Theory Comput Syst (2010) 47: 317-341
DOI 10.1007/s00224-008-9163-5

Non-Uniform Reductions

Harry Buhrman - Benjamin Hescott -
Steven Homer - Leen Torenvliet

Published online: 9 January 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract We study properties of non-uniform reductions and related completeness
notions. We strengthen several results of Hitchcock and Pavan (ICALP (1), Lecture
Notes in Computer Science, vol. 4051, pp. 465476, Springer, 2006) and give a trade-
off between the amount of advice needed for a reduction and its honesty on NEXP.
We construct an oracle relative to which this trade-off is optimal. We show, in a more
systematic study of non-uniform reductions, among other things that non-uniformity
can be removed at the cost of more queries. In line with Post’s program for complexity
theory (Buhrman and Torenvliet in Bulletin of the EATCS 85, pp. 41-51, 2005) we
connect such ‘uniformization’ properties to the separation of complexity classes.

Keywords Non-uniform reductions - Reductions with advice - Non-uniform
complexity - NEXP complete set - EXP complete set - NP complete set
1 Introduction

Reductions and completeness are two of the original concepts in complexity theory
and form part of the core of the field to this day. Determining whether a problem is

H. Buhrman
CWI, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands
e-mail: buhrman@cwi.nl

B. Hescott ()
Computer Science Department, Tufts University, 161 College Ave, Medford, MA 02155, USA
e-mail: hescott@cs.tufts.edu

S. Homer
Computer Science Department, Boston University, 111 Cummington St, Boston, MA 02215, USA

L. Torenvliet

ILLC, Plantage Muidergracht 24, Amsterdam, The Netherlands
e-mail: leen@science.uva.nl

@ Springer


mailto:buhrman@cwi.nl
mailto:hescott@cs.tufts.edu
mailto:leen@science.uva.nl

318 Theory Comput Syst (2010) 47: 317-341

complete for a particular class is central in determining the computational complex-
ity of that problem. In a broader perspective, questions of whether different types
of reductions are the same or different, and whether completeness notions induced
by these reductions are the same or different have been assiduously explored, e.g.
[12, 13, 27, 30]. Answers to these questions are related to the central open problems
of the field. In some cases, inequality of reductions on certain complexity classes im-
plies inequality of complexity classes. In others, the collapse of degrees to an isomor-
phism type under some notion of reduction also yields the inequality of classes [2, 3,
7, 16, 19, 23, 25, 31]. This makes the properties of reductions, for example whether
they are length-increasing, 1-1, etc. important objects of study. Finally, certain prop-
erties of complete sets in different complexity classes might have implications for the
of equality of these classes [5, 10, 15].

The lion’s share of investigations of reductions has been into uniform reductions.
Now, non-uniformity has entered the realm of the reduction. As with the definitions
of non-uniform complexity classes, by means of advice classes, (P/poly and families
of circuits of a certain size), one can define reductions that are computable by means
of additional advice or by polynomial size circuits.

Allender et al. [4] have shown that the set R of Kolmogorov incompressible
strings, with respect to exponential time Kolmogorov complexity, is complete for
EXP with respect to polynomial time (truth-table) reductions that have a polynomial
amount of advice. Moreover, the advice is indispensable: R is not complete with re-
spect to uniform Turing reductions [8]. For a strengthening of this see the thesis of
Ronneburger [29].

Agrawal [1], while studying the isomorphism conjecture [7] for NP complete sets,
used non-uniform reductions with advice. He showed, under the assumption that a
certain type of one-way function exists, that all many-one complete sets for NP are
1-1 and length increasing complete for reductions that use some amount of non-
uniform advice.

Hitchcock and Pavan [22] show, under a different assumption, namely that NP is
not small (does not have resource bounded measure zero), that every many-one com-
plete set for NP is length increasing complete with reductions that use a polynomial
amount of advice. Moreover they also show that for NEXP the many-one complete
sets are length increasing complete with reductions that use a polynomial amount of
advice.

