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Abstract
Specifying budgets and deadlines using a process algebra like CSP requires an explicit
notion of time. The tock-CSP encoding embeds a rich and flexible approach for modelling
discrete-time behaviours with powerful tool support. It uses an event tock, interpreted to
mark passage of time. Analysis, however, has traditionally used the standard semantics of
CSP, which is inadequate for reasoning about timed refinement. The most recent version of
the model checker FDR provides tailored support for tock-CSP, including specific operators,
but the standard semantics remains inadequate. In this paper, we characterise tock-CSP as a
language in its own right, rich enough tomodel budgets and deadlines, and reason about Zeno
behaviour. We present the first sound tailored semantic model for tock-CSP that captures
timewise refinement. It is fully mechanised in Isabelle/HOL and, to enable use of FDR4
to check refinement in this novel model, we use model shifting, which is a technique that
explicitly encodes refusals in traces.

1 Introduction

In the realm of cyber-physical systems, time is a crucial concern. Such reactive systems can be
modelled as cooperating with their environment via named events that correspond to atomic
and instantaneous interactions of interest over their lifetime. In CCS [25] and CSP [38], the
occurrence of events can be ordered. However, without a notion of time it is impossible to
specify timed properties, like budgets and deadlines, and to reason about safety and liveness
over time.

To encompass the notion of real time, several timed semantics have been proposed for
CSP [31,32]. Early works on continuous Timed CSP include those of Reed and Roscoe [36],
Davies [10] and Schneider [40]. The solid foundations of CSP with algebraic, denotational,
and operational semantics gave rise to practical refinement checking, via model checking
with FDR [13] and other tools [21,41]. As far as we know, however, no such effort has been
made for Timed CSP, so that no tool has been developed specifically for Timed CSP.
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Developing a tool for reasoning about continuous timed models is a challenging task,
as is using generic tools to reason about a Timed CSP model. Instead, Roscoe [37] has
proposed tock-CSP, where the event tock encodes the passage of discrete time, allowing
existing CSP tools like FDR to be used for reasoning about timed models. In addition, using
tock-CSP, deadlines can be specified via timestops, that is, by refusing tock, and models can
be decomposed into timed and untimed processes, facilitating abstraction and modularity.
Extensive use of tock-CSP has been reported, including, for example, in the verification
of security properties [11], the design of general-purpose I/O controllers [19], the study of
railways [17], the verification of distributed adaptive systems [14], and more recently, in the
verification of simulations for robotics [7].

Themost recent version of FDR offers a syntactic environment called a timed section1 that
translates untimed processes into tock-CSP, to facilitate the specification of timed models,
reusing the syntax of standard CSP and interpreting the operators in the context of a (discrete)
timed semantics. Maximal progress, where time only advances after internal behaviour has
stabilised, can be enforced by prioritising internal actions τ , and�, which signals termination,
over tock.

Most case studies in the literature using tock-CSP focus on safety [11,14,19], rather
than liveness [7,17]. Although useful, safety only is a weak notion of conformance. The
standard traces, failures, and failures-divergences semantics of CSP, however, are inadequate
for reasoning about timewise refinement [40], which ensures preservation of safety and
liveness over time.

Although other semantic models are available, they either do not cater for the specification
of deadlines [3,22,31] and termination [22], or for the tock-CSP view that, within each time
unit, the standard (untimed) failures semantics of CSP holds [22,32]. Moreover, the use of
deadlines may lead to Zeno behaviours, where an infinite number of events is required to
take place in a finite amount of time. Just like divergence, this is undesirable; a useful model
needs to be able to express Zeno behaviours, so that we can use it to prove their absence.

In this paper, we characterise tock-CSP as a language in its own right, with operators
whose behaviour is as defined when they are used in a timed section of FDR, with two crucial
properties. First, events are instantaneous, so that passage of time has to be explicitly defined.
Second, there is maximal progress of internal events with respect to time. Our contribution
is a novel semantic model for tock-CSP that allows the specification of deadlines, that caters
for termination and Zeno behaviour, and whose refinement relation is timewise refinement.

The model and operators are specified in Isabelle/HOL [30]. Thus another contribution is
an environment for mechanical theorem proving that paves the ground for the development
of refinement tools for tock-CSP. We also illustrate how model shifting [23], a technique
for reducing refinement over different CSP semantics to traces refinement, can be used for
reasoning with FDR4 [13].

In Sect. 2 we review in detail the existing semantics studied in the context of tock-CSP,
providing a more detailed account of the motivation and novelty of our model. In Sect. 3
we introduce the tock-CSP language. The denotational model is defined in Sect. 4 and the
operators in Sect. 5. Section 6 illustrates the mechanisation in Isabelle/HOL, while Sect. 7
provides a didactic account of how processes, and refinement, can be encoded in FDR4. We
conclude in Sect. 8 by summarising our contributions and discussing future work.

1 https://cs.ox.ac.uk/projects/fdr/manual/cspm/definitions.html#csp-timed-section.
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2 Related work

The literature is rich in timed models [1,2,6,8,12,20,26] for process calculi, with several
timed variants of CCS [16] and ACP [4] reported, for example. In particular, [15,27,29] also
employ special actions to mark the passage of discrete time, just like tock is later considered
for CSP in [37]. The principles of abstract time, maximal progress [15,43], instantaneous
events, and the uniform passage of time [29], are also widely adopted. Some models do not
assume uniform passage of time or allow the environment to arbitrarily delay visible events
[15,43].

None of these models cater for termination (or sequential composition), with deadlock
being the only basic process in most models. To cater for tock-CSP, our model allows the
imposition of deadlines so that the environment may not be able to delay an event arbitrarily,
ensures maximal progress, and allows the specification of termination, so that processes, not
just events, may be sequentially composed.

The standard approach to giving meaning to processes in CCS is to define equivalence
relations based on bisimulation. ACP, on the other hand, takes the axiomatic approach. CSP
is an algebra for refinement, which embeds a notion of divergence (livelock), and does not
distinguish processes based on the points in which internal choices are resolved. In the
remainder of this section we focus our discussion on denotational discrete-time semantics
for CSP that follow these principles. CSP also has well established algebraic and operational
semantics as reported in [38], which are beyond the scope of this paper.

Several semantic models have been considered for reasoning for tock-CSP. However,
they either do not contemplate timestops [3,22,31], required for the definition of deadlines,
termination [22] and Zeno behaviour, or do not preserve the failures-based semantics of
CSP within each time unit [22,32] as expected of tock-CSP processes. The latter is formally
captured by the following property.

Property 1 (∀s : traces(P) • tock /∈ ran s) �⇒ timed[[P]] = [[P]]F
It ensures that for every process P where time is not advancing, characterised by requiring
that tock is not in the range (ran) of every sequence s in the traces semantics of P , its timed
semantics timed[[P]] is exactly the same as its failures semantics [[P]]F . (We observe that the
set of failures [[P]]F is a set of pairs, including a trace and a refusal. The timed models define
different forms of observation, mostly sequences including refusals. The equality above is,
therefore, strictly speaking an abuse of notation. In Property 1, we assume that either the
traces or the failures are encoded in a way to allow a direct comparison between the models.)

If we use a model that does not allow timestops (and so cannot capture deadlines), there
is no process P whose set traces(P) of traces satisfies the antecedent of Property 1. So, it
holds by vacuity. Such a model is not satisfactory either as a basis to reason with tock-CSP,
and so we also consider the following property.

Property 2 There is a process P for which ∀s : traces(P) • tock /∈ ran s.

In Sect. 5.15 we show that both properties hold for our tock-CSP semantics, named �-tock.
In the remainder of this section we establish that existing tock-CSPmodels are unsatisfactory
by failing to satisfy Property 1 or Property 2.

In Table 1we provide a comparison of different semantics for tock-CSP. The first two rows
indicate whether a semanticmodel captures termination, deadlines, and Zeno behaviour: only
failures [38], refusal testing [28,34], discrete-time refusal traces [32] and�-tock provide full
support, satisfying Property 2. Subsequent rows record, for examples that we discuss next,
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Table 1 Comparison of semantic models using tock

Semantic
model

Stable
failures
[38]

Refusal
testing
[28,34]

Discrete-
time
refusal
testing
[31]

Discrete-time
refusal
traces [32]

Discrete-
time
failures [3]

Discrete-
time
refusals
[22]

Timed
testing
[22]

�-tock

Termination � � � � � × × �
Deadlines � � × � × × × �
Zeno � � × � × × × �
R �� S
(Example 1)

× � � � � − − �

I[R] � I[S]
(Example 1)

� × × × � − − �

� indicates support (or that a refinement holds), and × otherwise. The symbol − indicates that a particular
example cannot be specified

whether a refinement holds. P � Q indicates that P is refined by Q (and P �� Q that it is
not).

Semantic models capture the kinds of tests that an observer may perform on a process to
probe its behaviour. In the stable-failures model it is possible to test, after each sequence of
interactions, whether an event is refused. In a timed setting, each such test can be repeated
as time progresses, with refusals recorded over time. This is required to ensure liveness over
time, which is at the core of timewise refinement. We consider the following example to
illustrate this point.

Example 1 R = (a → Skip � b → Skip) 	 Stop
S = a → Skip 	 Stop

Process R makes an internal choice (	). It may offer events a and b in an external choice (�),
followed by termination (Skip), or deadlock (Stop). The operator→ is prefixing. Similarly,
S may offer a or deadlock. In the failures model of CSP, R is refined by S. Although S never
offers b, R could also refuse it because of Stop.

We consider, however, Example 1 in a timed setting, where an experimenter decides to
let time pass before attempting to perform a. If b is observed to be refused at time zero, and
afterwards time advances by one unit, and the event a is accepted, the observer can conclude
that the experiment is with S, not R. If R refuses b early on, it behaves as Stop and does
not later accept a. S presents a behaviour that is not possible for R, and so R � S should
not hold. However, the failures model is not rich enough to disallow such a refinement, since
refusal sets, which capture the events being refused, are only recorded at the end of a trace,
that is, a sequence of interactions, including tock, and not over time as required.

To capture timewise refinement, Schneider [40, p. 457] suggested the refusal testingmodel
[28,34], where refusals are recorded at the end of a trace, and also before each event. However,
while in that model R �� S as required, it is incompatible with a view where within each
time unit we have a failures-based semantics, thus violating Property 1. To illustrate this we
consider a context I.

Example 2 I[P] = P 
1 c → Skip

Process I[P] behaves as P initially, and after exactly one time unit offers c, followed by
termination. Here 
d is a strict timed interrupt that can be specified in tock-CSP in terms of
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Table 2 The operators of tock-CSP

Operator Name

div Divergence

Skip Termination

Wait n Delay

Stop Timed deadlock

StopU Timestop (untimed deadlock)

g � P Guarding

e → P Timed event prefixing

P 	 Q Internal choice

P � Q Time-synchronising external choice

P ; Q Sequential composition

P 
 Q Time-synchronising interrupt

P 
d Q Strict timed interrupt

P � X � Q Time-synchronising parallel composition

P\X Hiding

P[ f ] Renaming

basic operators. Since R is refined by S in the failures model, we expect I[R] to be refined
by I[S] in a timed semantics as the behaviour during the first time unit is consistent with its
failures semantics.

The semantics for tock-CSP in [40] and [31,32], based on refusal testing [28,34], however,
are strictly more discriminating than failures: the refinement I[R] � I[S] does not hold.
This is because refusal testing records what may be refused before each event, not only before
tock events. Models with similar trace structures, such as discrete-time refusal testing [31]
and discrete-time refusal traces [32], also fail to identify the refinement I[R] � I[S], and
thus do not satisfy Property 1.

On the other hand, I[R] � I[S] holds in the discrete-time failures model [3] as required,
because refusals are only recorded at the end of a trace and before tock events. However, in
that model it is not possible to specify deadlines and Zeno behaviour, violating Property 2. In
addition, processes R and S cannot be specified in the discrete-time refusals and timed testing
models [22] because they may terminate, and those models do not consider termination.

In summary, semantics based on refusal testing are not compatible with the view of tock-
CSP as a language with a failures semantics within each time unit (Property 1). The discrete-
timed failures and the timed testingmodels are closest in identifying the required refinements.
However, the former does not admit timestops, that is, it does not satisfy Property 2, or allow
Zeno behaviour, while the latter, does not, in addition, handle termination.

