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Abstract Energy consumption is one of the major topics in
high performance computing (HPC) in the last years. How-
ever, little effort is put into energy analysis by developers of
HPC applications.

We present our approach of combined performance and
energy analysis using the performance analysis tool-set
Scalasca. Scalascas parallel wait-state analysis is extended
by a calculation of the energy-saving potential if a lower
power-state can be used.

Keywords Power consumption · Energy efficiency ·
Energy · Performance · Analysis · Scalasca · MPI

1 Introduction

Energy efficiency has become a major topic in high perfor-
mance computing (HPC) in the last couple of years, as to-
day’s leading systems in the Top500 list1 consume several
MW of power. Thus the operational costs of such a machine
usually exceed the acquisition cost of the hardware. But
power is also a limiting factor regarding future systems, es-
pecially when going towards Exascale computing. To reach

1See http://www.top500.org.
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the DARPA UHPC goal of 50 GFlop/Watt—which corre-
sponds to 20 MW for an Exaflop system—energy efficiency
has to be improved by a factor of 100. This is only possi-
ble when addressing this problem from multiple angles—the
data center itself, hardware like CPU and memory but also
system software, libraries or HPC applications.

On the application side however, energy is not yet a con-
cern as only raw performance counts (and is accounted in
terms of CPU time). Thus, comparatively large effort is
put into performance analysis and tuning, but nearly none
into energy analysis. Our approach is to combine these
steps—doing the energy analysis at the same time as the
performance analysis. For that, we extended the Scalasca
(Scalable Analysis of large-scale Applications) tool-set,2

a well-known performance analysis tool-set that is able to
identify wait-states in parallel programs. A lot of energy is
wasted in wait-states as MPI usually uses busy waiting. We
examine how much energy could be saved in the optimal
case, i.e. the MPI library knows how long the waiting time
is and can perform idle waiting. Also the energy is calcu-
lated in the more realistic case of busy waiting at a lower
power-state in order to maintain reactivity. Further we ex-
amine which power-state could be used at which wait-state
in order to maximize energy savings.

The paper is organized as follows. First we give an
overview of other tools and related work. In Sect. 3 we give
an overview of the Scalasca tool-set and present how it can
be used to detect wait-states in large-scale parallel programs.
Then we present our Scalasca extension to determine the
energy-saving potential in wait-states, followed by an eval-
uation of our approach in Sect. 5. Section 6 concludes this
paper and outlines future work.

2See http://www.scalasca.org.

http://www.top500.org
mailto:m.knobloch@fz-juelich.de
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Fig. 1 The scalasca
workflow—The green
rectangles denote (parallel)
programs, the blue rectangles
with the kinked corner
symbolize (multiple) files

2 Related work

In the last years several projects developed tools to measure
and reduce the energy consumption of parallel applications
by invoking hardware power-states, e.g. DVFS (Dynamic
Voltage and Frequency Scaling) [4, 13].

DVFS is proved to be beneficial, i.e. energy savings could
be achieved, when the CPU is not fully utilized, because
the application is memory-bound [8, 9] or not effectively
load-balanced [18]. Further projects analyzed the potential
of inter-node slack [10] and modeled the energy-time trade-
off of a large-scale machine [3].

Another area of research is power consumption profil-
ing [2, 5], simulation [14] and prediction [19, 20].

However, most of these tools concentrate on reducing the
energy consumption by running loops or functions of ap-
plication at a lower power-state, we instead examine how
much energy could be saved by an energy-aware MPI li-
brary, which is, instead of busy waiting at the highest fre-
quency, either idle waiting or busy waiting at a lower power-
state. Another tool which considers the MPI library itself
is the GreenBuildingBlocks (GBB) project [17] with the
aim to provide a complete stack of energy-aware system-
software. Analysis of the energy consumption in commu-
nication phases of the MPI program was done by Lim et
al. [12] and Minartz et al. [15]. Dong et al. [1] further exam-
ined the power consumption of MPI collectives.

3 The Scalasca tool-set

Scalasca [6] is an open source performance analysis tool-set
that automatically analyzes application traces to find perfor-
mance problems, especially wait-states, i.e. one process has
to wait for another process, as for example in an MPI Bar-
rier. It is especially tailored for large-scale parallel programs
written in C, C++ or Fortran using MPI, OpenMP or a com-
bination of both. Two different analysis modes are offered
by Scalasca: runtime summarization at call-path level (a.k.a.

profiling) or in-depth analysis via event tracing. The work-
flow of the latter one is depicted in Fig. 1.

3.1 The Scalasca workflow

The application is instrumented, i.e. calls to the Scalasca
measurement system are added, either automatically by the
compiler or manually by the user.

