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ABSTRACT

Extreme Mei-yu rainfall (MYR) can cause catastrophic impacts to the economic development and societal welfare in
China. While significant improvements have been made in climate models, they often struggle to simulate local-to-regional
extreme rainfall  (e.g.,  MYR).  Yet,  large-scale climate modes (LSCMs) are relatively well  represented in climate models.
Since there exists a close relationship between MYR and various LSCMs, it might be possible to develop causality-guided
statistical  models for MYR prediction based on LSCMs. These statistical  models could then be applied to climate model
simulations to improve the representation of MYR in climate models.
    In this pilot study, it is demonstrated that skillful causality-guided statistical models for MYR can be constructed based
on  known  LSCMs.  The  relevancy  of  the  selected  predictors  for  statistical  models  are  found  to  be  consistent  with  the
literature. The importance of temporal resolution in constructing statistical models for MYR is also shown and is in good
agreement with the literature. The results demonstrate the reliability of the causality-guided approach in studying complex
circulation systems such as the East Asian summer monsoon (EASM). Some limitations and possible improvements of the
current approach are discussed. The application of the causality-guided approach opens up a new possibility to uncover the
complex interactions in the EASM in future studies.
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Article Highlights:

•  Skillful spatiotemporal statistical models of extreme Mei-yu rainfall can be produced using the causality approach.
•  Based on spatial consistency, the large-scale climate modes that are relevant to the regional extreme Mei-yu rainfall can

be identified.
 

 
 

 1.    Introduction

Meteorological extreme events affect economic develop-
ment  and  societal  welfare  in  an  extraordinary  way.  Many
countries  in  East  Asia  are  affected  by  a  variety  of  natural
meteorological  related  hazards,  e.g.,  tropical  cyclones  and
extreme  rainfall  events  associated  with  the  Mei-yu  front
(MYF)  embedded  in  the  East  Asian  Summer  Monsoon
(EASM) system. It is estimated by the Chinese government
that the direct economic losses caused by extreme meteorolog-
ical  events  is  about  1%–3%  of  gross  domestic  product
(GDP) every year  (Sall,  2013).  The exposure could further

increase due to the rapid economic development and migra-
tion patterns in China. In 2020, record-breaking amounts of
extreme  Mei-yu  rainfall  (MYR)  were  observed  over  the
Yangtze  River  Valley  region  (YV)  (Liu  et  al.,  2020).  This
led to severe flooding in the YV, more than 140 casualties,
and more than 82 billion renminbi (RMB) direct  economic
loss (Gan, 2020). Given the enormous impact of MYR, it is
necessary to deepen our understanding of various aspects of
the MYR, including the onset, duration, and intensity of rain-
fall (Ding et al., 2021). This could then increase our capability
to predict MYR for the near- (e.g. Martin et  al.,  2020) and
the  long-term  future.  Consequently,  this  will  allow  policy
and decision makers to be able to develop optimal disaster
risk  reduction  and  mitigation  strategies  to  strengthen  the
resilience of society and minimize the impact of meteorologi-
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cal extremes on society.
The  MYF  is  one  of  the  main  features  of  the  EASM.

The MYF rain band moves in a stepwise manner from low
to higher latitudes as the EASM advances northwards from
May to August (Ding and Chan, 2005; Wang et al., 2009; Li
et  al.,  2018).  While  significant  improvements  have  been
made in forecasting Mei-yu rainfall using dynamical models
on seasonal time scales (e.g. Martin et al., 2020), the accurate
prediction  of  MYR  in  climate  models  remains  one  of  the
major challenges in the scientific community. This is partially
due to coarse climate model spatial resolution, whereby key
processes  on  relevant  spatial  and  temporal  scales  are  not
well represented.

Many studies in the past have found a significant associa-
tion  between  MYR  and  several  large-scale  climate  modes
(LSCMs),  including  the  Indian  Summer  Monsoon  (ISM)
(Wang and LinHo, 2002; Liu and Ding, 2008), the western
North Pacific subtropical high (WNPSH) (Zhou and Wang,
2006; Ninomiya and Shibagaki, 2007; Liu and Ding, 2008;
Sampe  and  Xie,  2010; Ding  et  al.,  2021),  the  South  Asian
High (SAH) (Liu and Ding, 2008; Ning et al., 2017), the El
Nino–Southern Oscillation (ENSO) (Wu et al., 2003; Wang
et al., 2009; Ye and Lu, 2011), the Pacific–Japan teleconnec-
tion pattern (PJ) (Kosaka et al., 2011; Ding et al., 2021), sea
surface  temperature  anomaly  (SSTA)  in  the  Indian  Ocean
and  the  South  China  Sea  (e.g. Zhou  and  Wang,  2006),  as
well as middle-to-high-latitude features (e.g., the Silk Road
Pattern;  SRP)  (Wang  and  He,  2015; Ning  et  al.,  2017).
Based on these associations, different theories and hypotheses
for the underlying mechanisms that control different aspects
of  MYR  have  been  proposed  (e.g., Ding  and  Liu,  2008;
Sampe  and  Xie,  2010; Ning  et  al.,  2017; Li  et  al.,  2018).
Given that  many LSCMs have  been found to  be  important
in controlling the MYF and MYR, one idea is to construct sta-
tistical  prediction  models  for  MYR  based  on  relevant
LSCMs, because LSCMs are better simulated by climate mod-
els  (Flato et  al.,  2013).  However,  due to  the complexity of
the  EASM  system  and  the  limitations  of  traditional
approaches, e.g., the correlation-based approach, in process-
ing  large  amounts  of  information,  it  is  difficult  to  reliably
identify  robust  and  comprehensive  relationships  between
MYR  and  LSCMs.  Consequently,  this  remains  as  a  major
challenge.