To fully capture the expressive power of tock-CSP and endow it with a semantics compati-
blewith the paradigmof stable failures in a time unit, we need amodel that is as discriminating
as discrete timed-failures, but which admits the specification of deadlines, termination, and
Zeno behaviour. Despite the possibility to reuse the operational semantics of CSP to anal-
yse processes in several of the models surveyed here using specialised timed operators and
model-shifting [23] in FDR, for example, it remains, to the best of our knowledge, that no
denotational semantics has been proposed that fully meets the identified criteria.

123



130 J. Baxter et al.

3 tock-CSP

Effectively, tock-CSP is CSP with the special event tock that marks the passage of time.
In CSP behaviours are specified by processes using operators. In Sect. 3.1, we provide an
overview of the operators of tock-CSP. In Sect. 3.2, we show how deadlines and Zeno
behaviour can be modelled.

3.1 Operators

The operators of tock-CSP are those available in FDR timed sections when events are defined
not to take any time, with maximal progress implicitly enforced for each operator. The
operators are listed in Table 2.

The first operator, divergence (div), represents a process that is in an unstable state and per-
forms no observable events. Due to maximal progress, time can only advance when a process
is in a stable state, so divergence prevents time from passing. The second operator, termina-
tion (Skip), represents a process that terminates immediately. A state in which termination
is possible is not stable. So, as with divergence, time does not pass before termination.

The timed prefixing operator (e → P) offers the event e, and then behaves as P after
e has occurred. It allows time to pass while waiting for e to occur, but not between e and
P , since events are instantaneous. If e is tock, this operator allows a nondeterministic but
nonzero number of time units to pass before P starts.

The next operator we consider is the delay operator of timed CSP, Wait n. This allows
exactly n units of time to pass before terminating. As with Skip, termination happens imme-
diately after the first n time units. In particular, note that this makes Wait 0 equivalent to
Skip.

Timed deadlock (Stop), waits in a stable state, refusing all events except for tock. The
timestop (StopU ) refuses all events and also timelocks, refusing tock. This is included since
the ability to stably refuse the passage of time is an important feature of tock-CSP and can
be used to specify deadlines.

We illustrate the specification of deadlines with the example shown below.

Example 3

C = (move → Stop) 
 (obs → ((halt → Skip) � (Wait s ; StopU )))

We define a process C , which represents a controller for a robot whose task is moving, and
which quickly comes to a halt if an obstacle is detected. The eventsmove and halt represent
commands to a robotic platform, to initiate movement and brake; the event obs represents
indication of an obstacle. Initially C offers the possibility to perform move followed by a
timed deadlock. At any point this behaviour may be interrupted by the event obs; we specify
this using the time-synchronising interrupt operator (P 
 Q). This operator behaves as P ,
offering the events of Q while P is executing, and behaving as Q when one of the events
initially offered by Q occurs. The passage of time is synchronised so that time passes in P
only if it passes in Q. The occurrence of an event in P does not resolve the interrupt, allowing
it to continue until P terminates or Q takes over.

Following obs in C , there is an external choice (P � Q), which offers the initial events of
P and Q, behaving as the corresponding process after one of its events has occurred. External
choice synchronises passage of time between P and Q, so that tock does not resolve the
choice and time passes at the start only if both P and Q allow. The external choice in C
imposes a deadline on halt by allowing time to pass for up to s time units (Wait s), then
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behaving as StopU to prevent further time from passing while waiting for halt to occur
(making halt urgent). The process C captures a bounded-response time property, typical of
timed systems.

Wait s and StopU are composed in C using the sequential composition operator (P ; Q),
which initially behaves as P and then, when P terminates, behaves as Q. There is no time
synchronisation in sequential composition since Q does not start until P finishes, so time
passes in Q after time passes in P .

In addition to the time-synchronising interrupt operator, we also include the strict timed
interrupt operator used in Example 2. The process P 
d Q behaves as P until either P
terminates, in which case the process as a whole terminates, or d time units have passed, in
which case it immediately behaves as Q. The operator is strict because it does not allow further
execution in P after the specified time has passed, including not allowing P to terminate.

The guarding operator (g � P) takes a Boolean g and a process P . It behaves as P when
g is true and as Stop when g is false. This allows events to be conditionally offered, with
events refused when the condition is false.

We also include the internal choice operator (P 	 Q), which can nondeterministically
behave as either P or Q. Control over time is delegated to P or Q.

Parallel composition (P � X � Q) executes P and Q in parallel, synchronising on both the
events in X and tock. The events not in X are interleaved, occurring independently in P and
Q. The parallel composition terminates when both P and Q have terminated. When one of
the processes has terminated, time is still allowed to pass until the other process is ready to
terminate.

The hiding operator (P\X ) hides the events in X , making them into internal events. Due
to maximal progress, the hidden events become urgent, since internal events take priority
over the passage of time. We allow the hiding of the event tock, so that hiding, in this case,
can be used to remove time from a process, inserting an internal event wherever time could
pass in P .

Finally, the renaming operator (P[ f ]) renames each of the events in P according to the
function f , that is, events e are renamed to f (e). We do not allow renaming to or from
the event tock. If tock could be renamed, then the implicit inclusion and synchronisation
of tock events, provided by the other operators, could be applied to other events, which is
not desired. Allowing renaming events to tock is also problematic, since it would make it
possible to violate maximal progress.

In addition to the operators described above, processes can also be defined recursively. For
that, we use equations P = F(P), where P is a process name used in the process expression
F to refer to recursive calls. We also allowmutual recursion defined by sets of such equations
as expected and just like in CSP.

In the following section we focus on two aspects that show the expressivity of tock-CSP
in defining deadlines and capturing Zeno behaviour.

3.2 Deadlines and Zeno behaviour

As illustrated by the previous example, tock-CSP allows the specification of deadlines using
timestops, that is, StopU . For example, a common pattern in timed specifications is to impose
a deadline on a process P to terminate within d time units, which can be abbreviated alge-
braically (P � d) as follows.

Definition 1 P � d =̂ P 
 (Wait d ;StopU )
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The time-synchronising interrupt (
) ensures that P can only engage in at most a d number
of tock events. A similar, but different construction is used in Example 3 to impose a deadline
on communicating an event, using external choice (�).

In tock-CSP, we can also capture Zeno behaviour, where an infinite number of events take
place in a finite time. Like divergence and deadlock, this is typically undesirable behaviour.
It can, however, arise from modelling errors, and so, it is important to be able to express such
behaviour and prove its absence.

Example 4 Z = ((a → Skip) � 0) ; b → Z)

Z offers to perform the event a immediately, followed by b and then recurses. If we consider
Z\{b}, then the interaction with b becomes internal and urgent, and therefore an infinite
sequence of a events is possible in zero time.

Next, we describe the semantic model �-tock, giving the healthiness conditions that
processes are required to fulfil. In Sect. 5, we present the formal semantics of the operators
described informally in this section.

4 Semantic model

We present a new denotational model for tock-CSP, which we call �-tock. We define it and
describe its healthiness conditions. Afterwards, in Sect. 5, we present the semantics of the
operators of tock-CSP. The mechanisation of the model and operators is discussed in Sect. 6
and can be found in full in [5].

We define the �-tock semantics of tock-CSP in terms of a given set Σ of events specific
to the model. To Σ we add two events that have a special role in the model: �, which signals
termination of a process, and tock, which signals the passage of time. We refer to Σ with
these special events added as Σ�

tock . We make use of the mathematical notation of Z [42] in
the definition below, and throughout this section and the next. We explain the more unusual
aspects of the notation where they are first used. In particular, == is used to introduce a
definition.

Definition 2 Σ�
tock == Σ ∪ {�, tock}

The semantics of each �-tock process is a set of sequences of observations, represented by
the type Obs below. These observations may be either the occurrence of an event in Σ�

tock
or of a refusal of some subset of Σ�

tock . We define the type Obs using a Z algebraic datatype
definition (free type), introduced with ::=. We write P A for the power set of a set A.

Definition 3 Obs ::= evt〈〈Σ�
tock〉〉 | re f 〈〈P Σ�

tock〉〉
The functions evt and re f are the constructors of the type Obs.

We place constraints on the structure of the sequences of observations that form the
semantics of a �-tock process, defining traces of the T ickT ockTrace type below. This
definition is given using a Z notation set comprehension, which in general is of the form
{Decls | Pred • Expr}. Decls is a list of declarations of variables used in the set compre-
hension, with their types. The optional Pred is a predicate constraining the values of the
variables introduced by Decls. The optional Expr is an expression mapping the values of
the variables into the values contained in the set. If Expr is omitted, the set is taken to contain
tuples made up of the values of the variables introduced by Decls. This is the case in the
definition below for T ickT ockTrace (the • here is part of the universal quantifier syntax).
It is a set of sequences of Obs constrained by a predicate with three conjuncts.
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Table 3 The healthiness conditions of �-tock

Name Definition

TT0(P) P �= ∅.

TT1(P) ρ � σ ∧ σ ∈ P �⇒ ρ ∈ P

TT2(P) ρ � 〈re f X〉 � σ ∈ P ∧
Y ∩ {e : Σ�

tock | (e �= tock ∧ ρ � 〈evt e〉 ∈ P) ∨
(e=tock ∧ ρ � 〈re f X , evt tock〉∈P)

} = ∅
�⇒ ρ � 〈re f (X ∪ Y )〉 � σ ∈ P

TT3(P) ρ � 〈re f X〉 � σ ∈ P �⇒ ρ � 〈re f (X ∪ {�})〉 � σ ∈ P

T ickT ockTrace == {t : seq Obs | ∀i : dom t•
(i < #t �⇒ t i �= evt �) ∧ (1)

(i < #t ∧ t i ∈ ran re f �⇒ t (i + 1) = evt tock) ∧ (2)

(t i = evt tock �⇒
i > 1 ∧ t (i − 1) ∈ ran re f ∧ tock /∈ (re f ∼) (t (i − 1))) (3)

}

Constraint (1) is that a � may occur only at the end of a trace, since � signals termination.
The expression #t denotes the size of the sequence t , so the index i refers to an element
before the end of the sequence. Constraint (2) states that any refusal set that occurs before the
end of a trace must be followed by a tock. The operator ran denotes the range of a function,
so ran re f is the set of refusals in Obs and i is thus selected to be the index of a refusal in t .
We thus ensure that refusals can only occur at the end of a trace and before a tock. Finally,
constraint (3) states that every tock event must be preceded by a refusal that does not include
tock. The function re f ∼ denotes the inverse of re f , which extracts the refusal set from an
element of Obs in the range of re f .

By contrast, refusals are optional at the end of a trace. We take the presence of a refusal
at the end of a trace to indicate stability, and its absence to signify possible instability.
Constraint (3) thus requires stability wherever tock can occur, but recording stability via a
final refusal in a trace does not require a tock event.

Each �-tock process is represented by a subset of T ickT ockTrace. However, not all
such sets characterise a valid process. We define four healthiness conditions that �-tock
processes satisfy, shown in Table 3. The first, TT0, states that each process, P , must have at
least one trace, even if it is just the empty trace.

The second healthiness condition, TT1, is defined in terms of a prefix relation for
sequences of observations,�, defined inductively below. The base case states that the empty
trace (〈〉) is a prefix of every trace t . The second case states that, when two traces start with
the same event e, the first trace (〈evt e〉 � s) is a prefix of the second trace (〈evt e〉 � t)
whenever the traces after e are prefix related (s � t). We use 〈 and 〉 to delimit sequences,
so that 〈evt e〉 is the singleton sequence with element evt e. The operator � is sequence
concatenation. Finally, the third case states that, for refusals X and Y , traces 〈re f X〉 � s
and 〈re f Y 〉 � t are prefix related when s � t and X is a subset of Y (rather than requiring
the refusals to be the same). We thus have that t1 � t2 if t1 is obtained from a prefix of t2 by
possibly replacing some or all refusals with a subset.
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Definition 4

∀s, t : seq Obs; e : Σ�
tock; X , Y : P Σ�

tock•
〈〉 � t ∧
(s � t �⇒ 〈evt e〉 � s � 〈evt e〉 � t) ∧
(s � t ∧ X ⊆ Y �⇒ 〈re f X〉 � s � 〈re f Y 〉 � t)

The healthiness condition TT1 thus imposes prefix and subset closure: given any trace ρ of a
healthy process, any prefix of ρ is also a trace of that process. This corresponds to the prefix
and subset closure conditions of the stable failures semantics for CSP, but accounts for the
fact that refusals occur before tock events. A consequence of TT1 is that there must be a
prefix of the trace of events before a tock that ends with a refusal, indicating stability.

