
Visual Comput (2007) 23: 317–333
DOI 10.1007/s00371-007-0113-z O R I G I N A L A R T I C L E

Arjan Egges
George Papagiannakis
Nadia Magnenat-Thalmann

Presence and interaction in mixed reality
environments

Published online: 28 March 2007
© Springer-Verlag 2007

A. Egges (�)
Center for Advanced Gaming and
Simulation, Department of Information
and Computing Sciences
Utrecht University
The Netherlands
egges@cs.uu.nl

G. Papagiannakis · N. Magnenat-Thalmann
MIRALab – University of Geneva
Switzerland
{george, thalmann}@miralab.unige.ch

Abstract In this paper, we present
a simple and robust mixed reality
(MR) framework that allows for real-
time interaction with virtual humans
in mixed reality environments under
consistent illumination. We will
look at three crucial parts of this
system: interaction, animation and
global illumination of virtual humans
for an integrated and enhanced
presence. The interaction system
comprises of a dialogue module,
which is interfaced with a speech
recognition and synthesis system.
Next to speech output, the dialogue
system generates face and body
motions, which are in turn managed
by the virtual human animation layer.
Our fast animation engine can handle
various types of motions, such as
normal key-frame animations, or
motions that are generated on-the-fly
by adapting previously recorded

clips. Real-time idle motions are an
example of the latter category. All
these different motions are generated
and blended on-line, resulting in
a flexible and realistic animation. Our
robust rendering method operates in
accordance with the previous anima-
tion layer, based on an extended for
virtual humans precomputed radiance
transfer (PRT) illumination model,
resulting in a realistic rendition of
such interactive virtual characters in
mixed reality environments. Finally,
we present a scenario that illustrates
the interplay and application of our
methods, glued under a unique frame-
work for presence and interaction in
MR.

Keywords Presence · Interaction ·
Animation · Real-time rendering ·
Mixed reality

1 Introduction

Over the last few years, many different systems have been
developed to simulate scenarios with interactive virtual
humans in virtual environments in real-time achieving var-
ious degrees of presence. The control of these virtual hu-
mans in such a system is a widely researched area, where
many different types of problems are addressed, related to
animation, speech, deformation, and interaction, to name
a few research topics. The scope of applications for such
systems is vast, ranging from virtual training or cultural
heritage to virtual rehabilitation. Although there is a var-

iety of systems available with many different features, we
are still a long way from a completely integrated system
that is adaptable for many types of applications. This is
not only because of the amount of effort that is required
to integrate different pieces of software, but also because
of the real-time constraint. The latter especially becomes
an issue when many different components need to work
together aiming at a higher degree of presence in a mixed
reality environment.

The true challenge of such systems is for a person to be
able to feel both present and naturally interact with the vir-
tual humans in the virtual, as well as the real scene. A lot
of research has been done to develop chatbots that are

318 A. Egges et al.

mostly focused on a stand-alone speech application with
a cartoon face [1]; however, only a few systems succeed to
link interaction with controlling 3D face and/or body mo-
tions played in synchrony with text-to-speech [5, 14, 18].
The main problem with such systems is that they are far
from ready to be used in mixed reality applications, which
are much more demanding than a stand-alone application.
For example, a highly flexible animation engine is re-
quired that not only plays animations in combination with
interaction, but that is also capable of playing simple key-
frame animations as part of a predefined scenario. This
also means that a dynamic mechanism is required that al-
lows to switch between playing key-frame animations as
part of a scenario, and animations related to the interac-
tion (such as body gestures and facial expressions) without
interrupting the animation cycle. Furthermore, mixed re-
alities require a more elaborate rendering method for the
virtual humans in the scene, which uses the global illumi-
nation information, so that virtual humans that augment
a reality have lighting conditions that are consistent with
the real environment. This is another challenge that this
work examines, since consistent rendering in MR con-
tributes to both feeling of presence as well as realism of
interaction in the case of virtual characters in MR scenes.
To the best knowledge of the authors – and as it is high-
lighted in Sect. 2 – there are no such systems appearing in
the bibliography up to date.

In this paper, we propose simple and fast methods for
three important components (interaction, animation and
rendering), that elevate some of the presence issues dis-
cussed above. Our approaches are specifically tailored to
work as components of a mixed reality real-time applica-
tion. Our fully integrated system, includes speech recog-
nition, speech synthesis, interaction, emotion and person-
ality simulation, real-time face and body animation and
synthesis, real-time camera tracking for AR and real-time
virtual human precomputed radiance transfer (PRT) ren-
dering, and is able to run at acceptable speeds for real-time
(2030 fps) on a normal PC. As part of the work presented
in this paper, we will show the system running different
scenarios and interactions in MR applications.

2 Background

A growing number of projects are currently based on
AR integrated platforms, exploring a variety of pres-
ence applications in different domains such as cultural
heritage [26, 27, 42], training and maintenance [41] and
edutainment-games [37, 38]. Special focus has recently
been applied to system design and architecture in order
to provide the various AR enabling technologies a frame-
work for proper collaboration and interplay. Azuma [3]
describes an extensive bibliography on current state-of-
the-art AR systems and frameworks. However, few of

these systems take the modern approach that a realistic
mixed reality application, rich in AR virtual character
experiences, should be based on a complete VR frame-
work (featuring game engine-like components) with the
addition of AR enabling technologies like real-time cam-
era tracking, AR displays and interfaces, and registration
and calibration. Virtual characters were also used in the
MR-Project [37], where a complete framework for mixed
reality applications has been created. Apart from the cus-
tom tracking/rendering modules, a specialized video and
see-through HMD have been devised.

An important issue in adding virtual content to real
scenery is the application of proper lighting and shading
techniques on the virtual objects. Only if the environmen-
tal properties of both the virtual and real worlds match is
a seamless transition between real and virtual content pos-
sible. Ren et al. [33] recently presented a fast method for
real-time soft shadows in dynamic scenes illuminated by
large, low-frequency light sources. This work is the clos-
est to our goals as it is applicable to virtual characters in
real-time VR. However, it is unclear how the transfer from
multiple objects can be combined in the same hierarchy
as in the case of multi-segmented VHs of H-Anim [13]
and introduced in a mobile AR framework (performance
critical). Nevertheless this would be the most appropriate
alternative to our approach on evaluating the hypotheses
of high-fidelity illumination registration of VH in MR. We
believe that as PRT methods [17, 36] can produce the most
realistic and physically principled real-time GI effects up
to date, they are ideal for VHs as they allow a wealth of
GI effects to be simulated: area lights, self-shadowing,
interreflections, BSSRDF with subsurface scattering, all
important elements for realistic depiction of VHs.

Mixing such aesthetic ambiences with virtual char-
acter augmentations [6] and adding dramatic tension has
developed very recently these narrative patterns into an
exciting new edutainment medium. Balcisoy [4] also pre-
sented a novel system (one of the first in the bibliogra-
phy) to present interactive virtual humans in AR (game
of checkers). In these systems, the animation of the hu-
manoid is generally based on scripted animations. How-
ever, a truly interactive virtual human requires a high level
of control over the body postures and gestures. There
are several research efforts that try to control such types
of character movements. The Greta system is an embod-
ied conversational agent (ECA) simulator that includes
a dialogue system, emotions and a facial expression syn-
thesizer [30]. Hartmann et al.[14] present an extension of
the Greta system that automatically generates hand and
arm gestures from conversation transcripts using prede-
fined key-frames. Another well-known system that can
produce gesture animations from text, is BEAT [5]. BEAT
allows animators to input typed text that they wish to be
spoken by an animated human figure, and to obtain as
output speech and behavioural characteristics. The MAX
system, developed by Kopp and Wachsmuth[18], automat-

Presence and interaction in mixed reality environments 319

ically generates face and body (gesture) animations based
on an XML specification of the output.

Most of these systems use procedural methods to gen-
erate the gesture motions, resulting in rather stiff motions.
In order to overcome this problem, recent work starts to in-
tegrate motion capture-based techniques to generate new
motions while still retaining the flexibility of procedural
motion synthesizers [10]. This approach synthesizes full
body motions as a blended combination of idle motions
and gesture motions. The idle motions provide for a con-
tinuous motion for any character of any required length.
These motions are generated by automatically adapting
prerecorded motion segments, based on a technique simi-
lar to motion graphs [20].