In  recent  years,  data-driven,  causality-guided
approaches  have  started  to  gain  attention  from  the  climate
community  (Ebert-Uphoff  and  Deng,  2012; Runge  et  al.,
2012a, b, 2014, 2019a, b; Chaudhary  et  al.,  2016;
Kretschmer  et  al.,  2016, 2017; Di  Capua  et  al.,  2019).
Kretschmer et al. (2017) and Di Capua et al. (2019) demon-
strated the advantages of using a causality-guided approach
(response-guided  causal  precursor  detection;  RG-CPD),  to
construct  statistical  forecast  models  for  meteorological
extremes. RG-CPD is a two-step procedure. The first step is
to  construct  relevant  climate  indices,  which  are  related  to
the response, from the data field using the response-guided
community detection algorithm (Bello et al.,  2015). This is
done by first calculating lagged correlation maps between cli-

mate  variables  and  the  response.  Then  the  adjacent  grid
points with significant correlations of the same sign with the
response  form so-called  precursor  regions.  Climate  indices
are then constructed by area-weighted averages over the pre-
cursor regions. The second step is to apply a causal discovery
algorithm  (Spirtes  et  al.,  2001; Runge  et  al.,  2012a, 2014,
2015; Runge,  2015)  to  explore  the  causal  relationship
between  the  climate  indices,  which  are  found  in  the  first
step. The statistical models constructed, using RG-CPD, by
Kretschmer  et  al.  (2017)  and  Di  Capua  et  al.  (2019)  have
been  shown  to  have  excellent  performance  in  predicting
extreme stratospheric polar vortex states and Indian summer
monsoon rainfall,  respectively.  This  shows the  potential  of
the  causality  approach  in  applying  it  to  the  prediction  on
half-monthly to seasonal time scales of other meteorological
and climatological extremes as well as exploring underlying
physical processes. Our work aims to explore the applicability
of  the  causality  approach  for  predicting  MYR  based  on
known LSCMs.

Traditionally, predictors in statistical models are chosen
based on the association with the responses, i.e., correlation.
However,  correlation-based statistical  models  may have no
physical meaning because correlation does not imply causa-
tion.  In  addition,  all  predictors,  which  describe  different
stages of the same process, would be chosen if the traditional
association  criteria  are  used.  Consequently,  correlation-
based statistical  models suffer from overfitting due to non-
causal  relationships  between  predictors  and  response
(Kretschmer et al., 2017). This also implies that these models
cannot be applied to alternative data as the models are built
using  specific  datasets.  On  the  other  hand,  a  causality-
guided statistical model (CGSM) does not have these draw-
backs because it captures the underlying physical relations.

In this pilot study, we aim to answer the following ques-
tions:  (1)  How  well  do  data-driven  CGSMs,  constructed
using  known  indices  of  LSCMs,  perform  in  predicting
MYR both spatially and temporally? (2) What are the limita-
tions of data-driven CGSMs? In this paper, we demonstrate
the  usefulness  of  a  data-driven,  causality-guided  approach,
which  allows  us  to  explore  the  relationship  between  MYR
and LSCMs in a more comprehensive and efficient manner.
The models constructed based on the predictors,  which are
selected using this approach, will be shown to have remark-
able  explanatory  power.  Due  to  the  property  of  causality-
guided models as discussed above, i.e., CGSMs do not suffer
from overfitting due to non-causal relationships between pre-
dictors and response, the prediction model can be applied to
different  datasets  for  the  same  phenomena.  This  opens  up
the possibility to apply this type of statistical model to climate
data  that  are  generated  from  different  models  and  simula-
tions.  Consequently,  useful  and  timely  information  would
be  available  to  policy  and  decision  makers.  The  paper  is
arranged as follows: the datasets that are used in this study
are  outlined  in  section  2.  The  methodology is  described  in
section 3. In section 4, we present the main results, including
the performance of the models. The discussion about the cur-
rent approach as well as its limitations can be found in section
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5. Conclusions are presented in section 6.

 2.    Data

For model  development,  the  fifth  generation European
Centre  for  Medium-Range  Weather  Forecasts  (ECMWF)
reanalysis  data  (ERA5)  (Hersbach  et  al.,  2020)  is  used.
ERA5 is produced based on the Integrated Forecasting Sys-
tem  (IFS)  Cy41r1  with  4D-Var  data  assimilation.  The
model resolution is T639 (~32 km) with 137 vertical levels.
In this study, ERA5 data from 1979–2018 with spatial resolu-
tion of 0.25° × 0.25° is used. Historical rainfall observation
data (1961–2018) is obtained from the high resolution (0.25°
× 0.25°) gridded observed daily precipitation data from the
China Meteorological Administration known as the CN05.1
data set (Wu and Gao, 2013). Similar to the development of
the  earlier  gridded  observation  data  (Xu  et  al.,  2009),  the
CN05.1  dataset  was  constructed  by  interpolation  of  data
from  more  than  2400  observation  stations  in  China  using
the  “anomaly  approach ”  (Wu  and  Gao,  2013).  In  the
anomaly approach, a gridded climatology is first calculated,
and then a gridded daily anomaly is added to the climatology
to obtain the final dataset. The CN05.1 data in the period of
1979–2018 are used for model construction. To examine the
limitation  of  this  approach  for  different  climate  states,
CN05.1  and  ERA5  back  extension  (BE)  (preliminary  ver-
sion) (Bell et al., 2020a, b) in the period of 1961–78 are also
used.

