
by observing thatP is indeed separated. If that were not the case,P would have a(d−2)-
transversal, and since the diameter of any set inP is at most 2,P would be contained in the
cylinderC of radius 2 around this(d− 2)-transversal, so that foranyhyperplaneH , we
would have widthH (H ∩P) ≤ widthH πH (P) ≤ widthH πH (C) = widthC = 4< c/ε,
contradicting our width assumption.

Fix an arbitraryreference pointin each set ofP. Let(H,n) be the oriented hyperplane
spanned by thed reference points, and let(H ′,n′) be any oriented hyperplane transversal
toP such that the orientation in(H ′,n′)of the (ordered) collectionH ′∩P agrees with the
orientation of (the ordered set of) the reference points in(H,n). We argue that the angle
betweenn andn′ does not exceedε/2, if c is large enough. This will finish the proof.

Let F be the(d − 2)-flat H ∩ H ′. (If H ′ ‖ H , n′ = ±n. By a continuity argument
similar to the one given belown′ = −n is impossible.) ProjectH , H ′, P, and F
orthogonally to the 2-flat (i.e., plane)F⊥. Refer to Fig. 2. Since widthH H ∩P is at least
c/ε, the projections of the reference points span a segment of length at leastc/ε − 4
on the line` = H ∩ F⊥. Thus` and `′ = H ′ ∩ F⊥ are both line transversals of
the projection ofP, which is a collectionP ′ = πF⊥(P) of convex sets each of which
fits in a disk of radius 2 centered at a point of`; disk centers are spread out for a
distance at leastc/ε− 4 along`. Hence the angleθ between the two lines (and thus the
two hyperplanes) is such that sinθ ≤ 4/(c/ε − 4). Sinceθ ≤ π/2, we conclude that
θ ≤ (π/2) sinθ ≤ 2π/(c/ε − 4) < ε/2 for an appropriate choice ofc.

Without loss of generality, suppose that` is horizontal and (the projection of)n points
vertically upward. To finish the argument, we must show that (the projection of)n′ also
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Fig. 2. Orthogonal projection toF⊥; the figure illustrates the case where each set is a unit ball and the
reference points coincide with ball centers, for ease of visualization.

points into the upper halfplane, which, together with the fact that the directions of` and
`′ are withinε/2 of each other, implies that the same holds forn andn′.

To argue this, we replace each body ofP with a ball of radius 2 centered at the
corresponding reference point, obtaining a collectionQ of d sets inRd. The argument
thatP is separated given in the beginning of this proof is easily seen to apply toQ as
well, with a slightly larger value ofc (the only difference being that it takes a cylinder of
radius 4, and not 2, to encloseQ if it is not separated). LetQ′ = πF⊥(Q). It is a collection
of disks of radius 2 centered at points on the line`. Line`′ also meets all disks. It is easy
to verify that under these assumptions`′ can be rotated intò around the point of their
intersection while remaining a transversal ofQ′—the rotation is through the smaller
angle between the lines, i.e., at mostε/2. This means thatH ′ can be rotated intoH while
remaining a transversal ofQ. However, by continuity, such a rotation cannot change the
orientation of the intersection ofQ with the hyperplane, for otherwiseQ would have a
(d − 2)-transversal. Hence(H,n) can be obtained from(H ′,n′) by a rotation through
an angle of at mostε/2, as claimed.

Corollary 1. The conclusion of Lemma4also holds for collectionsP of d bodies(each
of diameter at most2)with the property that there issomehyperplane G(not necessarily
a transversal ofP) with widthG πG(P) ≥ c′/ε, for some constant c′ > c, where c is the
constant of Lemma4.

Proof. Let P be a set ofd points, one from each body ofP. Let H = aff P. Note that
the affine dimension ofP cannot be smaller thand− 1, for otherwiseP would fit into a
cylinder of radius 2 aroundH and no projection ofP to a hyperplane would have width
larger than 4—this would contradict our width assumption, sincec′ > c ≥ 2π . Hence
H is a hyperplane.

It is now sufficient to prove that widthH P ≥ c/ε. Indeed, it is easy to see that
widthG πG(P) ≤ widthG πG(P) + 4 and that widthG πG(P) ≤ widthH P. Hence
widthH H ∩ P ≥ widthH P ≥ c′/ε − 4 ≥ c/ε, for an appropriate choice ofc′ > c
(namelyc′ = c+ 2π ).

Proposition 1. For eachε ≥ 0, there is a number N(ε) such that everyε-separated
collection of at least N(ε) bodies inRd contains d bodies such that any two oriented
hyperplanes each meeting these d bodies in positively oriented sets make an angle of
less thanε.
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Proof. In view of the fact thatε-separation impliesδ-separation for 0≤ δ < ε, we may
assume without loss of generality that 0≤ ε ≤ π/2. Letw = c/ε, for an appropriate
choice ofc = c(d), to be specified below.

Let S be anε-separated collection, as above, of size at leastN(ε) = (d − 1)(c+
2ε2)2/(πε4). We first argue that its orthogonal projectionπH (S) to some hyperplaneH
has width, relative toH , at leastw.

Indeed, suppose there is no such hyperplane. ThenS lies in some parallel slab of width
less thanw. Let H be one of the bounding hyperplanes of the slab. Since widthH πH (S) <
w, it follows thatS is contained in an open region which is the Cartesian product of a
w×w square with some(d−2)-flat F . By the definition ofε-separation, no(d−2)-flat
can meet more thand − 1 sets ofS(ε). Hence, if we projectS(ε) to the orthogonal
complement ofF , the projected collection is confined to a region of area less than
(w + 2ε)2, covers it no more than(d − 1)-fold, and consists of sets of area at least
πε2 each. So|S| < (d − 1)(w + 2ε)2/(πε2) = (d − 1)(c+ 2ε2)2/(πε4) = N(ε), a
contradiction.