The remaining two healthiness conditions constrain the contents of refusal sets. The third,
TT2, states that any event that cannot be performed after a particular trace must be included
in a refusal set of a similar trace. This is specified by stating that a set Y disjoint from the set
of events that can occur can be added to the refusal set to yield another trace of the process.
This is similar to the condition of the stable failures model that says that events that cannot
be performed must be refused but, as with TT1, TT2 handles the fact that refusals occur
throughout the trace. TT2 applies only where a refusal already occurs in a trace, so it does
not require the inclusion of a refusal where instability occurs.

The final healthiness condition, TT3, states that anywhere a refusal occurs, the � event
must also be refused. This follows from the fact that termination occurs unstably, and so no
refusal can be observed if� is not refused. However,TT3 does not exclude nondeterministic
processes such as Skip 	 a → Skip. This process can terminate immediately, having a trace
〈evt �〉, but it also has a trace 〈re f {�}〉 indicating a stable state where � is refused.

We observe that our treatment of termination is slightly different from, but consistent with,
the failures semantics of CSP as presented in [38]. We consider termination to be unstable
because it can happen without the agreement of the environment, and a process that is ready
to terminate cannot delay termination (indefinitely). A crucial law of (untimed) CSP that
captures the nature of termination is Skip � P = (Skip � P) 	 Skip. It states that a
process Skip � P , which has the possibility to terminate, can do so without the control of
the environment, as expressed by the internal choice. In the untimedmodel, there is no notion
of instability, and so the uncontrollability of termination is captured by an internal choice.
In �-tock, with a definition of Skip that does not record termination as unstable, this law
does not hold. On the other hand, in �-tock this law does not equate the (unstable) choice
of termination with a (stable) internal choice, since termination, which is available in both
processes in the internal choice, is unstable.

We define the semantics of a process P using a function t t[[P]], which gives the set of
traces corresponding to P . This is always a healthy subset of T ickT ockTrace, irrespective of
the particular process P under consideration. In the next section, we define t t[[P]] for every P ,
and show that our definitions indeed characterise healthy sets of �-tock traces. Similarly to
other semantic models of CSP, refinement in�-tock is subset inclusion. It captures timewise
refinement.

Definition 5 (Refinement) P � Q == t t[[Q]] ⊆ t t[[P]]
A process Q refines P exactly when every trace of Q is also a trace of P . Following from
TT0-1we have that the empty sequence is a trace of every process P , and so {〈〉} refines every
�-tock process. We also have that T ickT ockTrace satisfies all the healthiness conditions.
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It defines the semantics of Chaos, the process that may nondeterministically perform any
event or deadlock, and which every process refines. Therefore, we have a complete lattice
under the refinement order where � = {〈〉}, ⊥ = Chaos, and the greatest lower bound 	 is
set union. The top (�) is also the definition of div, and the greatest lower bound coincides
with the semantics of internal choice, as shown in the next section.

Next, we give the semantics of the operators of �-tock, which satisfy the healthiness
conditions described here, as proved in our mechanisation (see Sect. 6).

5 Operator semantics

Below, we give the semantics of the operators described in Sect. 3.

5.1 Divergence

The simplest�-tock process is div, which represents a divergent process and has the seman-
tics shown below. Such a process is unstable and produces no observable behaviour, so the
only trace of div is the empty trace.

t t[[div]] = {〈〉}

We note that the process div cannot allow the passage of time, since it is never in a stable
state, as indicated by the lack of a refusal in any of its traces.

5.2 Termination

The process Skip, which terminates immediately, has the semantics shown below.

t t[[Skip]] = {〈〉, 〈evt �〉}

Similarly to div, it contains no refusals, since termination is unstable: it happens immediately
without permitting the passage of time. In addition to the empty trace, Skip also has a trace
containing the observation of a � event.

5.3 Timed deadlock

We define Stop using a function tocks, defined by the predicate below, which takes a set
X and outputs sequences of tock events with refusals drawn from the subsets of X . We
define tocks X recursively as including the empty trace and including any traces in tocks X
prepended with a refusal (which is a subset of, or equal to, X ) and a tock event. In addition
to being used here, the tocks function is used in the definitions of several other operators of
�-tock.

∀X : P Σ�
tock•

〈〉 ∈ tocks X ∧
(∀t : tocks X; Y : P Σ�

tock |Y ⊆ X • 〈re f Y , evt tock〉 � t ∈ tocks X)
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The semantics of Stop, shown below, is defined to include both the traces from tocks them-
selves and traces from tocks with an extra refusal appended.

t t[[Stop]] = tocks Σ� ∪ {t : tocks Σ�; X : P Σ� • t � 〈re f X〉}
The refusals used in this definition are taken from the subsets of Σ�

tock excluding the tock
event, so that everything except tock is refused. For brevity in definitions, we use Σ� as an
abbreviation for Σ�

tock\{tock}.

5.4 Timestop

We also provide StopU , a version of deadlock that refuses all events, including tock, which
has the semantics shown below. It only contains the empty trace and traces containing a single
refusal, which is a subset of Σ�

tock .

t t[[StopU ]] = {〈〉} ∪ {X : P Σ�
tock • 〈re f X〉}

There are no other traces since StopU does not allow any events to occur.

5.5 Delay

We define the semantics ofWait n as a union of three sets as shown below. The first set, (4),
contains all the traces with at most n tock events, and with refusals drawn from Σ�; they
are specified using tocks. We specify restrictions on the number of tock events by filtering
them into a sequence containing only tock events using the filter operator, �, and restricting
its length.

t t[[Wait n]] =
{t : tocks Σ�|#(t � {evt tock}) ≤ n} (4)

∪ {t : tocks Σ�; X : P Σ�|#(t � {evt tock}) < n • t � 〈re f X〉} (5)

∪ {t : tocks Σ�|#(t � {evt tock}) = n • t � 〈evt �〉} (6)

The second set, (5), contains traces of less than n tock events with a refusal appended, drawn
from Σ�, since we have stability before each tock. The final set, (6), contains traces of
exactly n tock events followed by a �, since Wait n terminates after n time units have
elapsed. As for Skip, we do not have a refusal after n tock events because termination is
immediate.

Example 5 AssumingΣ = {a, b, c}, we sketch below the set of traces ofWait 2. We present
the traces as a union of sets, corresponding to the union of sets presented in the definition
above. Since �-tock processes are prefix and subset closed (healthiness condition TT1),
we generally show only maximal traces within each set, except where we need to illustrate
particular aspects of the definition. In this example, it is helpful to present traces with both
one and two tock events, since the definition of Wait 2 treats them differently, but we show
only maximal refusals within each trace and omit the corresponding traces with zero tock
events. We indicate that (non-maximal) traces have been omitted in each set using ellipsis
(. . .). Additionally, for brevity, we omit the constructors evt and re f in examples.

t t[[Wait 2]] =
{〈{a, b, c,�}, tock〉, (7)
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〈{a, b, c,�}, tock, {a, b, c,�}, tock〉, . . . } (8)

∪ {〈{a, b, c,�}, tock, {a, b, c,�}〉, . . . } (9)

∪ {〈{a, b, c,�}, tock, {a, b, c,�}, tock,�〉, . . .} (10)

The traces ofWait 2 in the set on lines (7) and (8) are traces of tocks Σ� that contain two or
fewer tock events, contributed by set (4). Refusals are not included at the end of these traces,
but set (5) does include corresponding traces with refusals that are subsets of Σ� for any
traces with strictly fewer than two tock events. Set (5) thus contributes the trace on line (9),
which corresponds to the trace on line (7). There is no trace in set (5) corresponding to the
trace on line (8), since it contains exactly two tock events. The trace on line (9) represents
the stability before a tock, in which everything but tock is refused.

Finally, the trace shown on line (10) is contributed by set (6), which contains the traces
from set (4) that contain exactly 2 tock events (that is, the trace shown on line (8)) with a
� event appended. We note that there is no trace with a refusal after 2 tock events, ensuring
that stability cannot be observed before �.

5.6 Timed event prefixing

The semantics of a timed event prefixing, e → P is the union of four sets, as shown below.
The first two, (11) and (12), are similar to those used to define the semantics of Stop, but
their refusals do not include the event e.

t t[[e → P]] =
tocks (Σ�\{e}) (11)

∪ {t : tocks (Σ�\{e}); X : P(Σ�\{e}) • t � 〈re f X〉} (12)

∪ {t : tocks (Σ�\{e}); p : t t[[P]]|e �= tock • t � 〈evt e〉 � p} (13)

∪ {t : tocks Σ�; X : P Σ�; p : t t[[P]]|e = tock •
t � 〈re f X , evt tock〉 � p} (14)

The last two sets, (13) and (14), contain traces consisting of tock events followed by an
occurrence of e, followed by the observations of the traces of P . The first of these, (13),
represents the case when e is an event other than tock and can simply be placed on its own
between a trace from tocks and a trace from P . The second, (14), represents the case where
e is tock, and inserts a refusal set before e. We observe that when the e is tock, at least one
tock event must occur, so it is included in the trace separately to the events from tocks.

Example 6 Assuming again Σ = {a, b, c}, the traces of a → Stop are below. In this and
in the following examples, sequences of tock events from tocks are included. Since these
sequences can be of any length, we just show a single tock event where such a sequence can
occur, omitting longer sequences.

t t[[a → Stop]] =
{〈{b, c,�}, tock〉, . . . } (15)

∪ {〈{b, c,�}, tock, {b, c,�}〉, . . . } (16)

∪ {〈{b, c,�}, tock, a〉, (17)

〈a, {a, b, c,�}, tock〉, . . . } (18)

∪ {} (19)

123



138 J. Baxter et al.

The trace on line (15) is contributed by set (11). It consists of traces of tock events, with
refusal of every event except a and tock. Similarly, the trace on line (16) is contributed by
set (12). It is the trace on line (15) with a refusal of every event except a and tock appended.
The third set (13) contributes the traces on lines (17) and (18). On line (17), the trace from
line (15) is followed by a. After a, the traces of Stop are appended, as shown on line (18).
Set (14) does not contribute any traces in this case [line (19)], since a �= tock.

5.7 Choice

The semantics of internal choice, P 	 Q, is simply the union of the semantics of P and Q,
allowing the behaviour of either to be chosen.

t t[[P 	 Q]] = t t[[P]] ∪ t t[[Q]]
The semantics of external choice, P � Q, is shown below. It is defined in terms of a set that
collects traces r � p and r �q of P and Q, constrained by several conditions. The common
prefix r is from tocks Σ�

tock and captures the synchronising behaviour of external choice by
requiring the tock events at the start to be the same. The prefix r is required to be the longest
such prefix by conditions (21) and (22), since the tock events before the choice is resolved
must be synchronised.

t t[[P � Q]] = {r : tocks Σ�
tock; p, q, t : T ickT ockTrace|

r � p ∈ t t[[P]] ∧ r � q ∈ t t[[Q]] ∧ (20)

(∀r2 : tocks Σ�
tock • r2 prefix r � p �⇒ r2 prefix r) ∧ (21)

(∀r2 : tocks Σ�
tock • r2 prefix r � q �⇒ r2 prefix r) ∧ (22)

(∀X : P Σ�
tock • p = 〈re f X〉 �⇒

∃Y : P Σ�
tock • q = 〈re f Y 〉 ∧ X\{tock} = Y\{tock}) ∧ (23)

(∀X : P Σ�
tock • q = 〈re f X〉 �⇒

∃Y : P Σ�
tock • p = 〈re f Y 〉 ∧ X\{tock} = Y\{tock}) ∧

(t = r � p ∨ t = r � q) • t} (24)

The refusals after the initial tock events are intersected for events other than tock, since we
offer the non-tock events of both P and Q. This is specified by (23) and (24). They require
that if p or q is a trace containing a single refusal then both must be such a trace, since lack
of a refusal in P or Q indicates instability and so makes the external choice unstable. In this
case the refusals X and Y in p and q must contain the same non-tock events. A refusal of
tock can be included even if it is not matched by a refusal of tock in the other trace, since
the tock-synchronising behaviour means that tock is refused unless both processes offer it.
Traces other than single refusals are either empty or start with a non-tock event, since tock
events at the start of p and q are ruled out by conditions (21) and (22). These traces are not
constrained since a non-tock event resolves the choice. We recall that tock is absent from
refusals before tock events, so this handling of tock in refusals does not need to be applied
to r .