 3.    Method

 3.1.    Indices of LSCM

Indices of LSCMs are calculated using ERA5 (Hersbach
et al., 2020) and ERA5 BE (preliminary version) (Bell et al.,
2020a, b)  for  the  period  1979–2018  and  1961–78,  respec-
tively. Table 1 shows the list of indices of LSCMs considered
in this study. Since there are some reported biases in ERA5
BE  (ECMWF,  2021),  consistency  checks  between  the
indices  of  LSCM  calculated  from  ERA5  and  ERA5  BE
have been performed. In general, indices of LSCM calculated
using ERA5 BE are climatologically consistent with ERA5,
except  for  the  area  index  of  the  South  Asian  High  (SAHI-
Area).  The  mean  and  standard  deviation  of  SAHI-Area  in
ERA5 BE for the period 1961–78, which are approximately
equivalent  to  1.10  ×  107 km2 and  5.72  ×  106 km2,  respec-
tively,  are  climatologically  smaller  than  those  in  ERA5,
which are approximately equivalent  to 1.54 × 107 km2 and
7.70 × 106 km2,  respectively. This is related to the decadal
shift of SAH intensity around the late 1970s (e.g. Xue et al.,
2015).

 3.2.    MYF detection and MYR identification

The  MYF  detection  scheme  was  developed  in  the
FOREX  project  (http://www.birmingham.ac.uk/research/
activity/environmental-health/projects/forex.aspx;  Access
date:  13 December 2021) and was first  presented in Befort

et  al.  (2016),  Leckebusch  et  al.  (2016),  and  Befort  et  al.
(2017).  This  detection  scheme  is  an  extension  of  the  Baiu
front detection scheme, which was developed by Tomita et
al.  (2011),  to  identify  the  Mei-yu-Baiu  front  over  a  large
region from China to Japan. The main difference in the detec-
tion schemes is that Tomita et al. (2011) used the minimum
of the meridional gradient of daily equivalent potential tem-
perature at 850 hPa (dθe) to locate the position of the MYF,
whereas  the  minimum  of  the  product  of  dθe and  specific
humidity at 850 hPa (qdθe) was used by Befort et al. (2016)
and Befort et al. (2017). The reason for the difference is that
the position of the MYF that is detected using the minimum
dθe appears to be too far north in comparison to the rainfall
over eastern China (Befort et al., 2016, 2017). Tomita et al.
(2011)  pointed  out  that  the  Mei-yu  rainfall  over  eastern
China  depends  on  instability,  which  is  linked  to  dθe,  and
total  amount  of  humidity.  In  order  to  include  the  effect  of
moisture, qdθe is chosen here, as in Befort et al. (2016) and
Befort et al. (2017), for MYF detection.

Figure  1 shows  a  flowchart  for  the  MYF  detection
scheme, and a brief description of this scheme is stated as fol-
lows: (1) The 15-day running mean of daily equivalent poten-
tial temperature at 850 hPa (θe) is calculated to remove sub-
synoptic-scale disturbances. (2) qdθe is then calculated on a
T63 grid (192 × 96, ~200 km), and values with θe < 310 K
are masked. (3) An MYF exists if there exist coherent clusters
of qdθe minima exceeding 10 grid points that are in a specific
region, as stated in Fig. 1 and shown in Fig. S1 in the electronic
supplementary  material  (ESM).  (4)  The  position  of  the
MYF is delineated by a cubic smoothing spline fitted to the
grid point values identified from the previous step. Figure 2
shows  the  climatological  positions  of  the  MYF  in  ERA5.
The  northward  propagation  of  the  MYF  from  May  to
August, as described in the literature (e.g., Ding and Chan,
2005),  is  well  captured, which demonstrates the validity of
the detection scheme.

MYR  is  defined  as  all  extreme  rainfall,  which  is
defined  as  daily  rainfall  greater  than  or  equal  to  the  local
95th percentile climatological daily rainfall, within 500 km
north and south of the position of the MYF after subtraction
of tropical cyclone related rainfall (TCR) from the total rain-
fall. TCR is defined as all rainfall within a 500-km radius of
the center of the TC, where the location of the TC is identified
by the TRACK algorithm (Hodges et al., 2017). The leftmost
column  of Fig.  3 shows  the  climatological  monthly  mean
MYR for different months in the Mei-yu season. The north-
ward  propagation  of  the  rain  band  is  well  captured  in
CN05.1.

While many studies in the past  have linked LCSMs to
MYR on seasonal and monthly time scales (e.g. Wang et al.,
2009; Ning et al., 2017; Li et al., 2018), high frequency vari-
ability is of critical importance (e.g. Chen et al., 2015; Ding
et  al.,  2020, 2021).  Ding  et  al.  (2021)  investigated  the
causes of the record-breaking MYR in 2020 and demonstrated
that the WNPSH and other monsoon circulation subsystems
experienced  several  cycles  of  quasi-biweekly  oscillation.
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This  is  one  of  the  reasons  that  significantly  more  rainfall
was observed in the 2020 Mei-yu season; there were favorable
conditions  for  convective  activity  development  in  the  YV.
To evaluate the impact of the high-frequency variability of
LSCMs  in  a  CGSM,  two  sets  of  CGSMs  have  been  con-
structed. CGSM-M is constructed based on monthly indices
of  LSCM and  monthly  accumulated  MYR for  each  month
in the Mei-yu season (May to August). CGSM-HM is con-
structed based on half-monthly  indices  of  LSCM and half-

monthly accumulated MYR for each half-month in the Mei-
yu season.

