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Abstract. In this paper we “measure” the size of the seneafansversals of a family

F of convex sets irR™* according to its homological complexity inside the correspond-
ing Grassmannian manifaldur main result states that the “measuye’of the set of
n-transversals of is greater than or equal toif and only if everyk + 1 members of
have a common point and also if and only if for some intaged < m < n, and every
subfamilyF’ of F with k + 2 members, the “measurg’of the set oim-transversals oF’

is greater than or equal to

1. Introduction

For a familyF = {AL, ..., A%} of d convex sets irR"¥, let T,(F) be the set oh-
transversals td, that is, the set of alh-planes inR™* which intersect every member
of F.

If X is a set ofn-planes inR™X, we say thaj.(X) > r if X has “homologically” as
manyn-planes as the set ofplanes through the origin iR""". Thus,u “measures”
the homological complexity oX inside the corresponding Grassmannian manifdld
use this “measure” to prove that if subfamilies Bfwith few members have enough
transversals of small dimension, then the whole farkiljrhas many transversals of a
fixed dimension. That is, after a formal definitioniofin Section 2, we prove in Section
3 the equivalence of the following three properties:

e Everyk + 1 members of have a point in common.

o w(Tn(F)) > k.

e For some integem where 1< m < n and every subfamily’ of F with k + 2
membersu(Tyn(F)) > k.
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The first equivalence can be thought of as a homological version of Horn and Klee’s
classical results [5], [6]. See also [4]. They proved that the following assertions are
equivalent:

(a) Everyk + 1 members of have a point in common.
(b) Every lineam-subspace oR™* admits a translate which is a membefTgfF).
(c) Every(n — 1)-planeA lies in a member of,(F).

First note that (b) is just assertion (c), wharlies at infinity. In fact, the set of all
n-planes that contair\ is a manifold embedded in the corresponding Grassmannian
manifold, which represents an element of its cohomology. So, by using the product
structure of the cohomology we shall prove that

w(Tn(F) >k = (b)and(c).

If X is a set ofn-planes inR™* and for every linean-subspace oR™* we can
choose a translate which is a membengfthen u(T,(F)) is not necessarily greater
than or equal tk, unless, of course, according to our definitionigfthe choice can
be done continuously. IK = T,(F), the existence of a member @f(F) parallel to
every lineam-subspace oR™¥ implies that we can choose this member continuously
and hence that

w(Th(F) >k <« (b)and(c).

The spirit of the complete equivalences follows the topological study of the space of
transversals initiated in [1] and [2].

We consider Euclidean-spaceR" and complete it to tha-projective spacé" by
adding the hyperplane at infinity. L&t(n+k, n) be the Grassmanniark-manifold of all
n-planes through the origin in Euclidean sp&¥&*. Although we summarize what we
need in Section 2, good references for the homology and cohomology of Grassmannian
manifolds are [7], [9] and [3]; see also [8]. In this paper we use reduced Cech-homology
and cohomology wittZ,-coefficients.

2. The Topology of Grassmannian Manifolds

Letxy, ..., An be a sequence of integers such that @; < --- < Ap < k. We denote
by:
(2.1) {A1,...., 4} ={H e Gn+k n) |[dmHNRYt) >j j=1...,n}For

example0, 4, ..., A} = {H e G+ km |R* c H ¢ R™*}and{k—4,.... k-
Ak ={H € G(n+k,n) | dim(H N R4y > n— 1),

(2.2) Itis known that{Aq, ..., Ay} € G(n + k, n) is a closed connectedmanifold,
where . = Y ], except possibly for a closed connected subset of codimension
three. ThusH*({A1, ..., An}; Z2) = Zo = Hy({A1y ..., An); Z2). Let (A, ..., An) €
H; (G(n + k, n); Z,) be theA-cycle which is induced by the inclusidiiy, ..., An} C
G(n + k, n). These cycles are call&thubert-cyclesA canonical basis foH, (G(n +
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k, n); Z,) consists of all Schubert-cyclés,, ..., &) suchthatO< & < --- <&, <Kk
and) [ & =2

(2.3) We denote by, ..., An] € H*(G(n + k, n); Z,) the A-cocycle whose value
is one for(Ay, ..., An) and zero for any other Schubert-cycle of dimensioThus a
canonical basis foH*(G(n + k, n); Z,) consists of all Schubert-cocycleg|. .., &]
suchthatO< & < --- < & <kandd 1 & = A.