Example 7 In the example below, we use again Σ = {a, b, c}.
t t[[a → Stop � b → c → Stop]] = {

〈{c,�}, tock, {c,�}〉, (25)
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〈{c,�}, tock, a〉, 〈a, {a, b, c,�}〉, (26)

〈{c,�}, tock, b〉, 〈b, {a, b,�}〉, . . .

} (27)

The traces of a → Stop � b → c → Stop begin with the initial traces of tock events
common to both a → Stop and b → c → Stop. Those are all the traces of tock events
with refusals not including a, b and tock, effectively intersecting the refusals in the tock
traces from each process. This can be seen in the trace on line (25), and in the first traces on
lines (26) and (27). The conditions (21) and (22) specify the intersection. The second traces
on lines (26) and (27) begin with an empty trace of tock events, which is also permitted.

For those traces of one of the processes in the choice that have a refusal after an initial trace
of tock events, the conditions (23) and (24) ensure that they are matched by a corresponding
trace of tock events from the other process, also ending in a refusal. In our example, both
processes are defined using event prefixing and so both have traces of tock events ending in
refusals. These refusals are intersected, with the exception of tock events, yielding the trace
on line (25).

Any traces beyond the initial sequence of tock events and a single refusal are included
without restriction. In our example, traces of a → Stop are shown on line (26), and of
b → c → Stop on line (27).

Example 8 This example considers a process similar to that presented in Example 7 but where
one of the processes in the choice is a timestop (StopU ), to illustrate how external choice
behaves when one of the operands does not allow time to pass.

t t[[StopU � b → c → Stop]] = {
〈{a, c,�, tock}〉, (28)

〈b, c, {a, b, c,�}〉, (29)

〈b, {a, b,�}, tock, c, {a, b, c,�}〉, (30)

〈b, c, {a, b, c,�}, tock, {a, b, c,�}〉, . . .

} (31)

Timestop contributes an initial maximal refusal that refuses everything, which is matched
by refusals from the prefix of b that refuse everything except b and tock. Since lines (23)
and (24) of the definition of external choice require the events of the refusal to be the same
except for tock, the maximal initial refusal of StopU � b → c → Stop thus contains
everything except b, as shown on line (28).

Since timestop does not contain any initial sequences of tock events, none of the traces
of StopU � b → c → Stop can begin with a tock event. Traces of b → c → Stop that
do not begin with a tock event are included, some of which are shown on lines (29), (30)
and (31). In particular, tock is permitted after an occurrence of b [line (30)] and after an
occurrence of c [line (31)].

An external choice with StopU thus has the effect of removing initial tock events and
adding tock to initial refusals, making the choice urgent.

5.8 Sequential composition

The semantics of sequential composition, P ;Q, is defined as the union of two sets, as shown
below. The first set includes all the traces of P that do not end with�. These traces represent
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the behaviour of P before termination.

t t[[P ; Q]] =
{p : t t[[P]]|¬(∃t : T ickT ockTrace • p = t � 〈evt �〉)}
∪ {p, q : T ickT ockTrace|p � 〈evt �〉 ∈ t t[[P]] ∧ q ∈ t t[[Q]] • p � q}

The second set is formed from the traces of P ending in �, with the traces of Q appended.
The� event is removed, since it cannot occur in the middle of a trace. These traces represent
the behaviour after P has terminated.

5.9 Time-synchronising interrupt

To define the semantics of time-synchronising interrupt, P 
 Q, we need a function to
project the tock events and their associated refusals from a trace, since the tock events
throughout P are synchronised with those at the start of Q. This is provided for by the
function f ilterT ocks, defined below.

∀X : P Σ�
tock; e : Σ�; t : T ickT ockTrace•

f ilterT ocks 〈〉 = 〈〉 ∧
f ilterT ocks 〈re f X〉 = 〈〉 ∧
f ilterT ocks (〈evt e〉 � t) = f ilterT ocks t ∧
f ilterT ocks (〈re f X , evt tock〉 � t) = 〈re f X , evt tock〉 � f ilterT ocks t

For the empty trace 〈〉, f ilterT ocks results in 〈〉. For a trace with a single refusal, we also
get 〈〉, since such a refusal does not have an associated tock event. For a trace that starts with
an event other than tock, the result is that of applying f ilterT ocks to the rest of the trace.
When applied to a trace beginning with a refusal followed by tock, the refusal and tock event
are retained, and followed by the result of applying f ilterT ocks to the rest of the trace.

The semantics of time-synchronising interrupt is defined, using f ilterT ocks, as the union
of three sets, as shown below. The first set, (32), contains the traces p � 〈evt �〉 from P
that end in �. In this case, it is required that there is a trace q in the semantics of Q that is
the result of applying f ilterT ocks to p, since all tock events in P must be synchronised
with ones in Q. Provided such a trace from Q exists, p � 〈evt �〉 is included without any
modification, since time-synchronising interrupt cannot prevent P from terminating, if it is
ready to do so.

The second set, (33), contains traces based on traces of P that end in a refusal X . As with
the first set, there must be a corresponding trace in Q containing its tock events and ending
in a refusal Y . The refusals Z at the end of the resulting traces are taken from subsets of the
union of X and Y , which are required to be the same for all events except tock, since an event
is only refused if it is refused by P and Q. This is similar to the requirement for an external
choice, since the interrupt offers Q in choice throughout P . As with external choice, tock is
refused if it is in X or Y , since tock can only happen when both P and Q can do it.

t t[[P 
 Q]] =
{p : T ickT ockTrace; q : t t[[Q]]|
p � 〈evt �〉 ∈ t t[[P]] ∧ f ilterT ocks p = q • p � 〈evt �〉} (32)

∪ {p, q : T ickT ockTrace; X , Y , Z : P Σ�
tock |

p � 〈re f X〉 ∈ t t[[P]] ∧ q � 〈re f Y 〉 ∈ t t[[Q]] ∧
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f ilterT ocks p = q ∧ Z ⊆ X ∪ Y ∧ X\{tock} = Y\{tock} •
p � 〈re f Z〉} (33)

∪ {p : t t[[P]]; q1, q2 : T ickT ockTrace|
(¬∃r : seq Obs • p = r � 〈evt �〉) ∧
(¬∃r : seq Obs; X : P Σ�

tock • p = r � 〈re f X〉) ∧
f ilterT ocks p = q1 ∧ q1 � q2 ∈ t t[[Q]] ∧
(¬∃r : seq Obs; X : P Σ�

tock • q2 = 〈re f X〉 � r) • p � q2} (34)

Finally, the third set, (34), considers the traces p of P that end in neither� nor a refusal. These
traces are required to be matched by traces q1 � q2 from Q, where q1 is the trace of tock
events corresponding to p. It is required that q2 does not start with a refusal, since refusals
at the end of a trace are considered in (33) and refusals before a tock must be synchronised
(and hence should occur in q1). The traces in (34) are made up of the concatenation of p
and q2, representing the behaviour of P before interruption followed by the behaviour of Q
after interruption. Since q2 can be empty, (34) can include traces just from P .

Example 9 We revisit Example 7, but use an interrupt rather than a choice.

t t[[a → Stop 
 b → c → Stop]] =
{} (35)

∪ {〈{c,�}〉, 〈a, {a, c,�}〉, (36)

〈{c,�}, tock, {c,�}〉, . . . } (37)

∪ {〈{c,�}, tock, a〉, (38)

〈a, {a, c,�}, tock〉, (39)

〈b, {a, b,�}, tock, c〉, 〈b, c, {a, b,�}, tock〉, (40)

〈a, b, {a, b,�}, tock, c〉, (41)

〈a, {a, c,�}, tock, b, c〉, . . . } (42)

There are no traces contributed by the first set, (32), as shown on line (35), since a → Stop
does not have any traces ending with a � event.

The second set, (33), contributes the traces on lines (36) and (37). These are traces of
a → Stop that end with a refusal and have a corresponding trace of tock events ending
with a refusal in t t[[b → c → Stop]]. Examples of relevant traces of a → Stop are those
consisting of a single refusal (such as 〈{b, c,�}〉), those consisting of a tock followed by
a refusal (such as 〈{b, c,�}, tock, {b, c,�}〉, and those that have an event a followed by a
refusal (such as 〈a, {a, b, c,�}〉).

As explained, the sequence of tock events for each trace of a → Stop is obtained by
applying f ilterT ocks to the trace before the final refusal. For those traces consisting of a
single refusal or a followed by a refusal, the sequence of tock events is empty. Those are
matched by traces of b → c → Stop that consist of a single refusal (such as 〈{a, c,�}〉).
The traces of a → Stop whose final refusals agree with the refusals of these traces of
b → c → Stop (in all but tock events) are those indicated on line (36). Since refusals are
prefix closed, this has the effect of intersecting the refusals (with the exception of tock).

For the traces of a → Stopwith a single tock event followed by a refusal, the correspond-
ing sequences of tock events are those consisting of the single tock event with the refusal
preceding it.We thus consider the traces in b → c → Stopwith a single tock event followed
by a refusal: 〈{a, c,�}, tock, {a, c,�}〉, 〈{a, c,�}, tock, {c,�}〉, 〈{c,�}, tock, {c,�}〉, . . ..

123



142 J. Baxter et al.

The corresponding traces from a → Stop are required to agree with these in the refusals
preceding the tock event, and the refusals at the end are required to agree in all but tock
events. Since the refusals in the traces from b → c → Stop do not include b, we cannot
include the trace 〈{b, c,�}, tock, {b, c,�}〉, but the trace shown on line (37) is included
since it is present in the traces of both processes.

The traces contributed by the third set, (34), are those on lines (38) to (42). Those on
lines (38) and (39) are from a → Stop and do not end in a � or a refusal. As with the traces
from (33)), their tock events and corresponding refusals are matched by a trace of tock events
from b → c → Stop. The filtering of tock events means this applies to tock events before
[line (38)] and after a [line (39)]. The result is that b is removed from each refusal observed
before a tock, since it is offered as the initial event of b → c → Stop.

The traces on lines (40), (41) and (42) consist of traces from a → Stop that do not end
in � or a refusal, followed by traces from b → c → Stop that do not start with a refusal.
The traces from a → Stop are matched by traces of tock events from b → c → Stop, but
the traces after b are included as-is.

Example 10 This example considers the traces of the process obtained by replacing the left-
hand process in Example 9 with a timestop (StopU ).

t t[[StopU 
 b → c → Stop]] =
{} (43)

∪ {〈{a, c,�, tock}〉, . . . }, (44)

∪ {〈b, {a, b,�}, tock, c〉, 〈b, c, {a, b,�}, tock〉, . . . } (45)

As in Example 9, there are no traces from set (32), as shown on line (43).
For set (33), which contains traces from the left-hand process ending in refusals, the only

traces are those consisting of a single refusal. Refusals that include b are excluded, since
the refusals must agree on non-tock events with b → c → Stop, which does not refuse
b initially. The refusals can include tock, since tock is refused by one side, so everything
except b is refused, as shown on line (44).

The traces contributed by set (34) are on line (45). Since StopU has no tock events, this
just consists of traces of traces of b → c → Stopwithout initial events. Time-synchronising
interrupt with StopU on the left thus has the effect of removing initial tock events, similarly
to external choice.