In combination with these idle motions, gesture mo-
tions are blended in. We have developed a method for
automatic dependent joint motion synthesis is real-
time [9]. By using this method, existing gesture synthesiz-
ers, such as the previously mentioned systems, can be used
to produce the basic gesture tracks for a few joints, and our
method will automatically add the motions of dependent
joints (such as head or spine joints).

Currently, no AR system exists that can handle such
kinds of complex full body motions, interaction, speech
recognition/synthesis, illumination registration, geometri-
cal registration, skin deformation, facial animation, and
more, all in a mobile setup. In this paper, we will present
such a system, building on a previously developed frame-
work called VHD++ [31].

In Sect. 3, we will give an overview of that system.
Then, we will describe how this system was extended with
animation and interaction capabilities in Sects. 4 and 5.
Section 6 will show our global illumination model that is
used to light the scene. Finally, in Sect. 7 we will show
two different scenarios that our system can successfully
handle: one in VR and one in AR.

3 VHD++
Our MR-rendering, animation and interaction system
is incorporated in the VHD++ [31] component-based
framework engine developed by VRLab and MIRALab.
This framework allows quick prototyping of VR-AR
applications featuring integrated real-time virtual char-
acter simulation technologies, as depicted in Fig. 1 and
the OpenSceneGraph [25] real-time scenegraph render-
ing API. The key innovation of VHD++ is focused in
the area of component-based framework that allows the
plug-and-play of different heterogeneous human simula-
tion technologies such as: real-time character rendering
in AR (supporting real-virtual occlusions), real-time cam-
era tracking, facial simulation and speech, body animation
with skinning, 3D sound, cloth simulation and behavioural
scripting of actions. The different components may be
grouped into the two following main categories:

Fig. 1. Overview of the VHD++ MR framework

– System kernel components responsible for the interac-
tive real-time simulation initialization and execution

– Interaction components driving external VR devices
and providing various GUIs allowing for interactive
scenario authoring, triggering and control

Finally the content to be created and used by the system
was specified, which may be classified into the two fol-
lowing main categories: (a) static and (b) dynamic content
building blocks such as shader nodes encapsulating ren-
dering effects, models of the 3D scenes, virtual humans,
objects, animations, behaviours, speech, sounds, python
scripts, etc.

The software architecture is composed of multiple
software components called services, as their responsibil-
ities are clearly defined. They have to take care of ren-
dering of 3D simulation scenes and sound, processing in-
puts from the external VR devices, animation of the 3D
models and in particular complex animation of virtual hu-
man models including skeleton animation and respective
skin and cloth deformation. They are also responsible for
maintenance of the consistent simulation and interactive
scenario state that can be modified with python scripts at
run-time. To keep good performance, the system utilizes
five threads. One thread is used to manage the updates of
all the services that we need to compute, such as human
animation, cloth simulation or voice (sound) management.
A second thread is used for the 3D renderer, who obtains
information from the current scenegraph about the objects
that must be drawn as well as the image received from
the camera. It will change the model view matrix accord-
ingly to the value provided by the tracker. The third thread
has the responsibility of capturing and tracking images.
The fourth thread manages the update process of the in-
teraction system, by pruning the script to see whether or
not an action needs to be taken by the virtual human.
The last thread is the python interpreter, which allows us
to create scripts for manipulating our application at the

320 A. Egges et al.

system level, such as generating scenario-based scripted
behaviours for the human actions (key-frame animation,
voice, navigation combined to form virtual short plays).

The AR system presented in Fig. 1 features immersive
real-time interactive simulation supplied with proper in-
formation in the course of the simulation. That is why con-
tent components are very diversified and thus their devel-
opment is an extremely laborious process involving long
and complex data processing pipelines, multiple record-
ing technologies, various design tools and custom-made
software. The various 3D models to be included in the
virtual environments like virtual humans or auxiliary ob-
jects have to be created manually by 3D digital artists. The
creation of virtual humans requires the recording of mo-
tion captured data for realistic skeletal animations as well
as a database of gestures for controlling face and body
animations. Sound environments, including voice acting,
need to be recorded in advance based on the story-board.
For each particular scenario, dedicated system configur-
ation data specifying system operational parameters, pa-
rameters of the physical environment and parameters of
the VR devices used have to be defined as well as scripts
defining behaviours of simulation elements, in particu-
lar virtual humans. These scripts can modify any data in
use by the current simulation in real-time. This allows us
to continue running the simulation whilst some modifica-
tions are performed. Finally our rendering algorithms are
supplied in the form of shader effect nodes in the 3D ren-
dering kernel, thus allowing for real-time application in
multiple rendering hierarchies.

For animation and interaction, we have developed
two services. The vhdAnimationService contains all the
animation related components: motion synthesis, blend-
ing, loading and saving animations and so on. The vhd-
InteractionService uses the animation service to con-
trol a virtual character. The interaction service includes
speech recognition and synthesis, a dialogue manager and
emotion/personality simulation. For the global illumina-
tion and rendering, an vhdOSGShaderService has been
developed, that implements the PRT shading approach. In
the next sections, we will give an overview of each of these
services.

4 The MIRAnim animation engine

In this section, we will present our animation engine,
called MIRAnim. The main architecture of the animation
engine is a multi-track approach, where several anima-
tion streams need to be blended into a final animation.
There has been quite some research in motion blending.
Perlin [29] was one of the first to describe a full anima-
tion system with blending capabilities based on proce-
durally generated motions. There are several researchers
who have used weight-based general blending to create
new animations [34, 43]. There have also been several ef-

forts to apply motion blending not directly on the joint
orientation domain. For example, Unuma et al. [39] per-
form the motion blending in the Fourier domain and Rose
et al. [35] used spacetime optimization to create transi-
tions that minimize joint torque. Kovar et al. [19] use
registration curves to perform blending. Their approach
automatically determines relationships involving the tim-
ing, local coordinate frame, and constraints of the in-
put motions. Blend-based transitions have been incorpo-
rated into various systems for graph-based motion synthe-
sis [20, 34].

4.1 Animation representation

The basic animation representation in our system is based
on a principal component analysis (PCA) of existing mo-
tion data. A method like PCA can determine dependen-
cies between variables in a data set. The result of PCA
is a matrix (constructed of a set of eigenvectors) that con-
verts a set of partially dependent variables into another set
of variables that have a maximum independency. The PC
variables are ordered corresponding to their occurrence in
the dataset. Low PC indices indicate a high occurrence in
the dataset; higher PC indices indicate a lower occurrence
in the dataset. As such, PCA is also used to reduce the di-
mension of a set of variables, by removing the higher PC
indices from the variable set. We will use the results of the
PCA later on for synthesizing the dependent joint motions
(see Sect. 4.4). For our analysis, we perform the PCA on
a subset of H-Anim joints. In order to do that, we need to
convert each frame of the animation sequences in the data
set into an N-dimensional vector.

For representing rotations, we use the exponential map
representation [12]. Using the exponential map represen-
tation for a joint rotation, a posture consisting of m joint
rotations and a global root translation can be represented
by a vector v ∈ R3m+3. In our case, one frame is repre-
sented by 25 joint rotations and one root joint translation,
resulting in a vector of dimension 78. We have applied
a PCA on a large set of motion captured postures, resulting
in a PC space of equal dimension.

4.2 Animation engine structure

The goal of our animation engine is to provide for
a generic structure that allows for the implementation of
different blending strategies. This is especially import-
ant, since our animations use different representations,
depending on the application. Additionally, in the final
system, we will need to perform blending operations on
both body and face animations, which are two completely
different animation formats that require different blend-
ing strategies. The approach that we will present in this
section is suitable for any of the previously discussed
blending approaches. A large set of blending tools, for
example time warping, splitting, fading, and so on, are

Presence and interaction in mixed reality environments 321

Fig. 2. Overview of the blending engine data structure

available. The advantage of using this generic approach is
that once a blending tool has been defined, it can be used
for any type of animation, regardless of its structure. In
order to be able to use these blending tools, only an in-
terface needs to be provided between the data structure
used for blending, and the original animation structure. An
overview of the blending engine is provided in Fig. 2.