The isomorphisnD: H, (G(n + k, n); Zy) — H"*(G(n + k, n); Z») given by
D((A1,...,An) = [K—An, ..., k—2A1]is the classicaPoinca® Duality Isomorphism

(2.4) By the above, ifX c G(n + k, n) is such thatX N {x4,...,Aq} = ¥ and
ix: X = G(n+ Kk, n)isthe inclusion, then

i2(D((A1, ... An) = i%(K = An,....K—Ag]) = 0.

(2.5) Let M(n+k, n) be the set of alh-planes inR™¥. Thus,G(n +k, n) ¢ M(n+
k, n). We regardM (n + k, n) as an open subset &(n + k + 1, n + 1), making the
following identifications:

Letzo € R+ _ R™k pe a fixed point and, without loss of generality, @&t +
k + 1,n + 1) be the space of alin + 1)-planes inR™**1 throughz, We identify
H € M(n + k, n) with the unique(n + 1)-planeH’ € G(n + k + 1, n + 1) which
containsH and passes througly. Thus

Gn+k,nncMh+kncGn+k+1n+1),

where M(n + k, n) is an open subset d6(n + k + 1,n + 1) andG(nh + k,n) C
G(n+k+1,n+ 1) may be regarded 49, k, ..., k}, the set of all(n + 1)-planes in
RMk+1 which containgR?. In other words, ifj: G(n+k, n) — G(n+k+1, n+1)isthe
inclusion, thenj ({A1, ..., An}) = {0, A1, ..., An}. SO, if 0 < A < k, then{O, A, ..., A}
as a subset dfl (n + k, n) is the set of alh-planesH through the origin inR™* with
the property thaH ¢ R"™*,

If X € M(n+k, n), thenix: X - G(n+k+ 1, n+ 1) denotes the inclusion.

(2.6) Let Abe asubsetoX, leti: A — X be the inclusion and let € H*(X; Z5).
We say thay is zero or not zer@n A, providedi*(y) is zero or not zero respectively, in
H*(A; Z).

Now we are ready to state our main definition which captures the basic idea of having
as manyn-planes as the set of allplanes through the origin iR™*",

Definition. LetX c M(n+k,n) c G(n+k+1,n+1). ForO<r <k, we say that
the “measure” oiX is at least,

nw(X)>r,

if [0,r,...,r]is notzeroinX.

It is easy to verify that ifu(X) > r, then, for any integer G ro < r, u(X) > ro.
Furthermore, observe thatif > 0, thenX is also naturally contained M (n+m-+k, n)
and the definition of the “measurg’is independent of.
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Example 2.1. Let F = {A°, ..., A% be a family of convex sets\e say that- has

a cycle of transversal lines there is a transversal line that moves continuously until
it comes back to itself with the opposite orientation. Observe Fhditas a cycle of
transversal lines if and only [ (T (F)) > 1.

The following lemma will be very useful for our purposes.