Example 11 When the left and right-hand processes of Example 10 are swapped, time-
synchronising interrupt yields different timed behaviour, as shown below.

t t[[b → c → Stop 
 StopU ]] =
{} (46)

∪ {〈{a, c,�, tock}〉, 〈b, {a, b,�, tock}〉, 〈b, c, {a, b, c,�, tock}〉, . . . }, (47)

∪ {〈b, c〉, . . . } (48)

As in Example 10, there are no traces from set (32), as shown on line (46).
Set (33) contributes the traces on line (47): traces from b → c → Stop that end with a

refusal, with tock added to the final refusal because StopU refuses tock. Since tock events
in the traces of b → c → Stop must be matched by a sequence of tock events in a trace
of StopU (which does not engage in any tock events), no tock events can occur in the traces
contributed by set (33).

123



Sound reasoning in tock-CSP 143

The traces contributed by set (34) are shown on line (48). Since StopU has no tock events
to match tock events in b → c → Stop, this just consists of traces of b → c → Stop that
contain no tock events and do not end with a refusal. Adding a time-synchronising interrupt
with StopU on the right thus has the effect of removing all tock events in the left-hand
process.

5.10 Strict timed interrupt

The semantics of strict timed interrupt, P 
d Q, is defined, as shown below, by the union of
two sets. The first set, on line (49), contains the traces that record only events that occur before
the deadline d . These are the traces p of P that contain fewer than d tock events, specified
by filtering the tock events from p and restricting the length of the resulting sequence.

t t[[P 
d Q]] =
{p : t t[[P]]|#(p � {evt tock}) < d} (49)

∪ {p : t t[[P]]; q : t t[[Q]]; r : seq Obs |#(p � {evt tock}) = d

∧ ((d = 0 ∧ p = 〈〉) ∨ (d > 0 ∧ p = r � 〈evt tock〉)) • p � q} (50)

The second set, defined on line (50), contains traces with events occurring after the deadline.
In this case a trace p of P , with events up to the deadline, is concatenated with a trace q of
Q, with events after the deadline. The trace p must contain exactly d tock events, since it is
the trace up to the deadline. Since the interrupt is immediate, no further events can occur in
p after the deadline. If d is zero, p must be the empty trace. If d is greater than zero, the last
event of p must be tock, with an arbitrary trace r before the final tock.

Example 12

t t[[a → Stop 
1 b → c → Stop]] =
{〈{b, c,�}〉, 〈a, {a, b, c,�}〉, . . . } (51)

∪ {〈{b, c,�}, tock, {a, c,�}, tock〉, (52)

〈a, {a, b, c,�}, tock, {a, c,�}, tock〉, . . . } (53)

For a → Stop 
1 b → c → Stop, the first set, (49), contributes the traces shown on
line (51). These are the traces of a → Stop that do not include a tock, since they occur
before the deadline of one tock.

The second set, (50), contributes the traces on lines (52) and (53). These are made up of a
trace froma → Stop,with exactly one tock, concatenatedwith a trace fromb → c → Stop.
The trace from a → Stopmay contain just the tock event and its preceding refusal (line (52)),
or may have an a before the tock event (line (53)). We note that a cannot occur after the first
tock, since tock must be the last element of every trace. The trace from b → c → Stopmay
contain additional tock events, but the refusals present before them may differ from those in
a → Stop, as illustrated by the trace on line (52).

5.11 Parallel composition

The semantics of a parallel composition P � A � Q is defined below, by merging each pair of
traces from P and Q using a function p � A �

T q . This trace merge function describes the set
of traces of the parallel composition generated by each pair of traces and the semantics of
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parallel composition is given by the union of the results. Having the output of the function
be a set allows for different interleavings of events to be enumerated and for subset closure
to be ensured.

t t[[P � A � Q]] =
⋃

{p : t t[[P]]; q : t t[[Q]] • p � A �
T q}

The predicate describing the trace merge function is shown in Figure 1. This function is
defined recursively, considering each possible case for a well-formed trace: the empty trace,
a trace with a single refusal, a trace with a single � event, a trace starting with an event in
Σ , and a trace starting with a refusal followed by a tock event. The trace merge function is
defined to be commutative, so we only consider one ordering of each of the possible cases.
In addition to the traces on each side, the trace merge function also takes a synchronisation
set A, so that it can be determined which events require synchronisation.

Equations (55)–(60) define the cases in which one trace is empty. If both traces are empty
(Eq. 55), then the result is a set of traces containing only the empty trace, since there are no
further observations to be merged from either of the traces. Similarly, when the empty trace
is merged with a single refusal (Eq. 56) the empty trace is also the only resulting trace, since
the empty trace gives no guarantee of stability to allow the inclusion of a refusal.

Merging the empty trace with the trace consisting of a single � event also yields just
the empty trace (Eq. 57), since � requires synchronisation, which the empty trace cannot
provide. Since, however, termination of a process does not block the other process running
in parallel, the merge results in the set containing the empty trace, rather than an empty set
of traces.

If a trace starts with an event in the synchronisation set A or a tock event (with its preceding
refusal), then its initial event requires synchronisation. Since the empty trace cannot provide
that synchronisation, no additional traces result when it is merged with such traces (Eqs. 59
and 60)).

When a trace starts with an event e that is not in A (that is, that does not require synchro-
nisation), then merging it with the empty trace yields all the traces formed by prepending e
to the traces resulting from merging the empty trace with the rest of the trace (Eq. 58). This
ensures that events that do not require synchronisation can keep being performed.

Example 13 When the empty trace is merged with the traces of b → c → Stop using
the synchronisation set {c}, the results are as shown below. In line with the presentation of
previous examples, we generally show merging with maximal traces. Where that generates
no traces, we also show the result of merging with prefixes, to illustrate the variety of the
merging function’s behaviour.

〈〉 � {c} �
T 〈{a, c,�}, tock, b〉 = {} (79)

〈〉 � {c} �
T 〈b, {a, b,�}, tock〉 = {} (80)

〈〉 � {c} �
T 〈b〉 = {〈b〉} (81)

〈〉 � {c} �
T 〈{a, c,�}〉 = {〈〉} (82)

〈〉 � {c} �
T 〈b, c〉 = {} (83)

Since tock events require synchronisation, traces containing tock events do not produce any
traces when merged with the empty trace, as shown in equations (79) and (80). This results
from the empty set in Eq. (60).

However, prefixes not containing tock do produce traces. This can be seen in Eq. (81),
where b does not require synchronisation and so 〈b〉 is included. In Eq. (82), an empty trace is
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Fig. 1 Definition of the parallel trace merge function
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produced frommerging an empty trace with a refusal, since the empty trace cannot guarantee
stability.

Similarly to the cases with tock, b followed by an occurrence of c yields no traces (Eq. 83),
since c also requires synchronisation.

Equations (61)–(66) define the cases where a trace has a single refusal (and the other is not
empty). When both traces are refusals, 〈re f X〉 and 〈re f Y 〉, the result depends on whether
X and Y agree in the events that do not require synchronisation (that is, events other than �,
tock, and the events from A). Such events are refused only if they are refused by both the
processes in the parallelism. If X and Y do agree in events not requiring synchronisation,
then the result is a refusal formed from their union (Eq. 61), so those events that do require
synchronisation are refused if they are refused by one side. When X and Y do not agree,
there are no resulting traces (Eq. 62).

When a singleton trace 〈re f X〉 is merged with a singleton trace containing just the �
event (Eq. 63), the resulting traces are the singleton traces containing refusals obtained by
adding subsets of the synchronisation set A to X . This is due to the fact that the presence of
a refusal implies that � is refused (see TT3). Therefore, the parallelism cannot terminate,
but the process that is ready to terminate refuses every other event, with the exception of
tock, since it does not block the passage of time. The non-synchronised events of X are thus
refused, since they are refused by both sides, and all the events in A are refused (including
those in X ), since they require the cooperation of both sides. The process that is ready to
terminate allows� and tock, so a refusal of those events is only added if they are in X . Thus,
all the events in X are refused, with the addition of the events in A, of which we take subsets
to ensure subset closure.

When the other trace begins with a non-� non-tock event (Eqs. 64 and 65), the result is
similar to that for the empty trace (Eqs. 58 and 59). Similarly, when we have a tock (Eq. 66)
the result is the set containing the empty trace, since tock also requires synchronisation.

Example 14 Merging the traces 〈{b, c,�}〉 and 〈{c,�}〉 from the process a → Stop with
traces from b → c → Stop, again taking {c} as the synchronisation set, yields the traces
shown below.

〈{b, c,�}〉 � {c} �
T 〈{a, c,�}, tock, b〉 = {} (84)

〈{b, c,�}〉 � {c} �
T 〈b, {a, b,�}, tock〉 = {} (85)

〈{b, c,�}〉 � {c} �
T 〈{a, c,�}〉 = {} (86)

〈{c,�}〉 � {c} �
T 〈{c,�}〉 = {〈{c,�}〉} (87)

〈{b, c,�}〉 � {c} �
T 〈b, {a, b,�}〉 = {} (88)

〈{b, c,�}〉 � {c} �
T 〈b, {b,�}〉 = {〈b, {b, c,�}〉} (89)

Merging a refusal with a trace containing a tock event yields no traces (Eqs. 84 and 85). This
is because tock requires synchronisation; it matches the cases for merging the empty trace
(Eqs. 79 and 80).

When both sides are traces with a single refusal, the refusals must agree in events not
requiring synchronisation. Thus, in Eq. (86), there are no resulting traces, since the refusals
{b, c,�} and {a, c,�} do not agree in the events a and b. However, the subset refusal {c,�}
is present in both a → Stop and b → c → Stop, and so is given as the resulting trace, as
shown in Eq. (87).

When a refusal is merged with a trace consisting of b followed by a refusal, b is included
first and the refusals are merged. Thus, in Eq. (88), there are no traces, since {b, c,�} and
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{a, b,�} do not agree in the non-synchronised event a. The subset refusals {b, c,�} and
{b,�} do agree and so the result, in Eq. (89), is the trace with an occurrence of b followed by
a refusal of {b, c,�}. The refusals do not have to agree in c, since it requires synchronisation.
The union of the refusals from each trace is taken, so that c is included in the output refusals.

Equations (67)–(70) are the remaining cases for traces containing a single � event. Since
� requires synchronisation, when both traces contain a single � event (Eq. 67), the result is
the set with that trace.

When the trace with a � event is merged with a trace starting with non-� non-tock event
e (Eqs. 68 and 69), the� event cannot occur because it does not have an event to synchronise
with, but the result depends on whether e requires synchronisation, with results similar to
Eq. (64) and (65).

When the trace with a � event is merged with a trace starting with a tock event, with its
refusal Y (Eq. 70), there is no � event to synchronise with, but we allow time to pass while
waiting for termination. The result is thus that of prepending a refusal Z and a tock event to
the traces formed by merging the trace with the � event with the trace after the input tock
event. The refusal Z is drawn from the refusals formed by merging 〈evt �〉 with 〈re f Y 〉.

Equations (71)–(76) define the cases where a trace begins with a non-� non-tock event
e. The first four cover the cases where the other trace also begins with a non-� non-tock
event f . If neither e nor f require synchronisation (Eq. 71), then the result is the union of
the traces where e occurs and those where f occurs. The traces where e occurs are formed
by prepending e to the result of merging the remainder of the trace with the other trace. The
traces where f occurs are defined similarly. If e does not require synchronisation but f does
(Eq. 72), then the result is just the traces where e occurs, followed by the result of merging
the remainder of the trace with the trace that starts with f .

When both e and f require synchronisation, then we must consider whether or not they
are the same event. If they are the same (Eq. 73), then they can synchronise. The result is that
of prepending the event to the traces formed by merging the traces after e and f . If e and f
are not equal (Eq. 74), then there are no possible traces, since they cannot synchronise.

When the trace startingwith e ismergedwith a trace startingwith a tock (and its associated
refusal), then the tock requires synchronisation, which e cannot provide. The result then
depends on whether e requires synchronisation. If it does not (Eq. 75), then the result is
similar to that for an event f requiring synchronisation (Eq. 72). If e requires synchronisation
(Eq. 76), then both sides require synchronisation, and so there are no resulting traces.

Example 15 Merging the trace 〈a〉 from a → Stop with the traces from the process b →
c → Stop yields the traces shown below.