The basic structure used in the blending engine is the
so-called BlendableObject interface. A blendable object
is the representation of an animation that can be blended
with other animations. A blendable object is defined as
a function A : t → F, where t is a timekey ∈ [ts, te] with
0 ≤ ts < te < ∞, and F is the corresponding key-frame
of the animation. A frame in the blending engine is
called an AbstractFrame. An abstract frame consists of
a number of elements, called AbstractFrameElement
objects. Each of these elements is a list of floating point
values. For example, in the case of body animations,
an AbstractFrameElement could be a list of 4 floating
points, representing a quaternion rotation, or a list of 3
floating points, representing a 3D translation. An abstract
frame could then consist of a combination of abstract
frame elements that are either translations or rotations. In
the case of facial animation, the abstract frame element
could be a list of one floating point, representing a FAP
value in the MPEG-4 standard [11].

In order to provide for a higher flexibility, the blending
engine accepts blendable objects with or without a fixed
duration. The latter type is especially practical in the case
of playing an animation controlled by a motion synthe-
sizer. Since these animations are generated on-the-fly, the
duration of the animation may not be known at run-time.

A structure is now required that can take a number
of such “animation tracks” and blend them according to
different parameters. The parameters are defined through
the BlendingParams interface. The most basic parameter
used for blending is a weight value to be used for blend-
ing. In addition to a list of weights, the BlendingParams
interface also provides for a list of scalings. The evolu-
tion of the weights and scalings over time is governed
by a parametrizable curve. Figure 3 shows some exam-
ples of curves that can be chosen. Different types of
BlendingParams objects can be multiplexed, and custom

Fig. 3a–d. Various basic curve structures are available, such as
a linear or b cubic fading, and c linear or d cubic attack-decay-
sustain-release

blending parameter objects can be defined. For example,
a custom BlendingParams object can be created for body
animations, which defines a joint mask. When multiplexed
with a weight curve BlendingParams object, this results
in a set of curves defined for each joint in the mask.
Any arbitrary combination of such blending parameters
is possible, allowing for a flexible blending parameteriza-
tion scheme. Here, also the advantage of the independency
of the blending strategy comes forward. Once a blending
parameter feature such as curve-based blending is imple-
mented, it can be used for any type of animation.

The BlendingParams object, together with the
BlendableObject, form a BlendingAction object. This
object has a flag indicating if it should be rendered out-
side the timekey domain of the blendable object source.
This flag is useful when linking the system with a motion
synthesizer, where frames are created during run-time, in-
dependent of the current length of the animation.

The final step in obtaining a mix of different Blend-
ingAction objects requires a structure that allows for
activating and deactivating different animations accord-
ing to the blending parameters. This structure is called
a BlendingSchedule. A blending schedule consists of
a list of BlendingAction objects. Each blending action is
associated with a timekey, which defines the time that the
blending action should start.

The actual blending itself happens in the FrameBlen-
der object. This object is by default a linear blender, but
it can be replaced by a more complex blender, that allows
for example blending of other (non-linear) data structures,
such as quaternions. This blender can also be replaced if
there are different types of frame elements in the same
frame, like for example translations (linear) and rotations
(non-linear).

The BlendingSchedule is again a blendable object.
This allows for performing animation blending on dif-
ferent levels, with local blending parameters. When key-
frames are obtained from the blending schedule, they
are rendered in real-time as a result of the different ac-
tivated actions and their blending parameters. So, blend-
ing actions can be added and removed from the blending
schedule during run-time, resulting in a flexible animation
blender, adaptable in real-time. In order to optimize per-
formance, a cache is maintained of previously rendered
frames.

322 A. Egges et al.

In addition to the basic data structures and tools used
for blending animations, the blending engine also provides
for a few extensions that allow to further parameterize the
animation and blending process. For example, modifiers
can be defined which act as a wrapper around blendable
objects. Examples of such modifiers are time stretching,
flipping, or looping of animations. Again, custom modi-
fiers can be defined for different animation types. To give
an example in the case of body animations: a modifier
is available that performs a global transformation on the
whole animation. Any sequence of modifiers can be used,
since modifiers are again blendable objects.

4.3 Automatic idle motion synthesis

An important aspect of an animation system is how to deal
with a scenario where several animations are played se-
quentially for various actors. In nature there exists no mo-
tionless character, while in computer animation we often
encounter cases where no planned actions, such as wait-
ing for another actor finishing his/her part, is implemented
as a stop/frozen animation. A flexible idle motion gener-
ator [10] is required to provide for realistic motions even
when no action is planned. In the recorded data, we have
observed two important types of idle behaviour:
1. Posture shifts: this kind of idle behaviour concerns the

shifting from one resting posture to another one, for
example, shifting balance while standing, or going to
a different lying or sitting position.

2. Continuous small posture variations: because of
breathing, maintaining equilibrium, and so on, the hu-
man body constantly makes small movements. When
such movements are lacking in virtual characters, they
look significantly less lively.

4.3.1 Balance shifting

Humans needs to change posture once in a while due to
factors such as fatigue. Between these posture changes,
he/she is in a resting posture. We can identify different
categories of resting postures, such as in the case of stand-
ing: balance on the left foot, balance on the right foot or
rest on both feet. Given a recording of someone stand-
ing, we can extract the animation segments that form the
transitions between each of these categories.1 These ani-
mation segments together form a database that is used to
synthesize balancing animations. In order for the database
to be usable, at least one animation is needed for every
possible category transition. However, more than one ani-
mation for each transition is better, since this creates
more variation in the motions later on. In order to gen-
erate new animations, recorded clips from the database
are blended and modified to ensure a smooth transition.

1 In the current configuration this segmentation is done manually; however,
automatic segmentation methods also exist [24].

For selecting compatible animation segments, we define
a distance criterion as a weighted distance between PC
vectors [10]:

dp,q =
√
√
√
√

N
∑

i=1

wi · (pi −qi)2 . (1)

The weight values wi are chosen as the eigenvalues found
during the PCA. Because the PC space is linear, calcu-
lating this distance can be done as fast (or faster) as the
previously mentioned joint-based methods. However, the
use of the PC space has another property that will allow
for a significant speedup of the distance calculation: the
dimension reduction. Since higher PCs represent lesser
occurring body postures, they are mostly 0 and therefore
they do not contribute significantly to the distance factor.
This means that by varying the amount of PCs used, we
can look for a reasonable trade-off between speedup and
precision.

Once the transitions between the different postures
have been calculated, the creation of new animations con-
sists of simply requesting the correct key-frame from
the database during the animation. This means that the
database can be used to control many different virtual hu-
mans at the same time. For each virtual human, a different
motion program is defined that describes the sequence of
animation segments that are to be played. This motion
program does not contain any real motion data but only
references to transitions in the database. Therefore it can
be constructed and updated on-the-fly.

4.3.2 Continuous small posture variations

Apart from the balance shifting postures, small variations
in posture also greatly improve the realism of animations.
Due to factors such as breathing, small muscle contrac-
tions, etc., humans can never maintain the exact same
posture. As a basis for the synthesis of these small pos-
ture variations, we use the principal component represen-
tation for each key-frame. Since the variations apply to the
principal components and not directly to the joint param-
eters, this method generates randomised variations that
still take into account the dependencies between joints.
Additionally, because the PCs represent dependencies be-
tween variables in the data, the PCs are variables that have
maximum independency. As such, we can treat them sep-
arately for generating posture variations. The variations
can be generated either by applying a Perlin noise func-
tion [28] on the PCs or by applying the method that is
described in our previous work [10].

4.4 Automatic dependent joint motion synthesis

As discussed in Sect. 2, body gesture synthesis systems
often generate gestures that are defined as specific arm

Presence and interaction in mixed reality environments 323

movements coming from a more conceptual representa-
tion of gesture. Examples are: “raise left arm”, “point at an
object”, and so on. Translating such higher level specifica-
tions of gestures into animations often results in motions
that look mechanic, since the motions are only defined
for a few joints, whereas in motion captured animations,
each joint motion also has an influence on other joints.
For example, by moving the head from left to right, some
shoulder and spine movements normally occur as well.
However, motion captured animations generally do not
provide for the flexibility that is required by gesture syn-
thesis systems.

Such systems would greatly benefit from a method
that can automatically and in real-time calculate believ-
able movements for the joints that are dependent on the
gesture. We will present a method that uses the principal
components to create more natural looking motions, in
real-time [9].