The instrumented application is then executed and the
Scalasca measurement library writes a process-local trace
file. These trace files are automatically analyzed by the par-
allel trace analyzer called Scout. Scout has to be started with
the same number of processes as the original application
and performs a “parallel replay” of the application, however,
at every send/receive operation and every synchronization
point measurement data—like timestamps—is transmitted
instead of real application data. Thus, the analyzer scales
with the original application.

Wait-state detection

The parallel analyzer automatically searches for patterns in
the trace files which indicate performance problems, of par-
ticular interest are so-called wait-states. An example, the so-
called Late Sender pattern, is shown in Fig. 2. In this ex-
ample with 4 processes, a message is sent from process A
to process B and from process C to process D. The Send
and Recv operation on A and B have been posted at the
same time, so no waiting time occurs for these processes.
The Send operation on process C on the other hand has been
posted much later than the corresponding Recv operation on
process D, thus this process has to wait till the sender is
ready.

Scalasca is able to detect wait-states for most point-to-
point and collective MPI operations, common patterns are:

– Late Sender, Late Receiver
– Wait at Barrier, Wait at N × N

– Late Broadcast, Early Reduce, Early Scan.
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Scalasca is further able to detect MPI one-sided (RMA)
and OpenMP performance problems.

At each process the waiting times for each pattern on ev-
ery call-path are aggregated, i.e. Scalasca has no knowledge
about single events, and after finishing the analysis the re-
sults of all processes are merged into a final analysis report.

3.2 Result visualization with Cube3

The trace analysis is visualized with the Scalasca result
browser Cube3, which is shown in Fig. 3.

Cube3 consist of a three-pane layout, the left pane shows
the performance problem, the middle pane the distribution
of this metric on the call-path and the right pane the dis-
tribution across the processes on the machine, where MPI
topologies or special machine topologies like the Blue Gene
torus are supported. For each pane the viewing mode can be
adjusted, so it is possible to show absolute values, relative
values and even relative values compared to other experi-

Fig. 2 Late Sender pattern

ments to see the effect of performance tuning. A color bar
indicates the severity of the problem.

4 Methodology

Current MPI implementations perform so-called busy wait-
ing when a process waits for action of another process, e.g.
the receiver of a message is waiting for the corresponding
sender. Busy waiting means polling at the highest available
frequency for a signal in order to be able to react instantly
once the signal received. However, this consumes a lot of
energy.

We performed some measurements [16] to show the ef-
fect of MPI on the power consumption of the application
and visualized them with Vampir [11]. Figure 4 shows a well
balanced test-case with two MPI collectives and two calcu-
lation phases. The power consumption in the MPI operations
(1, ≈ 286 W) is considerably higher than in the calculation
phase (2, ≈ 255 W) and when idling in the main routine
(3,≈ 160 W).

A constructed example of the Scalasca Wait at Barrier
pattern is shown in Fig. 5. After an (unbalanced) computa-
tion phase the processes enter the MPI Barrier according to
a sleep statement of different length for each process. We
see that the more processes enter the Barrier, the higher the
power consumption.

4.0.1 Calculation of energy-saving potential

To calculate the energy-saving potential in such situations,
we assume that there exists a set of power-states PS for each
core, this can be the processors P-States or other power-
states, e.g. processor at a lower frequency and network or

Fig. 3 The Cube3 report viewer
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Fig. 4 Vampir
screenshot—power
consumption in MPI phases is
considerably higher than in any
other phase

Fig. 5 Vampir screenshot—the more processes enter the MPI barrier (1), the higher the power consumption. This corresponds to the Scalasca
Wait at Barrier pattern

disk turned off. Than we define for every power-state p ∈ PS
the active power consumption Ap , i.e. the power consump-
tion under load and the idle power consumption Ip . For the
transition between two power-states p,q ∈ PS, tTp,q denotes
the time and ETp,q the energy needed to perform the transi-
tion in both directions.

Than the energy-saving potential (ESP) for every wait-
state with waiting time tw can be calculated as:

ESP = max
p∈PS

((tw ∗ Ap1) − (tw − tTp,p1
) ∗ Ip + ETp,p1

) (1)

This potential poses an upper limit, however, it could
only be exploited by an MPI library with oracle capabilities,
i.e. it must be known in advance how long the wait-state will
last in order to maintain reactivity.

A more realistic case would be that MPI is busy waiting
at a lower power-state, the energy-saving potential for this
(ESP_BW) can be calculated as:

ESP_BW = max
p∈PS

(
(tw ∗ Ap1) − (tw − tTp,p1

) ∗ Ap + ETp,p1

)

(2)
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We further investigate for each wait-state with an energy-
saving potential greater zero which power-state p ∈ PS leads
to the greatest energy savings. In equation (1) this can be p1,
which is always the case when the waiting time is too short
for power-state transitions to be effective. In the busy wait-
ing case (2) on the other hand this is obviously not possible,
so for very short wait-states no energy savings are possible.