 3.3.    Causality-guided statistical model (CGSM)

The CGSM is constructed using a three-step procedure
described  as  follows:  (1)  The  lagged  correlation  between
detrended  anomalies  of  indices  of  LSCM  and  detrended
anomalies of MYR for each grid point are calculated. The pre-
dictors, which are significantly correlated with MYR at the
0.1 significance level, are considered as potential causal pre-
dictors.  (2)  The  modified  Peter–Clark  (PC)  algorithm
(Tigramite  version  4.2, https://github.com/jakobrunge/
tigramite, Runge et al., 2019b; Runge, 2020) is used to evalu-
ate the conditional dependency for all potential causal predic-
tors  and  MYR.  A  causal  predictor  is  found  if  the  MYR is
shown to be conditionally dependent on the predictor, given
other  causal  predictors.  (3)  A  multiple  linear  regression
model  is  constructed  using  all  identified  causal  predictors
from step (2) and MYR as the response. The above procedure
is repeated for all land grid boxes over continental China for
which the number of non-zero MYR entries of the grid box
is  at  least  30.  The  choice  of  at  least  30  non-zero  MYR
entries  is  to  avoid  construction  of  the  model  to  predict  no
MYR.

The significance level of correlation between MYR and
predictor pairs in step (1) is chosen to be 0.1, as this is the
minimum  acceptable  significance  level.  Similar  results  to
those in this study can be obtained if a significance level of
0.05 is used. The significance level of 0.1 is used to maximize
the number of potential causally related LSCM–MYR pairs.
Causally  non-relevant  LSCM–MYR  pairs  would  be
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Fig. 1. A flowchart for the MYF detection scheme as described in section 3.2 following Befort et al. (2016) and Befort et al.
(2017).

 

Fig.  2. Climatological  position  of  the  MYF  as  identified  in
ERA5 (1979–2018).
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removed by step (2). The conditional dependency in step (2)
is obtained, using the modified PC algorithm, by iteratively
testing whether the relationship between the potential causal
predictor  and  MYR  can  be  explained  by  the  influence  of
other  causal  predictors  (see Di  Capua  et  al.,  2019 for
detailed  description).  The  modified  PC  algorithm  is  con-
trolled by two main hyperparameters: (i) maximum time lag
with respect to the time of interest  and (ii)  a regularization
parameter, αpc (see Runge et al., 2019b for detailed explana-
tion of the functionality of each hyperparameter). A detailed
discussion  of  the  choice  of  the  maximum time  lag  and αpc

can  be  found  later  in  this  section  and  section  5.1,  respec-
tively.

The  underlying  principle  of  a  CGSM  is  similar  to  the
studies  of  Kretschmer  et  al.  (2017)  and  Di  Capua  et  al.
(2019) but with two major differences.  (i)  The first  step of
RG-CPD,  which  was  used  in  Kretschmer  et  al.  (2017)  and
Di  Capua  et  al.  (2019),  is  to  discover  new  climate  indices
that  have  significant  association  with  the  response  (see
Bello et al., 2015 for details). In this study, we are not inter-
ested in discovering new indices because we aim to demon-

strate  the  added  value  and  usefulness  of  the  causality
approach using known LSCM drivers in explaining the vari-
ability  of  MYR.  Consequently,  indices  of  known  LSCMs,
which are listed in Table 1, are used in this study. (ii) In the
studies  of  Kretschmer  et  al.  (2017)  and  Di  Capua  et  al.
(2019), the  responses  are  area-weighted  averages.  Conse-
quently, their models are temporal models, which model the
regional changes. Due to the importance of the spatial distri-
bution of MYR, such an approach could be a major limita-
tion.  In  this  study,  a  model  is  built  for  each  land  grid  box
over continental China. The resultant models can thus capture
and explain the spatiotemporal  changes of MYR. The total
number of CGSM-M and CGSM-HM is 19 188 and 30 059,
respectively.

The  maximum  lag  with  respect  to  the  time  of  interest
for  CGSM-M  and  CGSM-HM  is  11  months  and  23  half-
months  (HMs),  respectively.  Although  the  LSCMs  chosen
in this study could play important roles in part of the underly-
ing physical processes, it is possible that there exist hidden
physical processes that are not known yet but are important
in controlling MYR. Large maximum time lag aims to assist

 

 