The principal components are ordered in such a way
that lower PC indices indicate high occurrence in the data
and higher PC indices indicate low occurrence in the data.
This allows for example to compress animations by only
retaining the lower PC indices. Animations that are close
to the ones that are in the database that was used for the

Fig. 4. (Absolute) PC values of a posture extracted from a motion
captured animation sequence

Fig. 5. (Absolute) PC values of a posture modelled by hand for
a few joints

PCA will have higher PC indices that are mostly zero
(see Fig. 4) for an example. An animation that is very dif-
ferent from what is in the database, will have more noise in
the higher PC indices to compensate for the difference (see
Fig. 5). If one assumes that the database that is used for
the PCA is representative for general motions that are ex-
pressed by humans during communication, then the higher
PC indices represent the part of the animation that is “un-
natural” (or, not frequently occurring in the animation
database). When we remove these higher PC indices or ap-
ply a scaling filter (such as the one displayed in Fig. 6),
this generates an error in the final animation. However,
since the scaling filter removes the unnatural part of the
animation, the result is a motion that actually contains the
movements of dependent joints. By varying the PC index
where the scaling filter starts, one can define how close the
resulting animation should be to the original key-framed
animation.

To calculate the motions of dependent joints, only
a scaling function has to be applied. Therefore this method

Fig. 6. An example of a scaling filter that can be applied to the PC
vector representation of a posture

Fig. 7. Some examples of key frame postures designed for a few
joints and the same postures after application of the PC scaling
filter

324 A. Egges et al.

is very well-suited for real-time applications. A disadvan-
tage is that when applying the scaling function onto the
global PC vectors, translation problems can occur. In order
to eliminate these translation artefacts, we have also per-
formed a PCA on the upper body joints only (which does
not contain the root joint translation). The scaling filter is
then only applied on the upper body PC vector. This so-
lution works very well since in our case, the dependent
joint movements are calculated for upper body gestures
only, whereas the rest of the body is animated using the
idle motion engine. Figure 7 shows some examples of ori-
ginal frames versus frames where the PC scaling filter was
applied.

4.5 Animation service

The animation service is built around the blending en-
gine, and it contains specific implementations for con-
trolling both face and body animation. The service can
blend several different types of motions, including real-
time idle motions and key-frame animations. For each vir-
tual human in the scene, an XML file contains the actions
that are available to the human, as well as the param-
eters for blending these different animations. Internally,
a vhdAnimationProperty is defined for each virtual human,
which contains a blending schedule, and some options,
such as a choice whether or not facial and/or body anima-
tion should be played or if the translation/orientation of
the virtual human was defined on the global (world) coor-
dinate system or local coordinate system. The service also
includes an integrated player, that plays and blends sched-
uled animations in a separate thread for all the humans in
the scene.

The animation service is controlled either through
a GUI, or through a Python script. The use of Python
scripts allows for a complete control over many differ-
ent parts of the environment, such as audio playing in
synchrony with animations or camera motions. The fol-
lowing example shows a simple script that controls the
body motions of two characters and activates several
audio signals as well (crowd cheering, and prerecorded
speech signals). The script activates prerecorded actions
(such as “creon_wrk”) and actions linked with the mo-
tion synthesizer (such as “creon_idle”). These different
actions are blended on-the-fly and played on the char-
acters. Both sound and body motions are played in syn-
chrony.

global variables
Antigone="Antigone_vhd_occ_rec"
Creon="Creon_vhd_occ_rec"
cam01Creon_crowd="root.Cam01Creon_crowd"

start the sound
sndService.sndmpPlayMedia(cam01Creon_crowd)

no facial animation
animService.initPlayerScope_face(False)

start the player
animService.start_player()
animService.activateAction_body
(Antigone,"antigone_idle")
creon monologue
animService.activateAction_body(Creon,
"creon_wrk")
voiceService.activateAction(Creon,
"CreonSpeech.Cam01CreonP1",1.0)
animService
.waitUntilActionFinished_body(Creon,
"creon_wrk",-4.0)
animService.activateAction_body(Creon,
"creon_idle")

Antigone answers to Creon
animService.cutOffAction_body(Antigone,
"antigone_idle",3.0)
animService.activateAction_body(Antigone,
"antigone_wrk")
voiceService.activateAction(Antigone,
"AntigoneSpeech.Cam01CreonP3",1.0)
animService
.waitUntilActionFinished_body(Antigone,
"antigone_wrk",-4.0)
animService.activateAction_body(Antigone,
"antigone_idle")

sndService.sndmpStopMedia(cam01Creon_crowd)

5 Interactive virtual humans

In many interactive virtual humans systems, a dialogue
manager generates responses that define the desired
speech and face/body movement of the character on
a high level. Our system produces output phrases that are
tagged with XML. These tags indicate where a gesture
should start and end. There are many different represen-
tation languages for multi-modal content, for example the
Rich Representation Language (RRL)[21] or the Virtual
Human Mark-up Language (VHML)[40]. In this section,
we will give an example of how such a representation lan-
guage can be used to control gesture sequences in our
system. For testing purposes, we have defined a simple
tag structure that allows for the synchronized playback of
speech and non-verbal behaviour. An example of a tagged
sentence looks like this:

<begin_gesture id="g1" anim="shakehead"/>
Unfortunately, I have
<begin_gesture id="g2" anim="raiseshoulders"/>
no idea<end_gesture id="g2"/> what you are
talking about.<end_gesture id="g1"/>

Within each gesture tag, an animation ID is provided.
When the gesture animation is created, these animations
are loaded from a database of gestures – also called a Ges-
ticon [21] – and they are blended using the previously
described blending engine. The timing information is ob-
tained from the text-to-speech system. Although this is
a very rudimentary system, we believe that this way of

Presence and interaction in mixed reality environments 325

Fig. 8a–d. Coarticulation base function
with different α values: a α = 0 b α = 2
c α = 5 and d α = 10

generating gestures can easily be replaced with another,
more elaborate gesture synthesizer, since the animation
system is completely independent of what happens on
the gesture construction level. The animation system only
activates actions at given times with specified animation
lengths and blending parameters. Although our current
testing system only generates gestures in synchrony with
speech, this is not a limitation of the animation system.
The animation system is capable of handling any set of
actions at any time, even without speech.

5.1 Creating facial animation

In this section, we will shortly explain the techniques used
to create the facial animation from the output text and
speech. The output text is first converted into a speech sig-
nal by the text-to-speech engine. At the basic level, speech
consists of different phonemes. These phonemes can be
used to generate the accompanying face motions, since
every phoneme corresponds to a different lip position. The
lip positions related to the phonemes are called visemes.
There are not as many visemes as phonemes, because
some phonemes revert to the same mouth position. For ex-
ample, the Microsoft Speech SDK defines 49 phonemes,
but only 21 different visemes.

For each viseme, the mouth position is designed using
the MPEG-4 Face Animation Parameters (FAPs). Con-
structing the facial motion is achieved by sequencing the
different mouth position, taking into account the speech
timing obtained from the TTS engine. An important issue
to take into consideration when creating facial speech is
coarticulation, or the overlapping of phonemes/visemes.
Generally, coarticulation is handled by defining a dom-
inance function for each viseme. For example, Cohen
and Massaro [7] use this technique and they define an
exponential dominance function. Similarly, we use the
following base function to construct the coarticulation
curve:

f(x) = e−αx − x · e−α (2)

where 0 < α < ∞. The parameter α governs the shape of
the curve. Figure 8 shows the curve for different values
of α. Using this base function, the final coarticulation

dominance function is defined as follows:

Cα(x) = e−α2|x−0.5| −2|x −0.5| · e−α. (3)

Two different examples of the Cα(x) dominance function
are given in Fig. 9. For each viseme, the value of the α
parameter can be chosen. Also, the weight of each func-
tion, as well as its spread (overlap) can be defined for each
viseme.