Lemma2.1. Let X C M(n+Kk, n) be acollection of n-planes and let H be anr-plane
of Rtk 1 <r < k. If w(X) >r, then there id" e X such thatry (T') is a single point
whererry: R — H is the orthogonal projection

Proof. LetY c M(n+k, n) be the set of alh-planesl” in R™¥ such thatry (I') is a
single point. Asin (2.5), we regad C M(n+k, n) asasubsetdd(n+k+1,n+1).
Let A be the(n +k —r)-plane inR™**1 throughz, orthogonal to ther + 1)-plane that
containsH and passes througly. Note thatl" € Y if and only if the (n 4 1)-planel”
that containg™ and passes through is such that difl”’ N A) > n. Consequently, if we
regardY as asubsetdb(n+k+1,n+1),by(2.1)and (2.5)Y = {k—r, ..., k—r,k}.
We regardX as a subset d&(n + k + 1, n 4+ 1) and suppose that N Y = @. Then,
by (2.4),i%(0,r,....r]) = 0, which means that [@,...,r] is zero in X, but this
is a contradiction becauge(X) > r. ThenX NY # @. This completes the proof of
Lemma 2.1. O

Remark 2.1. If, in the above proofk = r andY c M(n + k, n) is the set of all
n-planesl” in R™k such that” c A, whereA is an(n — 1)-plane inP"**_ then we
obtain the following result. LeK C M(n + k, n) be a collection oh-planes with the
property that.(X) > k, then every linean-subspace oR"* admits a translate which
is a member ofX; and everyn — 1)-planeA lies in a member oK.

3. The Space of Transversals

Let F = {A°, ..., AY) be a family of convex sets iR"** and letT,(F), the space of
n-transversals of Fbe the subset of the Grassmannian manifdigh+k, n) of n-planes
that intersect all members &.

Before stating our first result we need the following technical lemma.

Lemma3.1. Let A, A, ... A¥ be k+ 1 convex sets in R¥, n > 0, such that
ﬂg A = (. Then there is a k-dimensional linear subspace H &f“Rvith the property
thatﬂ'(‘, 7wy (A) = ¢, whererry: R™K — H is the orthogonal projection

Proof. The proof is by induction oR. If k = 1, the proof follows by the separation
theorem for disjoint convex sets. Suppose the theorem is true foe will prove it for
k+1

Let A°, AL, ..., A1 bek + 2 convex sets ilR™¥, such thaf s A' = . Since
(NE Ay N AL = ¢, then there is a hyperplang that separate§)s Al from Ak*L,
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Supposeﬂg A c A~ andA**? ¢ AT, whereA* and A~ are the closed half-spaces
determined byA. Note thatﬂE(Ai NAH =a.

By the induction hypothesis, there ikalimensional linear subspact#, such that
ﬂ'(‘, nHO(Ai N A™) = ¢. Let H be a(k + 1)-dimensional linear subspace containidg
and the one-dimensional linear subspace orthogonal e shall prove that

k+1

ﬂnH(Ai)=@.
0

Assume the opposite and takes (5™ 7y (A). Sincex € my (AT € (AT,
thenx € 7y (AN AT), fori =0, ..., k, which is a contradiction becaugq{‘) (AN
A*) # ¢ implies(S 7w, (i (A N AT)) = NS 1, (AT N AT £ 0. O

Our first result characterizes families of convex sets with(#he- 1)-intersection
property.

Theorem 3.2. Let F = {A%, ..., A%} be afamily of d convex sets if'#, d > k + 1.
Every subfamily of F with k- 1 members has a common point if and only if

n(Tn(F)) = k.

Proof. Suppose every subfamily & with k + 1 members has a common point. We
start by constructing a continuous mépG(n + k, n) — T,(F) as follows: for every
n-planeH through the origin, letry: R — H' be the orthogonal projection, where

H is thek-plane through the origin orthogonal kb. We consider the familyty (F) =

{my (AD), ..., 7y (A%} of d convex sets irH .. Note that every subfamily afy (F)

with k + 1 members has a common point. Therefore, by Helly’s theorem, the convex set
F(H) = ﬂ‘l’ 7 (A) is not empty. Note also tha (H) ¢ H' depends continuously
onH € G(n+k, n). Lety(H) be then-plane through the center of masskofH ) and
orthogonal toH*. By constructiony (H) € T, (F).

Leti: To(F) —» G(n+k+1, n+1)and note thaty:: G(n+k, n) - G(n+k+1, n+1)
is homotopic to the inclusion. Therefore, by (2.1) and (2.3)k[O0. ., k] is not zero in
Ta(F) and henceu (T (F)) > k.