Fig.  3. Climatological  monthly  mean  (1979–2018)  MYR  for  May,  June,  July,  and  August  (top  to  bottom)  from  CN05.1
observations, CGSM-HM predictions, CGSM-M predictions, and ERA5 direct output (left to right).
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the models to capture these hidden processes indirectly. For
example, suppose we have a process A(4)→B(2)→C, where
the  number  in  the  brackets  indicates  the  time  lag  with
respect  to  C.  If  we  only  have  the  information  of  A and  C,
using  the  causality  algorithm  with  maximum  time  lag  of
three, then we would not be able to identify any causal link
between  A  and  C.  However,  if  we  increase  the  maximum
time  lag  to  five,  then  we  would  have  captured  the  causal
link between A and C in the absence of B. The use of large
maximum lag increases the number of potential predictors sig-
nificantly,  i.e.,  the  number  of  possible  predictors  available
for CGSM-M and CGSM-HM is 176 and 368, respectively.
While this would be an issue in the typical correlation-based
variable selection, this is not the case in the causality frame-
work  because  predictors  are  only  selected  if  they  are
causally related to the response as discussed before. Further-
more,  if  there  are  several  predictors  that  describe  different
stages of the same process, only the predictor with the shortest
lagged time with respect to the month (or half-month) of inter-
est would be selected by the procedure. The typical number
of  predictors  used  to  construct  CGSM-M  and  CGSM-HM
for  all  months  and  half-months  is  four  and  seven,  respec-
tively, except for the CGSM-HM of the ninth half-month (i.
e., first half of May), where typically only six predictors are
used. It is also found that predictors related to the PJ, Indian
Monsoon  Index  by  Wang  and  Fan  (1999)  (IMI-WF),
WNPSH  North  Index  (WNPSH-N),  WNPMI,  and  SRP-
related  indices  are  frequently  selected  by  CGSM-HM  and
CGSM-M.

The  performances  of  CGSMs  constructed  with
detrended variables and non-detrended variables are very simi-
lar. For the rest of the discussion, we focus on the CGSM con-
structed with non-detrended variables. Since a CGSM can pre-
dict negative values, which have no physical meaning, all pre-
dictions of negative values are set to be zero for physical con-
sistency.  For  model  validation,  five-fold  cross-validation

(CV) is used. In five-fold CV, the original data is randomly
split  into five equal sized subsets.  Four subsets are used in
model construction, and the remaining subset is used for vali-
dation. This procedure is repeated 1000 times with random
stratification to achieve statistical robustness.

 4.    Results

Figure 3 shows the spatial distribution of climatological
monthly mean MYR (left to right) from observations, mod-
eled using CGSM-HM, modeled using CGSM-M, and from
ERA5 direct output over continental China. ERA5 direct out-
put  captures  the  MYR  pattern  as  shown  in  observations,
except  MYR  in  ERA5  direct  output  appears  to  be  more
extreme  than  that  from  observations.  This  is  in  agreement
with Jiao et al. (2021), where it was found that ERA5 overesti-
mated  precipitation  in  summer  over  China.  Both  CGSM-
HM and  CGSM-M show similar  climatological  patterns  to
the  observed  pattern  and  appear  to  be  better  matched  with
observations than the ERA5 direct output. Although the clima-
tological patterns of CGSM-HM and CGSM-M are very simi-
lar (Fig. 3), CGSM-HM has much better performance in cap-
turing variability than CGSM-M (Fig. 4). The median of Pear-
son’s correlation coefficient between observed and model val-
ues  of  CGSM-HM  (CGSM-M)  for  May,  June,  July,  and
August, are 0.874 (0.744), 0.847 (0.701), 0.871 (0.754), and
0.858 (0.714), respectively. Figure 4 demonstrates the impor-
tance of submonthly variability in understanding MYR, as dis-
cussed in the literature (e.g., Ding et al., 2021). Low temporal
resolution models (i.e., CGSM-M) would not be able to cap-
ture the high frequency variability. In contrast, higher tempo-
ral  resolution  models  (i.e.,  CGSM-HM) have  the  ability  to
capture  the  high  frequency  variability  relevant  to  MYR
related to smaller temporal scale atmospheric phenomena.

Furthermore,  the  root-mean-square  error  (RMSE)  of
CGSM-M  is,  in  general,  higher  than  that  of  CGSM-HM

Table 1.   List of the LSCMs considered in the construction of the CGSM.

LSCM Definition/References

Dipole Mode Index (DMI) As in Saji et al. (1999); Black et al. (2003)
Indian Monsoon Index by Wang and Fan (IMI-WF) As in Wang and Fan (1999)
Indian Monsoon Index by Webster and Yang (IMI-WY) As in Webster and Yang (1992)
ENSO (Niño-3.4) As in Trenberth (1997)
Pacific Japan Pattern (PJ) As in Nitta (1987); Wakabayashi and Kawamura (2004);

Choi et al. (2010); Kim et al. (2012); Li et al. (2014)
South Asian High Area Index (SAHI-Area) As in Ning et al. (2017)
South Asian High Northwest Displacement Index (SAHI-NW) As in Ning et al. (2017)
Silk Road pattern principal component 1 (SRP-PC1) As in Li et al. (2020)
Silk Road pattern principal component 2 (SRP-PC2) As in Li et al. (2020)
Sea surface temperature anomaly of Arabian Sea (SSTA-AS) Mean SST anomaly in the region 10°–25° N, 60°–75° E
Sea surface temperature anomaly of Bay of Bengal (SSTA-BoB) Mean SST anomaly in the region 10°–23° N, 80°–100° E
Sea surface temperature anomaly of East China Sea (SSTA-ECS) Mean SST anomaly in the region 25°–33° N, 120°–130° E
Sea surface temperature anomaly of South China Sea (SSTA-SCS) Mean SST anomaly in the region 10°–23° N, 105°–120° E
Western North Pacific Monsoon Index (WNPMI) As in Wang and Fan (1999); Wang et al. (2001, 2008)
Western North Pacific Subtropical High North Index (WNPSH-North) As in Lu (2002)
Western North Pacific Subtropical High West Index (WNPSH-West) As in Lu (2002)
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(Fig. 5). The largest differences of RMSE between the two
models can be found in the middle/lower YV (25°–32.5°N,
110°–120°E) as defined in Martin et al. (2020). This further
supports the use of a high temporal resolution CGSM. Sensi-
tivity studies have been performed to investigate the sensitiv-
ity of the current method to the definition of extremes from
the model construction perspective. The local 80th and 90th
percentile thresholds are chosen to be alternative definitions
of  extremes,  as  opposed to  the  95th  percentile  (c.f.  section
3.2). Similar patterns to those shown in Fig. 4 emerge. This
suggests that the current method can construct a model with
similar  performance  for  different  definitions  of  extremes.
The  RMSEs  of  the  five-fold  CV  for  both  CGSM-HM  and
CGSM-M  (Fig.  6)  show  similar  patterns  to  those  seen  in
Fig. 5, which supports the utility of CGSMs.