Fig. 9a,b. Example of complete coarticulation functions with dif-
ferent α parameters: a α = 2 and b α = 5

Because of the generic structure of the MIRAnim en-
gine (see Sect. 4), it is a simple task to create the facial
animation from the viseme timing information. We define
a blending action for each viseme, where the dominance
function acts as the weight curve. The blending schedule
containing the different blending actions will then auto-
matically perform the viseme blending. Because we use
direct FAP blending, our approach also handles tongue
movements (see Fig. 10), as opposed to earlier work by
Kshirsagar [22], who used a principal component repre-
sentation of recorded face motions that did not include
tongue movements.

Next to the facial speech motion, are also any facial
gestures that need to be added, defined as tags in the text.
An example of an eyebrow raising facial gesture could be
defined as follows:

Are you <begin_gesture id="g1"
anim="raise_eyebrows"/>really sure about that?
<end_gesture id="g1"/>

326 A. Egges et al.

Fig. 10. Facial animation for hello that takes tongue movement into
account

Finally, a face blinking generator is added for in-
creased realism. Each face animation track has different
weights for the FAPs. The speech animation has a higher
weight on the mouth area, whereas the face expression
weights are higher on the eye and eyebrow area. By
blending the different facial animation tracks, the final
animation is obtained.

5.2 Creating body animation

Very similar to facial animation synthesis, the body ani-
mation is also partly generated from the tagged text. The
same definition is employed for the body animation tags.
An example of a body animation in combination with
speech is given as follows:
<begin_gesture id="g1" anim="hello"/>Hello,
<end_gesture id="g1"/> how are you doing today?

Similar to the facial animation synthesis, the TTS tim-
ing information is used to plan the length of the gesture
motions. A blending fade-in and fade-out is applied on
the gesture motions in order to avoid unnatural transi-
tions. Also, the automatic dependent joint motion filter
explained in Sect. 4.4 is applied on the gesture signal. The
filter is applied on the upper body and starts fading out at
PC index 20 with a mute for PCs > 30 (of a total of 48).

Next to the gesture motions, the idle motion engine is
running continuously, therefore providing the IVH with
continuous idle motions. In order to obtain the final ani-
mation, the resulting idle motions and the gesture motions
with dependent joint movements are blended on-the-fly by
the MIRAnim engine. Figure 11 shows some examples of
full body postures obtained using our approach.

5.3 The interaction service

As a higher level control mechanism on top of the anima-
tion service, we have developed the interaction service.
This service mainly handles the spoken interaction be-
tween a user and any virtual human in the scene. The core
of the interaction service is a dialogue manager [8], that
responds to the user according to a predefined script that
follows a similar approach as Alice [1]. In order to pro-

Fig. 11. Integration of gesture animations, dependent joint motion
synthesis and idle motion synthesis

vide for a more natural interaction, we have integrated
the Microsoft Speech SDK (SAPI5.1) [23] into our MR
framework, so that automatic speech recognition (ASR) as
well as text-to-speech (TTS) is available.

From the output text generated by the dialogue system,
the corresponding face and body motions are generated
according to the approach explained in the previous sec-
tion. Because the same service is used for both scripted
and interactive animation, it is possible to first play a script
as shown in the previous section, and then dynamically
switch to animation controlled by the interaction service.
Since the animation playing itself is continuously handled
by the animation service, the character animation is not
disrupted when this switch is made.

6 Our dynamic precomputed radiance transfer
algorithm

Our main contribution in precomputed radiance trans-
fer (PRT) methods is in the identification of the elem-
ents of an illumination model that allows for precomput-
ing the radiance response of a modelled human surface
and dynamically transforms this transfer in the local de-
formed frame. Previous basic research efforts from the
areas of computational physics/chemistry in the rotation
of atomic orbitals has uncovered a wealth of tools and
identified spherical harmonics (SH) [16] as the most ap-
propriate basis for approximating spherical functions in
the sphere. Finally in the area of AR we extend cur-
rent image-based lighting techniques, which produced the
most accurate and seamless, yet offline augmentations
and substitute the costly global illumination radiosity part
with our real-time dynamic precomputed radiance transfer
(dPRT) model.

Presence and interaction in mixed reality environments 327

6.1 PRT for skinned virtual characters

In standard PRT, for diffuse objects, self-transfer at some
point can be represented as a transfer vector, which is dot-
ted with the light vector to reproduce the diffuse shader at
that point. We aim to prove that it is possible to rotate the
SH projected light to the rest frame for each vertex, using
SH and a fast rotation algorithm allowing it to be applied
for any order of SH. A schematic view of our extended
PRT method, termed dynamic PRT (dPRT) is illustrated in
Fig. 12. We illustrate the various different mesh segments
that our VH mesh consists of, as a result of the Hanim [13]
specification; but it could be a similar multi-segmented
topology if multiple materials, textures, shaders were to
be specified in different parts of the VH body. The dis-
tant natural illumination is captured via a mirrored ball
and processed in the input form of a light probe (angu-
lar environment map), as shown in the background of the
Fig. 12. Then for each vertex in the mesh, a new dPRT
DSM transfer vector is preprocessed that encodes in SH
coefficients the response of that vertex to the environ-
ment and how the incident radiance from each direction
around the hemisphere of directions is transformed to exit
radiance. A more thorough explanation on dPRT and the
real-time response for skeleton-based deformable charac-
ters is illustrated in Sect. 6.1.1.

Since the main focus of our physically principled
global illumination model is the multi-material, multi-
segmented virtual characters, we have chosen the H-
Anim [13]. As the topology (level of articulation) is well-

Fig. 12. Schematic view our dPRT illumination model

defined we have categorized the various regions of the
human body according to the anticipated behaviour of
light scattering. Thus the categorization of the virtual
character has been at two different levels, the posture de-
pendent (PD) and posture independent (PI) segments. PI
are the segments which exhibit low-frequency light scat-
tering and when self-shadowing is calculated for these
regions at the skin binding posture it can be assumed
as realistic since these polygons when deformed are not
affecting significantly their neighbouring vertices. Thus
PI segments are identified as: Skull, T1-L/R_Clavicle,
Sacrum, Pelvis, L/R_Thigh and L/R_Hand. Since such PI
segments are identified, the remaining H-Anim segments
are characterized as PD and a high-frequency shadowing
term is calculated as shown in the following section, e.g.
shadow of an arm on trunk.

6.1.1 Diffuse shadowed merged (DSM) transfer

DSM transfer constitutes our new transfer function, aimed
to solve the PRT shortcoming of applicability to multi-
segmented mesh hierarchies like those of articulated vir-
tual characters, when self-shadowing and correct lighting
rotation is desired during deformation and animation of
individual body segments. Specifically three main cate-
gories of problems arise from the application of previous
diffuse shadowed PRT, which we believe is one of the rea-
sons that it has not yet enjoyed widespread acceptance in
the area of real-time character simulations, despite the fact
that PRT methods provide the most realistic real-time re-
sults to date [17]. PRT methods have not yet appeared in
augmented reality simulations, where the comparison with
reality is more striking and mandatory due to the appear-
ance of the real video image as the background of virtual
augmentations. Thus, in order to enhance the consistency
of illumination of the real scene and the virtual characters,
we have chosen to extend the precomputed radiance trans-
fer (PRT) illumination model, in order that it is applicable
to the multi-segmented, deformable and animatable hier-
archies that the MIRAnim system is controlling. The main
issue that we resolved was to allow for the multiple seg-
ments that the virtual skeleton consists of (due to different
joints, segments, cloth, hair meshes) to respond to a high
dynamic range area light that can be captured from the real
scene, similar to the method described in [36]. Thus, start-
ing from the rendering equation approximation in diffuse
PRT methods [17]:

L0(x) = Kd

π

∫

U

Ls(l)T DSMdU (4)

where

T DSM = V(x, l) ·max(n · l, 0). (5)

The evaluation of the above PRT equation has been
shown [36] that it can be achieved by projecting both

328 A. Egges et al.

incident radiance from the high dynamic range environ-
ment map and the product of the visibility function V
with the BRDF and due to orthonormality of spherical
harmonics (SH), the integral of the SH projected func-
tions simplifies to a dot product of their coefficients. At
this point we depart from standard PRT as we allow
for our dynamic PRT algorithm to be able to calculate
precomputed radiance transfer for multiple-segments of
articulated, deformable meshes. In this case the previ-
ously shown SH light rotations to local space [36] are
now more efficiently performed in global eye space. In
the special case of SH rotation, previous algorithms were
based on precalculated SH rotation matrix coefficients,
that when above order two, would exhibit exponentially
increasing computational expense. In our case we utilize
an algorithm that is being used in computational chem-
istry [16], where SH are heavily being used for calculation
on molecule orbitals, as the origin of the SH section above
denotes.