〈a〉 � {c} �
T 〈{a, c,�}, tock, b〉 = {} (90)

〈a〉 � {c} �
T 〈b, {a, c,�}, tock〉 = {} (91)

〈a〉 � {c} �
T 〈b, c〉 = {} (92)

〈a〉 � {c} �
T 〈{a, c,�}〉 = {〈a〉} (93)

〈a〉 � {c} �
T 〈b, {a, c,�}〉 = {〈a, b〉, 〈b, a〉} (94)

As in previous examples, merging with a trace containing a tock or another event requiring
synchronisation (Eqs. 90, 91, and 92) yields no traces, since there is no matching event in
〈a〉. When 〈a〉 is merged with a trace containing a refusal (Eq. 93), a can still occur, but there
is nothing to match the refusal.
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If b occurs before a refusal (Eq. 94), the a and b events can occur in either order. No
further observations are possible after a and b, since the refusal after b is not matched by a
corresponding refusal after a.

Finally, if both traces to be merged begin with tock events, preceded by refusals X and Y
(Eq. 77), then the tock events synchronise with each other. The result is all the traces formed
by prepending a refusal Z and the tock event to the traces resulting from merging the rest of
the trace on each side. The refusal Z comes from merging the refusals X and Y from each
side as if they were refusals on their own (deferring to Eqs. 61 and 62).

Example 16 Merging traces from a → Stop and b → c → Stop that contain one tock
event yields the traces shown below.

〈{b, c,�}, tock〉
�{c}�T

〈{a, c,�}, tock, b〉
= {} (95)

〈{c,�}, tock〉
�{c}�T

〈{c,�}, tock, b〉
= {〈{c,�}, tock, b〉} (96)

〈{c,�}, tock〉
�{c}�T

〈b, {�}, tock〉
= {〈b, {c,�}, tock〉} (97)

〈a, {a, b, c,�}, tock〉
�{c}�T

〈b, {a, b,�}, tock〉
= {〈a, b, {a, b, c,�}, tock〉,

〈b, a, {a, b, c,�}, tock〉} (98)

〈a, {a, c,�}, tock〉
�{c}�T

〈{a, c,�}, tock, b〉
= {〈a, {a, c,�}, tock, b〉} (99)

When two tock events are merged, the refusals before them are merged in a similar way
to single refusals (Example 14). In particular, refusals that do not contain the same non-
synchronised events yield no output traces, as shown in Eq. (95). When the refusals before
the tock events match, the result is the traces with tock events preceded by a refusal that is
the union of the refusals on each side. Any observations after a tock event are then merged,
as can be seen in Eq. (96), where a b event follows the tock event.

Since tock requires synchronisation, any events that do not require synchronisation occur-
ring before tock in a trace to be merged are included before it in the resulting traces. Thus,
in Eq. (97) a b occurs before the tock. When there are non-synchronised events at the start
of both traces to be merged, as in Eq. (98), the non-synchronised events can occur in either
order before tock. If an event on one side occurs before tock while the event on the other
side occurs after tock, the ordering with respect to tock is maintained. This can be seen in
Eq. (99), where a occurs before tock and b occurs after.

Overall, Examples 13–16 characterise the traces of the parallel composition a → Stop �

{c} �
T b → c → Stop, which are generated by merging each of the traces of a → Stop

with each of the traces of b → c → Stop.
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5.12 Hiding

The semantics of hiding, P\X , is shown below. It is specified as the distributed union of the
traces defined by applying to each trace of P a function hideTrace, which elides the events
in X . A set is defined by hideTrace to ensure subset closure.

t t[[P\X ]] =
⋃

{p : t t[[P]] • hideTrace X p}
The hideTrace function takes a trace and the set X of events to hide, and outputs the set
of traces corresponding to the input trace, with the events in X hidden. The hideTrace
function is defined recursively, considering the different cases for the traces, as specified by
the predicate below.

∀X , Y : P Σ�
tock; e : Σ�

tock; s : T ickT ockTrace •
hideTrace X 〈〉 = {〈〉} ∧ (100)

hideTrace X 〈re f Y 〉 = {Z : P Y |X ⊆ Y • 〈re f Z〉} ∧ (101)

(e ∈ X �⇒ hideTrace X (〈evt e〉 � s) = hideTrace X s) ∧ (102)

(e /∈ X �⇒ hideTrace X (〈evt e〉 � s) =
{t : hideTrace X s • 〈evt e〉 � t}) ∧ (103)

(tock ∈ X �⇒ hideTrace X (〈re f Y , evt tock〉 � s) =
hideTrace X s) (104)

(tock /∈ X �⇒ hideTrace X (〈re f Y , evt tock〉 � s) =
{Z : P Y ; t : hideTrace X s|X ⊆ Y • 〈re f Z , evt tock〉 � t}) (105)

The first equation, (100), specifies that applying hideTrace to the empty trace just returns
the set containing the empty trace. This is because there are no events to hide in the empty
trace, so the trace is simply returned as-is.

The other base case of the definition is specified by Eq. (101), which describes the result
of applying hideTrace to a trace 〈re f Y 〉 consisting of a single refusal. In this case, we
check whether the set X of events to hide is a subset of the refusal Y . If it is not, then some
of the events in X are not refused and so may be performed. The hiding of these events turns
them into internal events, which are unstable, so the refusal is removed and the output of
hideTrace is the empty set. When X is a subset of Y , all the traces with refusals that are
subsets of Y are included. All the subsets must be included, since some subsets may not
include X and so are removed. We must (re)include such refusals where there is a refusal
including X in order to maintain subset closure.

Equations (102) and (103) define hideTrace when applied to a trace starting with a non-
tock event e. Equation (102) specifies the case where e is in X ; the result is that of applying
hideTrace to the remaining trace; e is hidden and removed. If e is not in X , as specified by
Eq. (103), the result is that of prepending e to the traces resulting from applying hideTrace
to the rest of the trace.

Finally, Eqs. (104) and (105) define the result when hideTrace is applied to a trace
starting with a refusal Y followed by a tock. This case can be viewed as a combination of
the cases for a non-tock event and for a single refusal. As for a non-tock event, there are two
cases depending on whether tock is in X or not. If tock is in X (Eq. 104), then it is hidden
and the result is that of applying hideTrace to the rest of the trace, as in Eq. (102). If tock
is not in X (Eq. 105), then it is prepended to the result of applying hideTrace to the rest of
the trace, as in Eq. (103), but the refusal Y is handled as in Eq. (101). If the hiding set X is a
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subset of Y , then refusals drawn from all the possible subsets are prepended before the tock.
If X is not a subset of Y , then no traces are included, since at least one hidden event is not
refused, so its hiding creates instability, but tock can only occur from a stable state.

Example 17 Considering the traces of b → c → Stop, with the hiding set {a, b}, the results
of applying hideTrace are those shown below.

hideTrace {a, b} 〈{a, c,�}, tock, b〉 = {} (106)

hideTrace {a, b} 〈b, c〉 = {〈c〉} (107)

hideTrace {a, b} 〈b, {a, b,�}, tock, c〉 = {〈{a, b,�}, tock, c〉, . . . } (108)

Applying hideTrace to a trace containing a refusal that does not include the hiding set
(including refusals before tock events when tock is not hidden) results in the empty set of
traces (Eq. 106). This is because there is no stability if a hidden event can be performed. This
applies even if some of the hidden events are refused, since there are still hidden events that
could occur.

Where b occurs in a trace, it is removed, since b is in the hiding set, as can be seen in
Eqs. (107) and (108). The hideTrace function is then applied to the rest of the trace after b.
The event c is included on its own in the sole resulting trace in (107), since c is not hidden.
For refusals that include all events in the hiding set, including those before non-hidden tock
events, the refusal is included with all its subsets, as can be seen in Eq. (108).

5.13 Renaming

The semantics of renaming, P[ f ], is defined as shown below. The definition is similar to
that of hiding in that it consists of a union of sets generated by applying to the traces of P a
function renameTrace. This function takes the renaming function f as one of its inputs in
addition to a trace p of P . We recall that the renaming function maps elements of Σ�

tock to
elements of Σ�

tock , but is required to identify � and tock, since they cannot be renamed.

t t[[P[ f ]]] =
⋃

{p : t t[[P]] • renameTrace f p}
The definition of renameTrace is below. The result of applying renameTrace to the empty
set is the set containing the empty trace (Eq. 109). When renameTrace is applied to a
trace beginning with event e (Eq. 110), the result is the set of traces resulting from applying
renameTrace to the rest of the trace, with the event formed from applying f to e prepended.

∀ f : Σ�
tock → Σ�

tock; e : Σ�
tock; X : P Σ�

tock; s : seq Obs •
renameTrace f 〈〉 = {〈〉} ∧ (109)

renameTrace f (〈evt e〉 � s) =
{t : renameTrace f s • 〈evt ( f e)〉 � t} ∧ (110)

renameTrace f (〈re f X〉 � s) =
{t : renameTrace f s; Y : P Σ�

tock |X = ( f ∼) � Y � •〈re f Y 〉 � t} (111)

For a trace starting with a refusal X (Eq. 111), the result is that of prepending a corresponding
refusal Y to the traces obtained by applying renameTrace to the rest of the trace. The refusal
Y is one whose image under the inverse of f is equal to X . This means that for the events
refused in X , the corresponding events under f are refused in Y . It also allows for events not
in the range of f to be included in Y . Since such events cannot be performed in any trace
that results from renaming, they must be refused (by healthiness condition TT2).
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Example 18 We consider f to be id ⊕ {a �→ b}, that is, the function that maps a to b and
maps every other event to itself. Applying renameTrace f to the traces in the semantics of
a → Stop yields the results shown below.

renameTrace f 〈{b, c,�}, tock, a〉 = {} (112)

renameTrace f 〈{c,�}, tock, a〉 = {〈{a, c,�}, tock, b〉,
〈{c,�}, tock, b〉}

(113)

renameTrace f 〈a, {a, b, c,�}, tock〉 = {〈b, {a, b, c,�}, tock〉,
〈b, {b, c,�}, tock〉}

(114)

For a refusal, there must be refusals that map to it under the inverse image of f . The maximal
initial refusal {b, c,�} thus yields no traces, as shown in Eq. (112), since any refusal that
includes b has an inverse image under f including both a and b. Since {b, c,�} does not
refuse a, we cannot, therefore, include b, but without refusing b we cannot match the refusal
of b. So there are no corresponding refusals for {b, c,�}, and, therefore, no traces.

The subset refusal {c,�}, however, is the inverse image under f of both {a, c,�} and
{c,�}, since nothingmaps to a under f . The result of applying renameTrace to a trace start-
ing with {c,�} is thus the set of traces starting with refusals {a, c,�} and {c,�} (Eq. 113).
We show all the refusals to emphasise that only those are included, rather than the full sub-
set closure. TT1 healthiness of the process to which renaming is applied ensures that the
renaming fulfils TT1. Proof of healthiness of renaming and all other operator definitions in
this section is discussed in Sect. 5.15. After the initial refusal, renameTrace is applied to
the rest of the trace, leaving tock unaffected and replacing a with b.

Refusals occurring after renamed events are handled in the same way as in Eq. (112)
and (113), as is illustrated in Eq. (114). We note that both a and b occur in the refusal in
Eq. (114), so b can be included in the refusals in the resulting traces, in contrast to the situation
illustrated by Eq. (112) where the lack of a refusal of a eliminates traces.

5.14 Recursion

If P is a recursive process defined by P = F(P), then the semantics of P is defined, as
shown below, by the union of all iterations of F applied to a divergence. Here, we take F as
a function from processes to processes, and use Fn to refer to repeated application of F n
times: F0(X) = X , F1(X) = F(X), Fn+1(X) = F(Fn(X)).

t t[[P]] =
⋃

{n : N • Fn(t t[[div]])}
The application of the iteration to a divergence means an unguarded recursion results in a
divergence. Since divergence refines every process in�-tock, this means recursion is defined
by the greatest fixed point of F . All the operators we have defined distribute through arbitrary
unions, so for F made up of those operators, the defining equation P = F(P) holds with
this semantics for recursion.

Mutual recursion is, as usual, the fixed point for a vector of functions.