Suppose novy(T,(F)) > k and suppose th@‘f‘l A’ = ¢. By Lemma 3.1, there is
ak-dimensional linear subspatt of R™ with the property thaf)¥™ 7 (A') = 4,
wherexy: R™* — H is the orthogonal projection. This is a contradiction because,
by Lemma 2.1, there i§ € T,(F) such thatry (I') is a single point which lies in
ﬂ‘f 7y (A). This completes the proof of Theorem 3.2. O

Example 3.1. Fork = 1 andn = 2, Theorem 3.2 states that every two memberE of
have a common point if and only if for every direction there is a transversal plaRe to
orthogonal to it.

Our next result characterizes familieskoef 2 convex sets with thek+ 1)-intersection
property. Note that this time our transversals need not be of dimehksion
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Theorem 3.3. Let F = {A%, ..., A*2} be a family of k+ 2 convex sets in R and
consider an integet < m < n. Every subfamily of F with k& 1 members has a common
point if and only if

n(Tm(F)) = k.

Proof. Suppose every subfamily &f with k + 1 members has a common point. For
i=1....,k+2 leta ¢ ﬁ#i{Aj € F} # ¢ and letl" be an(m + k)-plane containing
©® = {ay, ..., auo}. Furthermore, for = 1, ..., k+2, let B' c I" be the convex hull of
thesefa; € © |i # j}. ThereforeF’ = {BL, ..., B¥*?}is afamily of convex sets in the
(m+ k)-planerl” with the property thali,(F') c T(F) because, for=1,...,k+2,
B' ¢ A. By Theorem 3.2, fon = m, u(Ti(F’)) > k, which immediately implies that
w(Tm(F)) > k.

Suppose now (Tn(F)) > kand supposé]'frl Al = ¢. By Lemma 3.1, there isla
dimensional linear subspateof R™* with the property thaf)™ 71 (A') = @, where
my: R™K — H is the orthogonal projection. Note now tH&gt(F) ¢ M(m+ (n —m+
k), m) is a collection ofm-planes inR™ "=m+k) with the property thag (Tm(F)) > k,
andH is ak-plane, 1< k < n—m+ k. By Lemma 2.1, there i§ € T, (F) such that
7y (I) is a single point which lies iqﬂf*l 7w (A)). This is a contradiction. O

Example 3.2. Fork = 1 andm = 1, Theorem 3.3 states that three convex sets have
the property that every two of them have a common point if and only if there is a cycle
of transversal lines to them.

We conclude with our main result, whose proof follows immediately from Theorems
3.2and 3.3.

Theorem 3.4. Let F = {A!, ..., A’} be afamily of d convex sets i, d > k+ 2,
and consider an integet < m < n. Every subfamily Fof F with k+ 2 members has
the property thaf (T (F’)) > k if and only ifu (T, (F)) > k.

Example 3.3. Following Horn and Klee's spirit, fok = 1, n = 2andm = 1, Theorem
3.4 states that every three convex set§ dfave a cycle of transversal lines if and only
if F has transversal planes orthogonal to every direction.

Example 3.4. Form = n, Theorem 3.4 states that if for every subfanfyof F with

k 4+ 2 members and for every linearsubspace oR™ ¥ there is a translate which is an
n-transversal td=’, then every linean-subspace oR™* admits a translate which is an
n-transversal td-.

Example 3.5. Let F = {Al, ..., A9} be a family of convex sets iR"*. According
to [1], F has avirtual n-pointif there are (homologically) as mamytransversals té-
as if F had a common point, that is, as mamyransversals as there arglanes through
the origin inR"™*. More preciselyF has avirtual n-pointif and only if (T, (F)) > k.
Form = n, Theorem 3.4 states that every subfantlyof F with k + 2 members has a
virtual n-point if and only if F has a virtuah-point.
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