Thus, for a large enoughε-separated collectionS, there always exists a hyperplane
H with widthH πH (S) ≥ w. By Lemma 3, there is a subsetP of d points inπH (S)
with widthH P ≥ w/(2dd!). Pick d distinct sets ofS, each containing a point whose
projection belongs toP; note that sinceP has large width inH , the projection of no
single body ofS could contain more than one point ofP. LetP be the resulting set ofd
bodies. Hence widthH πH (P) ≥ widthH P > c/(2dd! ε), so that the corollary applies,
providedc is large enough. This is the desired set ofd bodies.

The following definition is not the standard one, but the “Local Realizability Criterion”
on p. 140 of [3] shows that they are equivalent, at least in the case we are interested in,
where the sets are in general position.

Definition. A rank-r oriented matroidon a finite setM consists of a positive or negative
orientation assigned to eachr -tuple of distinct elements ofM so thatr -tuples that differ
by an even (resp. odd) permutation have the same (resp. opposite) orientation and so
that each subset of sizer + 2 is realizablein Rr−1. This means that every(r + 2)-subset
M ′ of M is in 1–1 correspondence with an(r + 2)-subsetP′ of points inRr−1 so that
correspondingr -tuples have the same orientation.

The oriented matroid structure derived from a finite set of points inRd is called the
order typeof the set.

We recall the following “generalized Hadwiger theorem” of Goodman and Pollack
from [5].

Generalized Hadwiger Theorem. A finite separated collectionS of bodies inRd has
a hyperplane transversal if and only if there is an oriented matroid of rank d onS such
that every d+ 1 members ofS are met by an oriented hyperplane consistently with that
oriented matroid.

We are now able to present our proof of Theorem 1.
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Proof of Theorem1. We may assume without loss of generality thatε ≤ π/2, since
ε-separated bodies are alsoδ-separated for everyδ < ε. This being the case, it follows
in particular thatε ≤ π − ε.

By Proposition 1, we may choosed bodiesS∗1, . . . , S∗d from S such that any two
oriented hyperplanes each meeting them in positively oriented sets make an angle
smaller thanε. For everyd + 2 bodiesSi1, . . . , Sid+2 of S, there is a transversalT =
T(i1, . . . , i d+2) to S∗1, . . . , S∗d, Si1, . . . , Sid+2 (if some indices are repeated in this list, en-
large this collection to contain 2d+2 distinct sets ofS in anarbitrary way and then pick a
transversal); fix it, choosing a unit normal vectorn(i1, . . . , i d+2) so thatS∗1∩T, . . . , S∗d∩
T have positive orientation. Since any two transversals,T(i1, . . . , i d, i d+1, i d+2) and
T(i1, . . . , i d, i ′d+1, i

′
d+2), make an angle smaller thanε, it follows (by Lemma 2) that

they meetSi1, . . . , Sid with the same orientation—since the presence of two transversals
(meeting them in opposite orientations) with “nearby” normal vectors would imply the
existence of a(d−2)-flat that lies within distanceε of each ofSi1, . . . Sid . (Note that here
we use the fact thatε ≤ π−ε.) Thus, for eachd-tuplei1, . . . , i d, we have a distinguished
orientation, and the collection of these orientations determines an oriented matroidM ,
since restricted to anyd + 2 they agree with the order type in which the corresponding
bodies are met by the transversal in our collection for thosed + 2 bodies.

Now by the Generalized Hadwiger Theorem, since everyd + 1 of our bodies,
Si1, . . . , Sid+1, have a transversal (just takeT(i1, . . . , i d+2) for anychoice ofi d+2) such
that all the order types are consistent with those ofM , it follows thatall the bodies have
a common transversal.

3. Remarks

In Theorem 1 we gave a Helly-type theorem with a fixed Helly number (namely, 2d+2).
Note that the conclusion holds only forε-separated collections of cardinality that grows
rapidly with decreasingε. Using similar methods, it is possible to give a different Helly-
type theorem, which applies to collections of much smaller cardinality, but at the cost of
having the Helly number depend onε.

In [1] Amenta showed a connection between Helly-type theorems and linear-time
algorithms. Perhaps our Helly-type theorem suggests a linear-time algorithm for finding
hyperplane transversals toε-separated convex sets under a suitable model of computation.

Katchalski’s conjecture that there is a Helly-type theorem for line transversals to
collections of pairwise disjoint unit balls inR3 remains open. Similarly, the conjecture
that there is a Helly-type theorem for plane transversals to separated collections of
unit balls inR3 is also open. More generally, are there such Helly-type theorems for
line transversals to collections of pairwise disjoint translates or plane transversals to
separated collections of translates inR3?
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13. Vincensini, P. Figures convexes et vari´etés linéaires de l’espace euclidien `an dimensions.Bull. Sci. Math.
59 (1935), 163–174.

14. Wenger, R. Helly-type theorems and geometric transversals. InHandbook of Discrete and Computational
Geometry, J.E. Goodman and J. O’Rourke, Eds. CRC Press, Boca Raton, FL, 1997, chapter 4, pp. 63–82.

Received August10, 2000,and in revised form January24, 2001.Online publication April6, 2001.