It is worth pointing out that the region where the largest
RMSE (Fig. 5) is found in both CGSM-HM and CGSM-M
coincides  with  the  region  where  the  highest  climatological
monthly  mean  extreme  rainfall  is  found  (Fig.  4).  This  is
because  both  CGSM-HM  and  CGSM-M  attempt  to  model
accumulated extreme precipitation based on a simple multiple
linear regression model, and extreme values tend to be diffi-
cult  to  model  by  simple  multiple  linear  regression  due  to
their  rarity.  This  can  be  seen in  the  results  of  the  five-fold
CV (Fig. 6). In the five-fold CV, 32 years of data is used to
construct  CGSMs,  and  eight  years  of  data  is  used  to  test
CGSMs,  i.e.,  less  available  observations  to  construct
CGSMs.  Given  that  the  ability  to  model  extreme  MYR  is
governed by the existence of  extreme MYR in the training
dataset and extreme MYR is relatively rare, the performances
of  the  CV models  are  reduced.  A possible  solution  is  sug-
gested in section 5.2.2.

To further illustrate the usefulness of CGSMs and the dif-
ference  between  CGSM-M  and  CGSM-HM,  the  mean
MYR time series for the middle/lower YV has been calculated
for  observations  and  for  predictions  from  CGSM-M  and
CGSM-HM  (Fig.  7).  In  general,  the  predictions  from
CGSM-M and CGSM-HM agree with observations relatively
well.  For  the  extremes,  particularly  for  1981,  1995,  and
1998,  CGSM-HM  significantly  outperforms  CGSM-M.
This  confirms  the  importance  of  capturing  high-frequency
variability in a CGSM.

 5.    Discussion

 5.1.    Causality framework

In  theory,  the  causality  approach  does  not  suffer  from
overfitting  because  predictors  and  response  are  causally
related  (Kretschmer  et  al.,  2017).  In  practice,  it  would
depend on the choice of hyperparameter αpc in the causal dis-
covery  algorithm,  as  occasionally  slightly  different  results
can be obtained. In this study, we ran the modified PC algo-
rithm (c.f. section 3.3) with five different values of αpc, rang-
ing from 0.1 to 0.5, and selected the set of causal predictors
that leads to the highest CGSM performance, i.e., the optimal
model.  This  is  a  useful  approach  even  though  it  might  not

be  optimal  from  the  causality  discovery  point  of  view,  as
the measure of the goodness of fit is not a measure of causal-
ity.

From a physical perspective, LSCMs trigger physical pro-
cesses that lead to MYR over a large region rather than at a
single local  grid box.  This  implies  that  if  CGSMs are con-
structed based on physical processes rather than purely statisti-
cal associations, the predictors in CGSMs should have a cer-
tain  degree  of  spatial  consistency,  i.e.,  the  locations  of  the
grid boxes that select certain predictors should form coherent
large  clusters.  As  demonstrated  in Fig.  8,  the  LSCMs  that
are used in CGSMs (e.g., IMI-WF with five half-month lag)
form large coherent spatial clusters. Thus, these LSCMs are
linked to the regional MYR through physical processes, and,
consequently,  CGSMs are  not  purely  statistical  models  but
they have physical significance.

Under  the  causality  framework,  the  predictors  in
CGSMs correspond to different processes. Some of these pre-
dictors could be linked to the following hypotheses: (1) Liu
and  Ding  (2008)  investigated  the  teleconnection  between
ISM  precipitation  and  Mei-yu  rainfall  over  YV.  They
reported  the  southwest–northeastward  teleconnection  mode
originated  from  southwestern  India,  and  it  propagates
through  the  Bay  of  Bengal  to  the  YV and  southern  Japan.
The IMI-WF predictor (lag five) could correspond to the pre-
conditions of ISM onset. (2) Ning et al. (2017) hypothesized
about  the  influence  of  the  dynamical  changes  of  the  south
Asian  high  (SAH)  on  MYR.  When  the  SAH  expands  and
intensifies,  the  WNPSH  also  intensifies  and  extends  west-
ward. More moisture is transported to the YV region. That
combined  with  other  environmental  factors  leads  to  more
extreme  rainfall  in  the  region.  The  SAHI-Area  predictor
(lag two) potentially reflects this mechanism. However, identi-
fying the actual physical processes that relate predictors and
response is beyond the scope of the current study.

 5.2.    Limitations

There  are  three  noticeable  limitations  in  the  current
approach  where  potential  improvement  in  the  future  could
be possible.