5.15 Key results

For validation of our definitions, we prove that the set of traces of all processes defined using
our operators satisfy the healthiness conditions described in Sect. 4. We, therefore, say that
�-tock processes are healthy.
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The healthiness conditions are not directly enforced, but rather arise from the definitions,
which have been constructed to ensure that these properties hold. To establish the healthiness
of the definitions, first of all, we prove that all traces in all sets characterised by our definitions
are well formed. This is proved by first showing that each of the traces of the basic processes
(div, Skip, Stop, StopU , Wait n) is well formed. We then consider each of the remaining
operators: we assume the sets of �-tock traces of its operands are well formed and show
that the each of traces of the process formed by applying the operator to those operands is
well formed. We thus have that the traces of all processes are well formed by induction. For
example, we show the following for external choice.

t t[[P]] ⊆ T ickT ockTrace ∧ t t[[Q]] ⊆ T ickT ockTrace

�⇒ t t[[P � Q]] ⊆ T ickT ockTrace

This follows from the fact that t t[[P � Q]] is made up of traces in t t[[P]] or t t[[Q]] satisfying
certain constraints, so that t t[[P � Q]] ⊆ t t[[P]] ∪ t t[[Q]]. Since, by assumption, the traces
in t t[[P]] and t t[[Q]] are well formed, so are those in t t[[P � Q]].

To establish healthiness of the sets of traces, we also consider first each of the basic
processes P , and prove that t t[[P]] satisfies all the conditions. In addition, we prove that all
operators, when applied to healthy processes, characterise healthy processes. For example,
we prove the following theorem for external choice.

TT0(P) ∧ TT1(P) ∧ TT2(P) ∧ TT3(P)

∧ TT0(Q) ∧ TT1(Q) ∧ TT2(Q) ∧ TT3(Q)

�⇒ TT0(P � Q) ∧ TT1(P � Q) ∧ TT2(P � Q) ∧ TT3(P � Q)

Additionally, since CSP is a language for refinement, it is important that the operators are
monotonic: refinement of a process to which an operator is applied produces a refinement of
the process as a whole. For example, the statement of monotonicity for the left operand of
external choice is as follows.

P � Q �⇒ P � R � Q � R

This property is important because it allows processes to be considered and reasoned about in
a compositional way, independently of their context. We have thus proved that monotonicity
holds for all the operators of �-tock CSP.

A distinguishing feature of CSP over other process algebras is the distributivity of the
operators, except recursion, over internal choice. This is stronger than monotonicity, and
holds for�-tock operators. For example, we have the following property for external choice,
which implies the monotonicity property above.

(P 	 Q) � R = (P � R) 	 (Q � R)

We have shown that, as expected, distributivity over internal choice holds for all �-tock
operators except recursion. This is because, for example, recursions such as P = F(P 	 Q)

and Q = G(P 	 Q) can resolve the choices differently at each iteration, so neither P nor Q
can be expressed as the choice of two recursions.

Our semantics also satisfies the properties discussed in Sect. 2 that ensure that processes
behave as captured by their failure semantics within a time unit. We recall that Property 1
requires that any process whose traces do not include tock has the same failures and �-
tock semantics. As mentioned, comparing �-tock semantics to failures semantics requires
a common representation for failures and �-tock traces, so that they can be compared. To
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prove Property 1 we thus define a function t t2F for converting a set of �-tock traces, to a
set of failures.

t t2F(P) = {t : seqΣ�; X : P Σ�|
((evt ◦ t) � 〈re f X〉 ∈ P)

∨ ((evt ◦ t) � 〈evt �〉 ∈ P ∧ � /∈ X)

∨ ((evt ◦ t) ∈ P ∧ (∃s • t = s � 〈�〉))
}

This function takes a set P of �-tock traces, and defines a corresponding set of failures
containing traces of non-tock events t paired with a refusal X . The pairs (t, X) are those that
correspond to one of three kinds of �-tock traces in P: (1) a trace consisting of the events
of t followed by X ; (2) a trace consisting of the events of t followed by �, where X does not
contain �; or (3) a trace consisting of the events of t , where t ends in � and X is arbitrary.

Sequences are functions from indices to the elements of the sequence, so the composition
evt ◦ t is the sequence containing the result of applying the constructor evt to the events of
t . We disregard tock events in t t2F , since Property 1 considers processes with traces that do
not include tock, and we are mapping to a failures semantics for a set of events that does not
include tock.

We then show Property 1 by showing that the�-tock semantics of each operator, mapped
under t t2F , is equal to the failures semantics of that operator. For example, we have shown
the following for external choice.

t t2F(t t[[P]]) = [[P]]F ∧ t t2F(t t[[P]]) = [[P]]F �⇒ t t2F(t t[[P � Q]]) = [[P � Q]]F
We then have that t t2F(t t[[P]]) = [[P]]F for any process P by induction, andwe have proved
that Property 1 follows from this.

For Property 2, it is easy to see that there are simple processes such as Skip and StopU
that do not include tock events. A more complex example of such a process is given above in
Example 11, where adding a time-synchronising interrupt with StopU removes tock events
from a process.

It is outside the scope of this work to prove a complete set of algebraic laws for tock-
CSP, but we have proved some laws to validate the more complex operator definitions. For
example, we have shown that parallel composition is associative and that Stop is a unit of
external choice. In total, we have proved 16 laws.

All the results discussed in this paper have been established using Isabelle/HOL. The
examples in Table 1 have been checked using model checking (see Sect. 7). Our support for
�-tock proofs using Isabelle is described next.

6 Mechanisation in Isabelle

In this section we describe a mechanisation of the �-tock model in Isabelle/HOL, via recur-
sive data types, and of its healthiness conditions and operators. In Sect. 6.1 we describe
the encoding of �-tock traces, and of the healthiness conditions. In Sect. 6.2, we discuss
the definitions of the semantics of sequential composition, as an example, and the proof of
healthiness of the sets of traces that it defines. As said, all theories and proofs can be found
in [5].
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6.1 Model

Our mechanisation of �-tock in Isabelle is very close to our presentation of this model in
the previous section. This provides confidence in our encoding and valuable validation of
our definitions. It is constructed by defining a parametric datatype for Σ�

tock as ’e ttevent

below, where ’e is an arbitrary HOL type.

datatype ’e ttevent = Event ’e | Tock | Tick

The Event ’e constructor is used to represent an event inΣ , while Tock and Tick correspond
to tock and �, respectively. The advantage of parametric type definitions is that results are
independent of a particular Σ .

The HOL type for Obs is defined using another datatype ’e ttobs that has two con-
structors: ObsEvent and Ref, corresponding to evt〈〈_〉〉 and re f 〈〈_〉〉, respectively. The more
concise syntax [_]E , and [_]R can also be used.

datatype ’e ttobs = ObsEvent "’e ttevent" ("[_]E") |
Ref "’e ttevent set" ("[_]R")

The type seq Obs is specified using ’e ttobs list, the type of finite lists parametrised by
’e ttobs, which we abbreviate in Isabelle by defining a type_synonym.

type_synonym ’e tttrace = "’e ttobs list"

A valid trace (T ickT ockTrace) is identified by requiring that the Boolean function ttWF,
defined below, gives true when applied to it.

fun ttWF :: "’e tttrace ⇒ bool" where
"ttWF [] = True" |
"ttWF [[X]R] = True" |
"ttWF [[Tick]E] = True" |
"ttWF ([Event e]E # σ) = ttWF σ" |
"ttWF ([X]R # [Tock]E # σ) = (ttWF σ ∧ Tock /∈ X)" |
"ttWF σ = False"

There are three base cases: the empty list []; the list whose only element is a refusal, or a
Tick event. The recursive cases are those where an event is followed by a list σ , and where
Tock is preceded by a refusal followed by a list σ . Here, # is the constructor for lists. Since
in HOL functions are total, there is a default case defined last that matches any construction
not covered by the previous cases.

The healthiness conditions, and operators, are defined by HOL functions on sets of ’e

ttrace, that is, models of �-tock processes. We introduce a corresponding type_synonym
that identifies processes with such sets.

type_synonym ’e ttprocess = "’e tttrace set"

The healthiness conditions are defined exactly as presented earlier, taking into account the
minor differences in the mathematical syntax adopted by Isabelle. For example, the empty
set is typed as {} instead of ∅.

definition TT0 :: "’e ttprocess ⇒ bool" where
"TT0 P = (P �= {})"

definition TT1 :: "’e ttprocess ⇒ bool" where
"TT1 P = (∀ � σ. (� �C σ ∧ σ ∈ P) −→ � ∈ P)"

Furthermore, in the case of TT2, for example, the set comprehension does not need to
be explicitly typed as Isabelle can automatically infer the correct types. The definition is,
otherwise, identical to TT2.
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definition TT2 :: "’e ttprocess ⇒ bool" where
"TT2 P = (∀ � σ X Y. (� @ [[X]R] @ σ ∈ P ∧ (Y ∩ {e. (e �= Tock ∧ �

@ [[e]E] ∈ P) ∨ (e = Tock ∧ � @ [[X]R, [e]E] ∈ P) } = {}))
−→ � @ [[X ∪ Y]R] @ σ ∈ P)"

In the case of TT3, we have encoded it in a similar form to that presented earlier.

definition TT3 :: "’e ttprocess ⇒ bool" where
"TT3 P = (∀ � σ X. � @ [[X]R] @ σ ∈ P −→ � @ [[X ∪ {Tick}]R] @ σ

∈ P)"

To make proofs by induction easier, we have also provided an alternative definition TT3w,
shown below, that uses a recursively defined function.We use TT3w in proofs; we have proved
lemmas connecting it to the definition above.

definition TT3w :: "’e ttprocess ⇒ bool" where
"TT3w P = (∀ �. � ∈ P −→ add_Tick_refusal_trace � ∈ P)"

It takes a �-tock process P and requires that, for every trace � in P, the trace generated by
the function add_Tick_refusal_trace, defined next, is also in P.

fun add_Tick_refusal_trace :: "’e tttrace ⇒ ’e tttrace" where
"add_Tick_refusal_trace [] = []" |
"add_Tick_refusal_trace ([e]E # t) = [e]E # add_Tick_refusal_trace

t" |
"add_Tick_refusal_trace ([X]R # t) = [X ∪ {Tick}]R #

add_Tick_refusal_trace t"

For the empty trace [], add_Tick_refusal_trace returns the empty trace. When a trace
begins with an event [e]E , the result is the trace with [e]E followed by the result of applying
add_Tick_refusal_trace to the rest of the trace. Finally, when a trace begins with a refusal
[X]R , the result is the trace that begins with a refusal of X with Tick added to it ([X ∪
{Tick}]R), followed by the result of applying add_Tick_refusal_trace to the rest of the
trace. The function add_Tick_refusal_trace thus has the effect of adding Tick to every
refusal in a trace.

The difference between TT3w and TT3, is that TT3 considers part of a trace, where a refusal
is preceded by ρ and followed by σ (the trace ρ � 〈re f X〉 � σ in the antecedent), whereas
add_Tick_refusal_trace is defined recursively, applying to every refusal in a trace. Taken
together with the subset closure in TT1, the definitions are equivalent, a fact we have proved
in our mechanisation.

6.2 Operators

To illustrate the use of Isabelle in establishing key results of �-tock, we show the proof of
well-formedness for the traces of sequential composition. We show, first of all, the definition
for sequential composition below.

definition SeqCompTT :: "’e ttprocess ⇒ ’e ttprocess ⇒ ’e ttprocess"
(infixl ";C" 60) where

"P ;C Q = {�∈P. � s. � = s @ [[Tick]E]}
∪ {�. ∃ s t. s @ [[Tick]E] ∈ P ∧ t ∈ Q ∧ � = s @ t}"

Besides its type signature, it follows very closely the definition given in Sect. 5. The proof
of closure is shown next, using the Isar dialect of Isabelle that can be used to write proofs in
a deductive style, with major steps justified by the application of a relatively small number
of proof tactics.
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lemma SeqComp_wf:
assumes "∀t∈P. ttWF t" "∀t∈Q. ttWF t"
shows "∀ t ∈ P ;C Q. ttWF t"
unfolding SeqCompTT_def

proof auto
fix t
assume "t ∈ P" "∀s. t �= s @ [[Tick]E]"
then show "ttWF t"

using assms(1) by auto
next

fix s ta
assume "s @ [[Tick]E] ∈ P"
then have 1: "ttWF (s @ [[Tick]E])"

using assms(1) by auto
assume "ta ∈ Q"
then have 2: "ttWF ta"

using assms(2) by auto
from 1 2 show "ttWF (s @ ta)"

by (induct s rule:ttWF.induct, auto)
qed

The lemma SeqComp_wf assumes that all the traces of both P and Q are well-formed, and shows
that all traces of the sequential composition are well-formed (ttWF). The proof starts by
unfolding the definition of ;C (SeqCompTT_def). The following application of the tactic auto

in a proof environment leads to two proof goals.
The first goal requires showing that every trace t in P not ending in [Tick]E is well-

formed according to ttWF, corresponding to the case captured by the first set comprehension
in the definition of SeqCompTT. It can be discharged using the assumption that every trace of
P satisfies ttWF (assms(1)).