Therefore, we start by accessing the multiple hierar-
chies of polygonal meshes that constitute our final de-
formable virtual character and rearranging them in the
form of unique vertex, normal and color indices. Next
we process each individual, unique vertex, once via its
vertex, color and normal indices and calculate a transfer
function for each vertex. A transfer function is a transport
linear operator that includes half-cosine, visibility, self-
shadowing and interreflection effects and describes the
object’s shaded response to the environment, mapping the
incoming to outgoing radiance. That expensive transfer
function is precomputed in an offline stage and stored as
vectors per vertex for our Lambertian surfaces. The in-
cident radiance however is not precomputed but sampled
dynamically from a high dynamic range environment map.
At run-time, this incident radiance is projected to spherical
harmonics. For diffuse objects, the precomputed transfer
vector at each vertex is dotted with lighting coefficients
(input luminance) for self-scattered shading, which gives
the approximated lighting at that point.

In our approach we implemented three different trans-
fer functions:

– Diffuse unshadowed (DU) transfer, same as in Ra-
mamoorthi and Hanrahan [32]

– Diffuse shadowed (DS) transfer, same as in Sloan et
al. [36]

– Our new diffuse shadowed merged (DSM) transfer
function for multi-segmented, articulated deformable
meshes

We have investigated that previous transfers of DU and DS
are not sufficient or applicable for multi-segmented, de-
formable VHs and thus we advocate the new extension of
DSM transfer for our dPRT approach.

For the case of non-rigidly deformable objects, a sig-
nificant performance issue has been identified when ro-

tating the area light to the rest frame for every vertex,
ensuring the object correctly responds to the environment
lighting. Such a response to the lighting environment con-
tains two sub-problems:

– Pure SH coefficients rotation. Most current methods
have been based on the direct SH rotation matrix with
its coefficients derived from explicit formulas based
on the original matrix in Euler angles form. Such an
approach is quite costly as it involves (2l +1)(2l +1)
sparse matrix multiplications and we demonstrate the
working solution of employing a recursive solution
based on the algorithm of Ivanic et al. [16]. It has to be
noted that this algorithm has been suggested before in
the bibliography but not verified as a possible solution
to the problem above.

– In order to have a correct response of the object to the
lighting environment, the visibility function in the ren-
dering equation integral has to be evaluated for every
vertex in real-time. This is a separate active field of
research in the rendering community in terms of vis-
ibility determination and no clear and robust solution
for real-time has been proposed so far.

In Fig. 13 we illustrate the process of the DSM trans-
fer applied during deformation of a virtual human and how
the segments respond correctly to the low-frequency light-
ing environment by applying the Ivanic [16] algorithm for
spherical harmonics coefficient rotation.

Fig. 13. Our dPRT DSM transfer for deformable VH and correct,
per-frame response to environment, low-frequency area light

Presence and interaction in mixed reality environments 329

6.1.2 Our PRT ray tracer and grid acceleration structure

A very efficient and fast acceleration structure for our
multi-segmented articulated characters is the uniform grid.
We quickly and easily initialize it with the segment geom-
etry during the preprocessing step and employ it in the
ray-casting process for the estimation of hits and the dif-
fuse shadowed transfer function via a simple computation
that determines the sequence of voxels, which a given ray
traverses. The uniform grid accelerator divides the axis-
aligned spatial region of our articulated multi-segmented
mesh hierarchy into equal-sized cells, called voxels, where
each voxel stores a reference to the triangles that overlap
it. Given a ray, the grid traversal steps through each of
the voxels that the ray passes, checking for possible inter-
sections with only the triangles in each voxel. A simple,
fast and stable grid traversal algorithm that we employed
is the Amanatides–Woo traversal [2]. However, other non-
uniform grid acceleration algorithms (such as octrees)
could also be employed, with the expense of additional
complexity for a well-known, fixed topology as the VH.

6.1.3 Group proxy mesh for dPRT

In order to allow for correct PRT self-shadowing for multi-
segmented, multi-material skinned VHs we aim to de-
fine the group [15] M′ which encompasses the set of dis-
tinct group elements S1, S2, . . . , Si that correspond to the
individual mesh segments as defined by their geometry
and global joint transformation matrix. This group proxy
mesh cannot be assumed only as the original unsegmented
mesh as it can encompass other VH elements that have
been added later in the modelling phase. Furthermore, our
methodology can be assumed to be applicable to both seg-
mented virtual characters, but also to a wider range of
complex real-time deformable models (with different ma-
terials, shader, clothes, hair, etc.), for which modelling
tools create multiple surfaces (e.g. cloth surface, skin sur-
face, etc.). However, due to all these materials and seg-
ments, artefacts often arise due to ray-casting hits between
boundaries. Thus, extra relaxation criteria have to be em-
ployed. In our dPRT algorithm, we define a new visibility
function V(x, l), which checks visibility of the current ver-
tex position against not only the current geometric mesh
that resides but against a proxy mesh M0:

M′ =
n

∑

i=0

Si (6)

where Si are all the mesh segments of the skeleton hier-
archy of the virtual character. However, not all segments
are desired to be able to cast or receive self-shadowing
and other GI effects. Thus, the construction of the proxy
mesh M0 is based according to the “type” of the mesh seg-
ment, tagged as receiver or occluder during the artist mesh
preparation loop:

– Receiver can receive but cannot cast self-shadowing to
other objects of the proxy mesh.

– Occluder can cast but cannot receive self-shadowing
from other objects of the proxy mesh.

This is a disjoint set, i.e. an element cannot partici-
pate in both groups. If a receiver segment is found, it
is excluded from the proxy mesh, thus being transparent
to ray-casting hits. If an occluder segment is found, then
this segment is excluded from further dPRT processing
and calculation proceeds to next segment. However, this
segment is part of the proxy mesh and candidate for ray-
casting hits by other segments. Figure 4 illustrates the VH
result of DSM with and without the receiver-occluder spe-
cifications. The main artefacts appear between the skull
and hair segments, which is a typical case of VH arrange-
ment, as separate meshes due to separate creation pro-
cesses and materials involved.

However, with the application of our receiver-oc-
cluder set of elements, this artefact is avoided, as shown
in Fig. 14.

We employ a voxel ray tracer and uniform grid ac-
celeration structure for offline ray-tracing for PRT self-
shadowing tests. This uniform grid is being initialized in
a first pass with this proxy mesh while tested in a sec-
ond pass, similarly as before with rays originating from
every vertex of every segment in the skeleton hierarchy.
The main difference is that in the simple diffuse shadowed
transfer from Sloan et al. [36], the ray tracer was initial-
ized containing only the parent mesh of the current vertex
x for which rays arriving from directions l where tested.
This simple and efficient scheme of our proxy mesh re-
sults in our diffuse shadowed merged transfer, which al-
lowed us to correct for global illumination effects such as

Fig. 14a–d. Image without (a, b) and with (c, d) receiver-occluder
set processing for dPRT

330 A. Egges et al.

Fig. 15a,b. Tensor distance ray-hit relaxation criteria for DSM
transfer and dPRT. Images shown with (a) and without (b) tensor
distance threshold applied

self-shadowing and successful application of diffuse PRT
methods for multi-mesh virtual humans.

As shown in Fig. 15, in the case of multi-segmented,
multi-material skeleton hierarchies, even with our dif-
fuse shadowed merged transfer, incorrect self-shadowing
is performed due to the proximity of the different mesh
segments. It is usually manifested as wrong dark coloring
in the vertices in the boundary edges of different skele-
ton segments, as these segments are modelled adjacent in
the skin bind pose, but as they are separate segments, still
maintain a distance between them, not visible to the eye
but large enough for ray-casting. Thus one relaxation cri-
teria that we have been applying with positive results is
the checking for the tensor distance between the ray ori-
gin and the ray-triangle intersection point, against a value
e corresponding to the minimum distance between the dif-
ferent mesh segments, e.g. for the H-Anim [13] structure
this corresponds to 1.71×10−4 m. Hence all false hit-
point candidates returned by the ray tracer below this e
value correspond to hits between the segment boundaries
and thus ignored.