 5.2.1.    Incomplete set of LSCMs

While  a  significant  number  of  LSCMs  are  considered
in  the  CGSM  construction,  not  all  potentially  relevant
LSCMs,  such  as  LSCMs  that  control  long-term,  low-fre-
quency  variability,  are  included.  Ding  et  al.  (2008)  found
that the regional rainfall in the EASM region exhibits multi-
decadal variability with the most dominate mode being ~80
years.  Other  higher-frequency multidecadal  oscillations are
also  important  in  controlling  regional  variability.  Further-
more,  Ding  et  al.  (2008)  has  shown  that  there  is  a  shift  in
the meridional precipitation pattern from the tripole pattern
in 1951–78 to the dipole pattern in 1993–2004. This is also
related to variations in the large-scale circulation and the ther-
modynamic and moisture fields in the EASM region in the
same period. Given that the predictor set of the CGSM does
not include any multidecadal LSCMs, it could be problematic
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Fig. 4. Map of Pearson correlation coefficient between CN05.1 and model values of monthly accumulated MYR
calculated using CGSM-HM (left column) and CGSM-M (right column) for May, June, July, and August (from
top to bottom) for the period 1979–2018.
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to apply the current CGSMs to a different climatic state. To
evaluate the performance of the CGSM in a different climate
state,  similar  analyses  have  been  done  using  data  from
ERA5 BE and CN05.1 in the period of 1961–78. A consis-
tency check based on the climatological monthly MYR pat-
tern between ERA5 BE and CN05.1 has been done.  While
the general patterns appear to be similar, the region of high-
intensity  MYR  in  ERA5  BE  is  much  larger  and  extreme
than  that  in  CN05.1  (not  shown).  Possible  explanations
could be changes in the global observation system in 1979,

as  was  found  in  ERA-40  (Bengtsson  et  al.,  2004),  and  the
bias in simulated precipitation in the ECMWF IFS (Lavers
et al., 2021).

Over the study region, the overwhelming advantage of
the high-temporal-frequency-resolution model has been dimin-
ished (Fig. 9). Although there are patches of regions with rela-
tively  high  positive  Pearson’s  correlation  coefficient,  the
median  of  Pearson’s  correlation  coefficient  between
observed values and model values (Fig. 9) of both CGSM-
HM and  CGSM-M is  close  to  zero  for  the  Mei-yu  season.

 

 

Fig. 5. RMSE of the optimal models for CGSM-HM (left), CGSM-M (middle), and the difference between CGSM-HM and
CGSM-M (right) for the period 1979–2018. The black box indicates the middle/lower Yangtze River region as defined by
Martin et al. (2020).
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Fig. 6. Mean RMSE of five-fold cross-validation of the CGSM-HM (left column) and CGSM-M (right column)
for the period 1979–2018.
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This shows that the CGSM, which is trained with data from
the period 1979–2018,  does  not  have the  ability  to  capture
variability in the entire study region for the period 1961–78.
The CGSM-HM has a smaller RMSE than the CGSM-M in
July within the middle/lower YV region (Fig. 10). The loca-
tion of high RMSE in CGSM-HM and CGSM-M appears to
be similar (e.g., Guangdong province in May and June, and
along the lower/middle YV in July). This could indicate that
some of the key physical processes are not captured by the
current statistical models. This might be related to the limited
number  of  LSCMs  considered  in  this  study  as  well  as  the
potential differences in processes in the period 1961–78. Fur-
thermore,  in  general,  the  mean  five-fold  CV  RMSE  of
CGSMs using  data  from 1979–2018  (Fig.  6)  is  lower  than
the  RMSE  of  CGSMs  using  data  from  1961–78  (Fig.  10),
except for in the lower/middle YV in June. This shows the
possible shift between the spatial distribution of MYR in the
period  1961–78  and  that  in  the  period  1979–2018.  Given
that  the  predictor  set  of  the  CGSM  does  not  include  any
LSCM  that  controls  multidecadal  variability,  it  would  not
be surprising that the CGSM does not have the best perfor-
mance in predicting the MYR in the period 1961–78.

 5.2.2.    Limited available observations

The  CGSMs  constructed  in  this  study  aim  to  model
MYR over continental China. Currently the models are built
based on 40 years  of  observational  and reanalysis  data.  As
briefly discussed in section 4, the performance of the model
is limited by the amount of available extreme observations,

as  demonstrated  in Fig.  6.  This  can  be  improved  if  more
data are available. However, as shown in section 5.1, using
a longer historical record might not improve the model due
to the influence of long-term variability and climatic shifts,
and possible observational biases in the presatellite era. One
potential approach to address this issue is to make use of the
Osinski–Thompson approach (Osinski et al., 2016; Thomp-
son et al., 2017) with an application of a bias correction tech-
nique. The Osinski–Thompson approach has been shown to
be extremely useful in studies of extreme windstorm events
(Osinski  et  al.,  2016; Walz  and  Leckebusch,  2019; Angus
and  Leckebusch,  2020; Ng  and  Leckebusch,  2021)  and
extreme rainfall events (Thompson et al., 2017). The underly-
ing principle is to make use of different atmospheric states,
which  are  produced  by  state-of-the-art  general  circulation
models (GCMs), in a well-defined climate state. Since these
GCMs  are  governed  by  physical  equations,  the  physical
causal relationship between LSCMs and MYR should be con-
sistent  with  the  observations.  This  way,  we  could  increase
the number of extreme “observations” by at least 100-fold.
Although the rainfall simulated in GCMs is typically biased
relative to observations because it is affected by parameteriza-
tion schemes as well as other numerical issues, a bias correc-
tion  technique  can  be  used  to  address  this  issue.  Conse-
quently, CGSMs, which are developed using the underlying
relationships  between  LSCMs  and  MYR  and  the
Osinski–Thompson approach, may be more robust.