The second goal requires showing that assuming s @ [[Tick]E] is in P and ta is in Q,
then the concatenation (@) of s and ta satisfies ttWF, corresponding to the case captured
by the second set comprehension in the definition of SeqCompTT. It can be discharged by
showing that: 1) s @ [[Tick]E] satisfies ttWF, using the assumption that every trace of P
satisfies ttWF (assms(1)); and 2) ta satisfies ttWF, discharged using the assumption that
every trace of Q satisfies ttWF (assms(2)); and finally establishes that the concatenation of
the traces satisfies ttWF by inducting over the possible traces of s based on the definition
of ttWF (via the rule ttWF.induct).

Proofs for other key results of�-tock, namely that all operators are monotonic and closed
under the healthiness conditions, have also largely been done using the Isar dialect. Despite
the high degree of automation provided by Isabelle, it is reassuring that the proof steps in
Isar are relatively easy to follow.

7 Mechanisation in FDR

To encode the refinement for �-tock we tailor Mestel and Roscoe [23,24]’s model shifting
technique to encoding refusals using traces, so that �-tock refinement is reduced to traces
refinement. We begin this section by explaining how refusals are encoded, followed by the
encoding of �-tock traces, and termination. Finally we revisit Example 1.
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(a) (b) (c)

Fig. 2 LTS calculated from F and stepwise application of contexts C1 and C2

7.1 Refusals

Given a set Σtock we define Σ ′
tock , where each e ∈ Σtock is replaced by a dashed counterpart

e′, used to indicate that e is refused. For a process P , a context C1 is defined below to define
a process C1[P]whose traces encode the refusals of P . We note that C1, and other definitions
to follow, are specified in FDR outside of a timed section as they are not tock-CSP processes.

Definition 6 C1[P] =̂ Pri≤1(P|||RUN (Σ ′
tock ∪ {stab}))

Process P is composed in interleaving (|||), a form of parallel composition where no syn-
chronisation is required, with the process RUN (Σ ′

tock ∪ {stab}) that offers events in Σ ′
tock ,

including a dashed version of tock, and the event stab that encodes an empty refusal, in an
external choice forever. This composition is followed by the application of Pri≤1 to prioritise
each event e over e′, so that e′ is only available whenever e is refused stably. Event stab is
prioritised lower than τ and �, so an empty refusal can be observed whenever a process is
not divergent or terminated, that is, for example, not the case for div.

The operator Pri≤(P) [35], implemented in FDR as prioritisepo, is a more general
version of timed_priority, whereby events can be prioritised according to a partial
order ≤. (The idea of priorities on actions originates with [9]). The behaviour is that of P ,
but changed so that whenever events a and b are available, then if b is of strictly higher
priority than a, that is, a < b, then a, and the following behaviour from a, is pruned. For
example prioritising the process a → P � b → Q with a < b would yield b → Pri≤(Q).
In the above definition, ≤ is ≤1, defined by e <1 e′.

To illustrate the operational effect of C1 we consider the following example.

Example 19 With Σ = {a}, we have for F =̂ (a → Stop) � StopU that:

t t[[F]] = {〈〉, 〈{tock,�}〉, 〈a〉, 〈a, re f Σ�, tock〉, . . .}
traces(C1[F]) = {〈〉, 〈stab, tock′〉, 〈a〉, 〈a, a′, stab, tock〉, 〈stab, tock′, a〉, . . .}
F offers to do a immediately, because of the timestopStopU , and then deadlocks. Itsmaximal
traces in�-tock are: the empty sequence; the sequence with the only refusal containing both
tock and �; and the sequence with event a, possibly concatenated with 〈Σ�, tock〉 any
number of times, corresponding to the behaviour of Stop after event a has happened.

The Labelled Transition System (LTS) resulting from the application of the operational
semantics of CSP, which can be calculated using FDR, is shown in Fig. 2a. The application
of C1 to F introduces transitions corresponding to the events being refused at each state.
Thus in Fig. 2a, we have that in the initial state tock is refused, and so events stab and tock′
become available in Fig. 2b, and similarly for the next state.

123



158 J. Baxter et al.

For reasoning based on �-tock semantics, however, the trace 〈stab, tock′, a〉, encoding
〈{tock}, a〉 is undesirable because, in a�-tock trace, after a refusal the only possible event is
tock. Next we introduce a context C2 to eliminate such undesirable traces and support checks
for refinement based on a �-tock semantics.

7.2 Semantics

Having encoded refusal events using C1[P], it is then necessary to ensure they can only occur
as permitted by the �-tock model. Thus, we define another context C2[P], where C1[P] is
composed in parallel with a process Sem synchronising on events in the union ofΣtock ,Σ ′

tock
and {stab}. The role of Sem is to eliminate traces of C1[P] that are not valid in �-tock.

Definition 7 C2[P] =̂ C1[P] � Σtock ∪ Σ ′
tock ∪ {stab} � Sem

The process Sem is defined below, where we use the standard (untimed) operators of CSP
for external choice and prefixing, and Σ ′

tock,stab = Σ ′
tock ∪ {stab}.

Definition 8 Sem =̂ (� e : Σtock • e → Sem) � (� r : Σ ′
tock,stab • r → Ref )

Ref =̂ (� r : Σ ′
tock,stab • r → Ref ) � tock → Sem

Sem offers every event e fromΣtock in an external choice followed by a recursion, and every
event r from Σ ′

tock,stab encoding refusals also in choice, but followed by Ref . That process
also offers events from Σ ′

tock,stab followed by a recursion, but tock is also offered followed
by Sem. So, a trace of Sem includes any number of original events fromΣtock , until a refusal
event r fromΣ ′

tock,stab occurs, when we then have any number of such events, before a tock,
and we can again have original events. This encodes the possibility to observe events from a
refusal set at the end of a trace of original events, and before tock events.

To illustrate the application of C2 to process F from Example 19 we consider the LTS
in Fig. 2c. The self transition on the initial node obtained from the application of C1 is
replaced by a transition on the same events, stab and tock′, to a node that accepts these
events indefinitely, but not a. This is because initially tock can be refused, and so a refusal
event tock′, encoding a refusal set where tock is refused, cannot be followed by any regular
event.

Example 20 traces(C2[F]) =
{〈〉, 〈stab, tock′〉, 〈a〉, 〈a, a′, stab, tock〉, 〈stab, tock′, stab, . . .〉, . . .}

The �-tock traces of F before observing event a are encoded by 〈〉, 〈stab, . . .〉, 〈tock′, . . .〉,
where tock′ and stab are offered continuously. This is effectively an encoding of the set
{tock} via traces. Traces of F after a are similarly encoded by 〈a〉 concatenated with 〈a′, . . .〉
or 〈stab, . . .〉 any number of times, with tock being possible after each event a′ or stab in
the traces. Subset inclusion of refusal sets corresponds to subset inclusion over the set of
encoding traces, which is key to reducing refinement of �-tock traces to traces refinement.

7.3 Termination

The original technique in [23] did not account for termination. For example, we have that
C1[Skip] = C1[StopU ]. Because in C1 there is an interleaving, termination of Skip does
not lead to termination of C1[Skip], and instead refusal information is added exactly as for
StopU . To cater for termination, we define a third context C3 and extend Σtock with a fresh
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event tick that encodes �, similarly to the approach in [24]. Unlike [24, p. 411], however,
we do not hide tick, as this allows Skip to be erroneously refined by StopU .

Definition 9 C3[P] =̂ C2[P ; tick → Skip]
Thus we sequentially compose P with the prefixing on event tick before applying context
C2, so that actual termination is not masked by the interleaving in C1. This enables us to
establish the following key result: P is refined by Q in the �-tock model if, and only if, its
encoding using C3[P] is refined by C3[Q] in the traces model (T ) of CSP.

Theorem 1 P � Q ⇐⇒ C3[P] �T C3[Q]
Proof Similarly to that outlined in [23, Lemma 3.1] by following the above construction,
where the regulator process is Sem. In addition to the refusals of the stable-failures model
as described in [23], encoded by dashed events x ′ and stab, the event tock can happen, with
the subsequent observable events in a trace being those of Sem or P, as permitted by the
synchronisation of the context with P. 	�
A script with the complete encoding is available.2

To illustrate the refinement technique we reconsider Example 1. Recall that although R is
refined by Swhen considering the failures semantics of CSP, in a timed setting this refinement
should not hold. Here we focus on the result of the check R � S. Using Theorem 1, this
amounts to checking whether C3[R] �T C3[S] holds. This yields a counter-example where
after the trace 〈b′, tock〉 process S can perform event a but R cannot. That is, having refused
b, followed by a tock, process R then behaves as Stop, whereas S can perform a. This is
exactly the scenario we previously described in Sect. 2.

On the other hand, when R and S are considered in context I, the refinement I[R] � I[S]
should hold in�-tock as discussed in Sect. 2 and summarized in Table 1. Using our encoding
in FDR we have checked that C3[I[R]] �T C3[I[S]] holds.

8 Conclusions

The inclusion of tock inCSP enables a rich andflexible approach tomodelling time.However,
despite several models accounting for the use of tock, none have, so far, adequately catered
for deadlines, termination, erroneous Zeno behaviour, and timed refinement in a way that is
compatible with a view of tock-CSP as a language with a failures-based semantics within
each time unit.

Most case studies in the tock-CSP literature using refinement focus on safety only [11,19].
Evans and Schneider [11] consider an embedding of tock-CSP in PVS [33] using the traces
model for analysis of time-dependent security properties. An embedding in Isabelle/HOL of
the failures model of CSP has also been considered by Isobe and Roggenbach [18]. However,
to reason about liveness we need a richer model encompassing refusals over time.

The earliest introduction to tock-CSP appears in Chapter 14 of Theory and Practice
of Concurrency [37]. Despite using timestops, Roscoe later describes these undesirably as
“breaching the laws of nature by preventing time from progressing” [38]. Similarly, Ouak-
nine’s discrete-time refusal testing model [31] does not admit timestops. Like Timed CSP,
there is no explicit control of time, thus time can pass arbitrarily between events, and Zeno
behaviour is forbidden.

2 https://github.com/robo-star/tick-tock-CSP/tree/master/fdr/tick-tock.csp.
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Timestops are useful to model deadlines as shown here and by other authors [32]. More
recently, Lowe and Ouaknine [22] revisited the discrete-time refusal testing model by con-
sidering traces where refusals are recorded only before tock, but do not admit timestops or
termination. They have also proposed a similar model, called timed testing, that does not
record instability.

Armstrong et al. [3] explore refinement checking using the refusal testing model in FDR2.
Because refusals before events other than tock need to be ignored to yield the right refinement
relation, and not that of refusal testing, the construction is not trivial. A different encoding
has also been considered by Roscoe [39] using the concept of slow-abstraction, and more
recently Mestel [24] employed model-shifting, an approach that is similar to our encoding
of �-tock in FDR (described in Sect. 7), but whose treatment of termination is not adequate.

In this work we have considered tock-CSP as a language on its own right by defining its
operators, consistently with their use in FDR’s timed sections, and a semanticmodel adequate
for timed refinement. The model, and its operators, have been mechanised in Isabelle/HOL
for the purpose of establishing key results. It is an environment for mechanical proving of
laws and paves the way for the development of symbolic refinement tools for tock-CSP.

It is in our plans to prove laws of �-tock, using our mechanisation, in support of a
refinement strategy for semi-automatic generation of sound simulations for robotics [7]. It is
clear that Pri≤ endows CSP with extra expressive power [35], allowing, for example, regular
events to be made urgent by prioritising them over tock. In future work, we also plan to
provide a prioritisation operator for �-tock.
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