Both calculations are done for every wait-state on every
process and the potentials, as well as the possible power-
states, are aggregated separately for idle and busy waiting.

5 Evaluation

To evaluate our approach we analyzed the plasma physics
code PEPC (Pretty Efficient Parallel Coulomb-solver) [7]
on two clusters, a cluster with power measurement capa-
bilities at the Research Group Scientific Computing at the
University of Hamburg and Juropa, a Intel Nehalem based
Supercomputer at Jülich Supercomputing Center (JSC)3 at
Forschungszentrum Jülich4.

5.1 Test systems

5.1.1 eeCluster

Our test cluster at University of Hamburg consists of five
dual socket Intel Nehalem (Xeon X5560, 4 cores) and five
dual socket AMD Magny-Cours (Opteron 6168, 12 cores)
compute nodes which are connected to ZES LMG450 high
precision power meters with an accuracy of 0.1%.

The measured power consumption of one node under
load and idle is shown in Fig. 6 for the Opteron nodes and
Fig. 7 for the Xeon nodes, respectively [15]. C-states are
disabled on the Xeon nodes, as they are disabled on most
production HPC systems.

Tables 1 and 2 present the power-states (per core) we de-
rived from the values of Figs. 6 and 7. Unfortunately, the
values for the transition time and energy are just an approx-
imate, as we were unable to obtain the real values in the
data-sheets.

The AMD Opteron provides 5 P-States while the Intel
Xeon can operate at 10 different frequencies (11 if the Turbo
Mode is considered too), of which we choose 5 for our ex-
periments.

The Opteron core consumes significantly less power than
a Xeon core and has a much better active/idle power ratio,
but the Xeon core is much more powerful. With the power-
states described in Tables 1 and 2 a maximal saving potential
of 66.56 and 48.95% for idle waiting as well as 30.1 and
31.13% for busy waiting can be reached.

3See http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html.
4See http://www.fz-juelich.de.

Fig. 6 Power consumption of Opteron nodes depending on P-State

Fig. 7 Power consumption of Xeon nodes depending on P-State

Table 1 Power-states per core on AMD Opteron

P-State Ap (W) Ip (W) tTp,p1
(s) ETp,p1

(J)

1–1900 MHz 13.1 4.73 0 0

2–1500 MHz 11.61 4.63 0.00001 0.05

3–1300 MHz 10.73 4.57 0.00002 0.1

4–1000 MHz 9.82 4.41 0.00003 0.2

5–800 MHz 9.14 4.38 0.00004 0.3

Table 2 Power-states per core on Intel Xeon

P-State Ap (W) Ip (W) tTp,p1
(s) ETp,p1

(J)

1–2800 MHz 35.68 20.81 0 0

2–2533 MHz 32.24 19.77 0.00001 0.1

3–2267 MHz 29.56 19.36 0.00002 0.2

4–1867 MHz 26.4 18.83 0.00003 0.4

5–1600 MHz 24.57 18.57 0.00004 0.8

http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
http://www.fz-juelich.de
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Table 3 Power-states per core on Juropa

P-State Ap (W) Ip (W) tTp,p1
(s) ETp,p1

(J)

1 58.8 34.3 0 0

2 53.13 32.58 0.00001 0.1

3 48.72 31.91 0.00002 0.2

4 43.51 31.03 0.00003 0.4

5 40.48 30.6 0.00004 0.8

5.1.2 Juropa

Juropa is a 26304 core Intel Nehalem (Xeon X5570, 4 cores)
based cluster at JSC ranked #23 at the November 2010
Top500 list5 with a Linpack performance of 274800 GFlop
and a power consumption of 1549 kW, which corresponds to
58.9 W/core running the Linpack benchmark. We take this
value as a baseline for our measurements and—as no direct
power measurements are possible on Juropa—estimate the
other values corresponding to the values measured on the
Xeon X5560. This yields to the power-states described in
Table 3.

Since the power-states are derived from the power-states
on the Xeon nodes of the cluster at DKRZ the relative
maximum energy-saving potential is similar with 47.96 and
31.15%, respectively.

5.2 PEPC

PEPC (Pretty Efficient Parallel Coulomb-solver),6 is a par-
allel tree-code for rapid computation of long-range Coulomb
forces in N -body particle systems based on the original
Barnes-Hut algorithm. The code uses successively larger
multipole-groupings of distant particles to reduce the com-
putational effort in the force calculation from the generally
unaffordable O(N2) operations needed for brute-force sum-
mation, to a more amenable O(N log(N)) complexity.

The parallel version is a pure MPI implementation of the
Warren-Salmon ‘Hashed Oct Tree’ scheme, including sev-
eral different variations of the tree traversal routine—the
most challenging component in terms of scalability.