Another issue for the shadow feeler visibility rays is
that polygons adjacent to the current vertex ray origin are
going to be coplanar to many rays originating from that
vertex. Thus any ray tested against a polygon that included

Fig. 16a–c. Standard Phong-
based shadowing (a) in com-
parison with our PRT method
with diffuse shadowed merged
transfer (b, c)

the ray origin will at best return a hit at that vertex origin.
This also leads to incorrect shadowing so it is important
that we exclude the polygons that contain our ray origin,
from the M′ proxy mesh. Thus, in the construction of M′
we create full face, edge, vertex information adjacency in
order to account for this special case. This second criteria
has been already known to the ray-tracing community and
similar approaches have been discussed.

Since the final shading information is stored per ver-
tex in the H-Anim virtual human hierarchy, it is inde-
pendent of the underlying animation approach. Therefore,
the MIRAnim system is easily integrated within our MR
framework to animate the skeleton of the virtual humans
with shading according to the blending schedule that is
defined (see Sect. 4).

7 Results

7.1 VR scenario

For the VR case study, we aimed in the reenacting of
ancient theatrical plays in reconstructed ancient theatres.
Specifically we were involved in the reconstruction of
the Hellenistic ancient Aspendos theatre in Minor Asia,
Turkey and the simulation of virtual actors of that histori-
cal period, reenacting parts of ancient plays. Key elements
in this effort have been (1) the idle motions of virtual ac-
tors during different dialogues, (2) the ability of the user
to interact with them after their performance as well as (3)
their multi-segmented, area light-based PRT-based render-
ing. The hardware platform involved has been a desktop
P4 3.2 Ghz, with an NVIDIA Quadro 3450 graphics card.
The resulting performance was approximately 20 fps, with
two humans comprising of 30 000 polygons. In Fig. 16 an
example of this case study is illustrated, where at the far
left a standard Phong-based model is shown compared to
our PRT method with diffuse shadowed merged transfer.

7.2 AR scenario

For the AR case study we have extended the system de-
scribed in [26] by allowing for interaction with a virtual
human in MR. This aims to allow visitors of ancient Pom-
peii to be equipped with a mobile AR guide and expe-
rience real-time digital narratives of ancient virtual life

Presence and interaction in mixed reality environments 331

Fig. 17. Real human and interactive virtual human in a mixed real-
ity

coming to life within their natural real Pompeian envi-
ronment. The two crucial components for realizing these
AR experiences are (1) the feature-based camera tracker
and (2) the MR framework for virtual life simulation and
AR registration. The work presented in this paper provides
three new components in the previous framework: (1) pro-
cedural animation, (2) interaction and (3) MR rendering
based on PRT methods. As our original storytelling ex-
perience has been intended to revive the life in ancient
Pompeii, Italy in an AR simulation manner, a real-size
paper maquette of the walls of the Thermopolion of Ve-
tutius Placidus has been recreated in the lab as depicted
in Fig. 17. The employed hardware platform was based
on a P4 3.0 GHz mobile workstation, with a NVIDIA
Geforce5600Go graphics card and Unibrain firewire web

camera attached on an I-Glasses HMD. The resulting per-
formance was approximately 30 fps for 12 000 polygons,
depending on the performance of the markerless feature-
based camera tracker.

8 Conclusion

In this paper, we have presented a mixed reality frame-
work for interactive virtual humans. We have presented
a flexible interaction and animation engine, in combina-
tion with a robust real-time rendering engine that uses
a global illumination for real-time PRT extension for vir-
tual humans. The animation engine allows to switch dy-
namically between interaction and scenario playing, with-
out interrupting the animation cycle. All components have
been integrated as plug-ins in a modern framework, and
both VR and AR applications exhibit very suitable per-
formance for real-time MR applications. Finally we illus-
trate that the amalgam of animation, rendering and inter-
action with virtual characters, particularly in real scenes,
could pave the way for a new suite of applications in aug-
mented reality and a wider adoption of this technology
that still lacks a clear application domain.

As with any MR application, many features can still
be added to increase the realism and the presence of the
users in the scene and that will be the focus of our continu-
ing work in this area. First, our virtual human animation
system currently does not consider interaction with ob-
jects in the MR scene. This would include picking up
virtual objects, or perhaps an integration with a haptic de-
vice in order to interact with objects from the real world.
Also, a look-at behaviour would be an interesting exten-
sion, which would drastically improve the sense that the
virtual human is aware of the user in the scene. Finally, we
are currently investigating the inclusion of more elaborate
real-time simulation and rendering of real-time virtual hair
and clothing in the MR scene, while still ensuring that the
system can operate at an acceptable framerate on a com-
modity desktop PC.

Acknowledgement This research has been developed at MIRA-
Lab–University of Geneva and has been supported through the EU
funded projects ERATO (INCOMED-ICFP502A3PR03) and HU-
MAINE (IST-507422).

References
1. Alice chat bot: http://www.alicebot.org/.

Cited November (2005)
2. Amanatides, J., Woo, A.: A fast voxel

traversal algorithm for ray tracing. In:
G. Marechal (ed.) Proceedings of
Eurographics ’87, pp. 3–10. Elsevier,
Amsterdam (1987)

3. Azuma, R., Baillot, Y., Behringer, R.,
Feiner, S., Julier, S., MacIntyre, B.: Recent
advances in augmented reality. IEEE
Comput. Graph. Appl. 21(6), 34–47 (2001)

4. Balcisoy, S.S.: Analysis and development
of interaction techniques between real and
synthetic worlds. Dissertation, EPFL (2001)

5. Cassell, J., Vilhjálmsson, H., Bickmore, T.:
BEAT: the Behavior Expression Animation
Toolkit. In: Proceedings of
SIGGRAPH ’01, pp. 477–486 (2001)

6. Cavazza, M., Martin, O., Charles, F.,
Mead, S., Marichal, X.: Users acting in
mixed reality interactive storytelling. In:

332 A. Egges et al.

Proceedings of 2nd International
Conference on Virtual Storytelling,
pp. 189–197 (2003)

7. Cohen, M.M., Massaro, D.W.: Modeling
coarticulation in synthetic visual speech. In:
N. Magnenat-Thalmann, D. Thalmann (eds.)
Models and Techniques in Computer
Animation, pp. 139–156. Springer, Berlin
Heidelberg New York (1993)

8. Egges, A., Kshirsagar, S.,
Magnenat-Thalmann, N.: Generic
personality and emotion simulation for
conversational agents. Comput. Anim. Virt.
Worlds 15(1), 1–13 (2004)

9. Egges, A., Magnenat-Thalmann, N.:
Emotional communicative body animation
for multiple characters. In: Proceedings of
the 1st International Workshop on Crowd
Simulation (V-Crowds), pp. 31–40 (2005)

10. Egges, A., Molet, T.,
Magnenat-Thalmann, N.: Personalised
real-time idle motion synthesis. In: Pacific
Graphics 2004, pp. 121–130 (2004)

11. Garchery, S.: Animation faciale temps-reel
multi plates-formes. Dissertation,
MIRALab, University of Geneva (2004)

12. Grassia, F.S.: Practical parameterization of
rotations using the exponential map. J.
Graph. Tools 3(3), 29–48 (1998)

13. H-Anim Humanoid Animation Working
Group: Specification for a standard
humanoid. http://www.h-anim.org/. Cited
May (2006)

14. Hartmann, B., Mancini, M., Pelachaud, C.:
Formational parameters and adaptive
prototype instantiation for MPEG-4
compliant gesture synthesis. In: Computer
Animation 2002, pp. 111–119 (2002)

15. Inui, T., Tanabe, Y., Onodera, Y.: Group
Theory and its Applications in Physics.
Springer, Berlin Heidelberg New York
(1990)

16. Ivanic, J., Ruedenberg, K.: Additions and
corrections: rotation matrices for real
spherical harmonics. J. Phys. Chem.
102(45), 9099–9100 (1998)

17. Kautz, J., Lehtinen, J., Sloan, P.P.:
Precomputed radiance transfer: theory and
practise. In: ACM SIGGRAPH ’05 Course
Notes (2005)