 5.2.3.    Optimization of predictor selection

Although the predictors selected in the causality frame-
work should be physically linked to the response, the set of
selected predictors could be sensitive to the choice of hyperpa-
rameter in the causality algorithm, as discussed before. One
approach to improve the stability and reliability of the causal-
ity-based predictor selection procedure is to make use of the
fact  that  selected  predictors  have  to  be  spatially  consistent
(Fig. 8). For example, if a predictor is selected for a particular
grid box but not for the neighboring grid box, then this predic-
tor is said to be spatially inconsistent and would be removed
from  the  final  model.  On  the  other  hand,  if  a  predictor  is
selected for a particular grid box and the grid box is part of
a large, spatially coherent cluster, then this predictor would
be  kept  in  the  final  model.  This  approach can  improve the

 

Fig.  7. Time  series  of  mean  MYR  from  observations  (black
line),  prediction  by  CGSM-M  (blue  line),  and  prediction  by
CGSM-HM  (red  line)  in  the  middle/lower  YV  (black  box  in
Fig. 5) for June from 1979–2018.

 

 

Fig. 8. Map of the three most frequently chosen predictors for the second half of June.
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physical consistency in predictor selection procedure.

 6.    Conclusions

This  is  a  pilot  study  for  the  potential  application  of  a
data-driven, causality-guided statistical approach to explore
the  relationship  between  extreme  Mei-yu  rainfall  (MYR)
and known large-scale climate modes (LSCMs) through the
construction of a prediction model based on the causal rela-

tionships.  Using  the  causality  approach,  we  have  demon-
strated  that  known  LSCMs  from  literature  can  be  used  to
model MYR with good accuracy (Fig. 4). Since the causality
approach does not lead to overfitting due to the inclusion of
noncausal-related  predictors  in  the  model,  as  shown  in
Kretschmer et al. (2017), the approach is reliable in identify-
ing important LSCMs, which causally control MYR. Further-
more,  the  causality-guided  statistical  approach  shows  the
importance of capturing high-frequency variability by using

 

 

Fig.  9. (Left)  Climatological  MYR  for  May,  June,  July,  and  August  in  the  period  1961–78.  Map  of  Pearson  correlation
coefficient between observations and predictions from CGSM-HM (middle) and CGSM-M (right) for May, June, July, and
August  (top  to  bottom)  using  data  in  the  period  of  1961–78.  The  black  box indicates  the  middle/lower  YV as  defined  by
Martin et al. (2020).
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high-temporal-resolution predictors and responses to model
the MYR, which is in good agreement with the literature (e.
g., Chen et al., 2015; Ding et al., 2020, 2021). Based on the
causality  approach,  it  is  possible  to  identify  the  main
LSCMs controlling MYR in specific regions based on the spa-
tially  consistent  pattern  of  selected  predictors  (Fig.  8).
Known limitations of this approach have also been discussed
in  detail,  and  methods  to  address  these  limitations  have
been suggested (section 5.2).

While  we  have  demonstrated  the  causality-guided

approach is useful in constructing models by uncovering the
underlying  causal  physical  relationship  between  LSCMs
and MYR, a detailed investigation of the underlying physical
processes  that  are  driven  by  LSCMs  to  influence  MYR  is
beyond the scope of this study and should be explored further
once a full causally explanatory model is identified. For this,
further  investigations  on  the  underlying  physical  processes
can be done using the causality approach by combining the
method described in this study and response-guided commu-
nity  detection  (Bello  et  al.,  2015),  and,  consequently,  the

 

 

Fig. 10. RMSE of the optimal models for CGSM-HM (left), CGSM-M (middle), and the difference between CGSM-HM and
CGSM-M  (right)  for  May,  June,  July,  and  August  (top  to  bottom)  using  data  in  the  period  of  1961–78.  The  black  box
indicates the middle/lower YV as defined by Martin et al. (2020).
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dynamical relationship between LSCMs and MYR in differ-
ent stages of the Mei-yu season in a given region could be
revealed. This can then optimize the index, which represents
a  LSCM,  and  at  the  same  time  provide  necessary  physical
understanding of the index.

This study shows the importance of LSCMs in modelling
MYR. This is consistent with the analysis, which was done
by Martin et al.  (2020), on the source of skill  in predicting
June mean EASM rainfall over China using GloSea5. They
identified that the main source of skill comes from the equato-
rial  SST  from  the  preceding  winter  by  influencing  the
WNPSH.  Using  the  causality  approach,  the  importance  of
LSCMs at different stages of the EASM can be identified in
a more comprehensive and efficient manner. The statistical
model  constructed  based  on  predictors,  which  are  selected
using the  causality  approach,  have high explanatory power
as well as transferability. This study also indicates that the pre-
dictability of the seasonal forecast of EASM rainfall can be
improved  by  improving  the  forecast  ability  of  relevant
LSCMs. Ultimately, the causality approach can play an impor-
tant role in improving the prediction of MYR in the future cli-
mate  due  to  its  ability  to  uncover  the  intimate  relationship
between LSCMs and MYR.
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