5.3 Results

Experiments have been performed on 4 Xeon and Opteron
nodes, i.e. 32 and 96 processes, respectively and for scal-
ability tests on 128 nodes of Juropa, which corresponds to
1024 processes. Table 4 shows for the three most severe
wait-state patterns, in this case the Late Sender, Wait at Bar-
rier and Wait at N × N , the waiting time, the energy spent

5See http://top500.org/lists/2010/11.
6See https://trac.version.fz-juelich.de/pepc.

waiting as well as the energy-saving potential for both idle
and busy waiting. On the Xeon and Opteron nodes we sim-
ulated 25600 and on Juropa 256000 particles with 50 time-
steps in each case.

As the power-states from Table 1 indicate the Opteron
has the highest saving potential for idle waiting, but slightly
tails at the saving potential for busy waiting.

The dominant patterns in each execution derive from MPI
collectives, in particular the Wait at N × N pattern whose
distribution on the call-tree is displayed in Fig. 8 and the
Wait at Barrier, shown in Fig. 10.

We observe that the optimal power-states differ signifi-
cantly from idle to busy waiting. While for idle waiting the
higher power-states are important, especially in the smaller
experiments (see Figs. 9 and 10) dominate the lower power-
states for busy waiting.

An interesting fact is that on both Xeon-based systems
we observe a nearly uniform distribution of waiting time
and thus energy-saving potential for the collective opera-
tions across the nodes. Contrary, on the Opteron nodes we
see a huge variation in the distribution, e.g. waiting time and
energy-saving potential for busy waiting at an MPI_ Bar-
rier goes from 1290 s and 4840 J on AMD4 to 3529 s and
13600 J on AMD5 (see Fig. 10). We have to further inves-
tigate these differences and verify that behavior on another
Opteron-based system.

6 Conclusion & future work

In this paper we presented an extension to the Scalasca tool-
set to determine the energy-saving potential in wait-states
of parallel programs. We showed that MPI consumes lots of
energy while busy waiting and a considerable amount of this
energy could possibly be saved with an energy-aware MPI
library, even if busy waiting in a lower power-state in order
to maintain reactivity.

A lot of future work is still to be done. A next step is
to build such an energy-aware MPI library which is able to
use information of wait-states in order to reduce energy con-
sumption.

On the Scalasca side the next step is to analyze the
energy-saving potential by reducing the voltage and fre-
quency of processes not lying on a critical path, i.e. those
with wait-states before global synchronization points, and
compare those to the saving potential presented in this pa-
per.

Further an analysis of hardware performance counters to
automatically identify phases of low computation, where en-
ergy could be saved would be desirable.
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Fig. 8 Cube3 Screenshot of
PEPC run on Xeon nodes
displaying the distribution of the
ESP BW Wait at N × N . The
MPI_Alltoall in the tree_walk
routine has with 65% the largest
proportion which is uniformly
distributed among the nodes

Fig. 9 Cube3 Screenshot of PEPC run on Juropa displaying the dis-
tribution of the Late Broadcast ESP while busy waiting. We see that
70.67% of the energy-saving potential is in the MPI_Bcast called in

setup (1) and 29.33% in the MPI_Bcast in special_start (2). 18.99% of
that could be saved on Process 105 (3)
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Table 4 The three most severe
Patterns on all machines. The
AMD Opteron outperforms the
Xeons in the ESP, but the Xeons
slightly lead in the ESP_BW

Machine Pattern Time (s) Energy (J) ESP (J) ESP (%) ESP_BW (J) ESP_BW (%)

Juropa Late Sender 1863.74 1.10e5 4.99e4 45.36 2.92e4 25.55

Wait at Barrier 1.21e5 7.09e6 3.36e6 47.39 2.16e6 30.47

Wait at N × N 1.48e5 8.7e6 4.00e6 45.98 2.49e6 28.62

Xeon Late Sender 129.46 4618.96 2127.97 46.07 1307.84 28.31

Wait at Barrier 1835.81 5.48e4 2.57e4 46.9 1.65e4 30.11

Wait at N × N 8896.07 3.17e5 1.47e5 46.37 9.16e4 28.9

Opteron Late Sender 878.57 1.15e4 7458.22 64.85 2836.78 24.66

Wait at Barrier 1864.9 1.41e5 1.04e5 73.76 4.13e4 29.29

Wait at N × N 2.62e4 3.43e5 2.40e5 69.97 9.34e4 27.2

Fig. 10 Cube3 Screenshot of
PEPC run on Opteron nodes
displaying the distribution of the
Wait at Barrier ESP BW. For
idle waiting higher power-states
are more important while lower
power-states are dominant for
busy waiting
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