18. Kopp, S., Wachsmuth, I.: Synthesizing
multimodal utterances for conversational
agents. Comput. Anim. Virt. Worlds 15(1),
39–52 (2004)

19. Kovar, L., Gleicher, M.: Flexible automatic
motion blending with registration curves.
In: Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 214–224 (2003)

20. Kovar, L., Gleicher, M., Pighin, F.: Motion
graphs. In: Proceedings of SIGGRAPH ’02,
pp. 473–482 (2002)

21. Krenn, B., Pirker, H.: Defining the gesticon:
language and gesture coordination for
interacting embodied agents. In:
Proceedings of the AISB-2004 Symposium
on Language, Speech and Gesture for
Expressive Characters, pp. 107–115.
University of Leeds, UK (2004)

22. Kshirsagar, S., Molet, T.,
Magnenat-Thalmann, N.: Principal
components of expressive speech
animation. In: Computer Graphics
International 2001, pp. 38–44. IEEE Press,
Washington, DC (2001)

23. Microsoft Speech SDK version 5.1
(SAPI5.1):
http://www.microsoft.com/speech/

download/sdk51/. Cited May (2006)
24. Mueller, M., Roeder, T., Clausen, M.:

Efficient content-based retrieval of motion
capture data. In: Proceedings SIGGRAPH
’05, pp. 677–685 (2005)

25. Openscenegraph:
http://www.openscenegraph.org/. Cited
May (2006)

26. Papagiannakis, G., Foni, A.,
Magnenat-Thalmann, N.: Practical
precomputed radiance transfer for mixed
reality. In: Proceedings of Virtual Systems
and Multimedia 2005, pp. 189–199.
VSMM Society, Yanagido, Japan
(2005)

27. Papagiannakis, G., Kim, H.,
Magnenat-Thalmann, N.: Believability and
presence in mobile mixed reality
environments. In: IEEE VR2005 Workshop
on Virtuality Structures (2005)

28. Perlin, K.: An image synthesizer. In:
Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive
Techniques, pp. 287–296. ACM, Boston
(1985)

29. Perlin, K.: Real time responsive animation
with personality. IEEE Trans. Visual.
Comput. Graph. 1(1), 5–15 (1995)

30. Poggi, I., Pelachaud, C., Rosis, F.D.,
Carofiglio, V., Carolis, B.D.: Greta:
a believable embodied conversational agent.
In: O. Stock, M. Zancanaro (eds.)
Multimodal Intelligent Information
Presentation, vol. 27. Springer, Berlin
Heidelberg New York (2005)

31. Ponder, M., Papagiannakis, G., Molet, T.,
Magnenat-Thalmann, N., Thalmann, D.:
Vhd++ development framework: towards
extendible, component based VR/AR
simulation engine featuring advanced
virtual character technologies. In:
Proceedings of Computer Graphics
International (CGI), pp. 96–104. IEEE
Press, Washington, DC (2003)

32. Ramamoorthi, R., Hanrahan, P.: An efficient
representation for irradiance environment

maps. In: Proceedings of SIGGRAPH ’01.
ACM, Boston (2001)

33. Ren, Z., Wang, R., Snyder, J., Zhou, K.,
Liu, X., Sun, B., Sloan, P.P., Bao, H.,
Peng, Q., Guo, B.: Real-time soft shadows
in dynamic scenes using spherical harmonic
exponentiation. In: Prococeedings of ACM
SIGGRAPH ’06, pp. 977–986 (2006)

34. Rose, C., Cohen, M., Bodenheimer, B.:
Verbs and adverbs: multidimensional
motion interpolation. IEEE Comput. Graph.
Appl. 18(5), 32–48 (1998)

35. Rose, C., Guenter, B., Bodenheimer, B.,
Cohen, M.: Efficient generation of motion
transitions using spacetime constraints. In:
Proceedings of ACM SIGGRAPH ’96,
Annual Conference Series, pp. 147–154
(1996)

36. Sloan, P.P., Kautz, J., Snyder, J.:
Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency
lighting environments. In: Proceedings of
ACM SIGGRAPH ’02, pp. 527–536. ACM,
Boston (2002)

37. Tamura, H.: Mixed reality: future dreams
seen at the border between real and virtual
worlds. IEEE Comput. Graph. Appl. 21(6),
64–70 (2001)

38. Thomas, B., Close, B., Donoghue, J.,
Squires, J., De Bondi, P., Morris, M.,
Piekarski, W.: Arquake: an outdoor/indoor
augmented reality first person application.
In: Proceedings of Symposium on Wearable
Computers, pp. 139–146 (2000)

39. Unuma, M., Anjyo, K., Tekeuchi, T.:
Fourier principles for emotion-based human
figure animation. In: Proceedings of ACM
SIGGRAPH ’95, Annual Conference
Series, pp. 91–96 (1995)

40. Virtual Human Markup Language
(vhml):http://www.vhml.org/. Cited
November (2005)

41. Vacchetti, L., Lepetit, V., Ponder, M.,
Papagiannakis, G., Fua, P., Thalmann, D.,
Magnenat-Thalmann, N.: Stable real-time
AR framework for training and planning in
industrial environments. In: S.K. Ong,
A.Y.C. Nee (eds.) Virtual Reality and
Augmented Reality Applications in
Manufacturing. Springer, Berlin Heidelberg
New York (2004)

42. Vlahakis, V., Ioannidis, N., Karigiannis, J.,
Tsotros, M., Gounaris, M., Stricker, D.,
Gleue, T., Daehne, P., Almeida, L.:
Archeoguide: an augmented reality guide
for archaeological sites.
IEEE Comput. Graph. Appl. 22(5), 52–60
(2002)

43. Wiley, D., Hahn, J.: Interpolation synthesis
of articulated figure motion. IEEE Comput.
Graph. Appl. 17(6), 39–45 (1997)

Presence and interaction in mixed reality environments 333

DR. ARJAN EGGES is an assistant professor at
the Center for Advanced Gaming and Simula-
tion at Utrecht University in the Netherlands.
He obtained his PhD at MIRALab–University
of Geneva on the topic of real-time animation
of interactive virtual humans. His main interests
involve the modelling of intelligent behaviour,
non-verbal communication, such as gestures and
facial animation, real-time face and body ani-
mation, and personality and emotion modelling.
He is currently involved in various research
topics related to gaming and graphics, and he
teaches a course on game programming as well
as a seminar on animation.

DR. GEORGIOS PAPAGIANNAKIS is a computer
scientist and senior researcher at MIRALab–
University of Geneva. He obtained his PhD in
Computer Science at the University of Geneva,
his BEng (Hons) in Computer Systems Engin-
eering, at the University of Manchester Institute
of Science and Technology (UMIST) and his
MSc (Hons) in Advanced Computing, at the
University of Bristol. His research interests are
mostly confined in the areas of mixed reality
illumination models, real-time rendering, virtual
cultural heritage and programmable graphics.

PROF. NADIA MAGNENAT-THALMANN has
pioneered research into virtual humans over the
last 25 years. She has obtained several bache-
lor’s and master’s degrees in various disciplines
(Psychology, Biology and Chemistry) and a PhD
in Quantum Physics from the University of
Geneva. From 1977 to 1989, she was a Professor
at the University of Montreal where she founded
the research lab MIRALab. She was elected
Woman of the Year in the Grand Montreal for
her pioneering work on virtual humans and
her work was presented at the Modern Art
Museum of New York in 1988. She moved to
the University of Geneva in 1989, where she
founded the Swiss MIRALab, an international
interdisciplinary lab composed of about 30
researchers. She is author and coauthor of a very
high number of research papers and books in the
field of modelling virtual humans, interacting
with them and living in augmented life. She has
received several scientific and artistic awards for
her work, mainly on the Virtual Marilyn and the
film RENDEZ-VOUS A MONTREAL, but more
recently, in 1997, she has been elected to the
Swiss Academy of Technical Sciences, and has
been nominated as a Swiss personality who has
contributed to the advance of science in the 150
years history CD-ROM produced by the Swiss
Confederation Parliament. She has directed and
produced several films and real-time mixed real-
ity shows, among the latest are the UTOPIANS
(2001), DREAMS OF A MANNEQUIN (2003)
and THE AUGMENTED LIFE IN POMPEII
(2004). She is editor-in-chief of The Visual
Computer published by Springer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