In this paper we improve the results of Hitchcock and Pavan. In particular, we
show, under the weaker assumption that there exists a DTIME(2") bi-immune set in
NP, that one bit of advice suffices to show that many-one complete sets are length
increasing complete.! We also improve their results for NEXP. We again reduce the
length of the advice needed to make the reductions length increasing and show that
our result is optimal relative to some oracle. In particular, this yields an oracle where
the many-one complete sets for NEXP are not (uniformly) length increasing com-
plete, in fact they are only exponentially honest, matching the best known result due

1Technically we show something slightly weaker. We show that the many-one reduction is either length
increasing or accepts/rejects without querying a string. The result does hold for 1-tt reductions.

@ Springer



Theory Comput Syst (2010) 47: 317-341 319

to Ganesan and Homer [17]. This shows that non-relativizing techniques are needed
to settle this question.

Another structural property known for EXP [20] and for NEXP [14] is the follow-
ing: Every 1-truth-table complete set is many-one complete. We show that, under the
hypothesis that NP contains a set that is NTIME(Z”C) N CO—NTIME(2”U) bi-immune,
every 1-truth-table complete set for NP is many-one complete with 1 bit of advice.?
By extending an earlier result of [9], we construct an oracle world where such a bi-
immune set exists in NP. This result relates to the work of Glasser et al. [18]. They
show under the assumption that NP differs from coNP at every length that 1-truth-
table complete sets for NP are also many-one complete with polynomial advice.

The results above warrant a more systematic investigation into non-uniform re-
ductions. In particular, is the amount of advice needed for the non-uniform reductions
above optimal? In general, when does advice yield additional power?

In the second part of this paper we begin such a study. We first show that for
EXP constant query reductions that have advice are strictly more powerful than their

uniform counterparts. For example we show that the 5,’:,/ 1-complete degree and the
fé’n—complete degree for EXP are incomparable. Analogous to uniform reductions,
we show that complete sets for EXP with respect to many-one reductions that use
¢ bits of advice are 1-1 and length increasing complete with ¢ bits of advice. These
results require new techniques as the original ideas for uniform reductions cannot be
used directly.

Second, we show that non-uniformity can be removed at the price of more queries.
In particular we show that sets that are many-one complete with respect to reductions
that use O (logn) bits of advice are Turing-complete with respect to uniform reduc-
tions for EXP. For the delta levels of the polynomial hierarchy we show that truth-
table reductions suffice in order to ‘uniformize’ the reduction. Here we use ideas and
techniques from the paper that studies the auto-reducibility of complete sets [15].
We have the added bonus that these theorems do not relativize and hope that these
results could be used in a nonrelativizing proof that separates complexity classes. In
particular it follows from our results that solving the question of whether many-one
complete sets with 1 bit of advice are uniformly truth-table complete will separate
complexity classes (EXP from EXPSPACE or PH from EXP). For details see Theo-
rems 35 and 34. Hence understanding questions like these has deep implications for
complexity theory.

2 Notation

We adopt the standard definitions and notations for well-known complexity classes,
and other notions of computational complexity, as can be found, e.g., in [6] and [24].
We use the standard paring function denoted (a, b) for binary strings a, b, where
[{(a, b)| =2|a| + |b| + 2. Let m; (¢) denote the ith projection of the k-tuple g, where
i < k. We use the standard definitions for polynomial time reductions, i.e., we say

2Again we technically prove this for the weaker version of many-one reduction that can also accept/reject
without producing a query.

@ Springer



320 Theory Comput Syst (2010) 47: 317-341

A many-one reduces to set B, denoted A 5,’,71 B, if there is a polynomial time com-
putable function f where x € A < f(x) € B. The reduction is considered a 1-1
reduction, 5’1”_1, if in addition the function f is one to one. A many-one reduction

there is a polynomial p, s.t. Vx, p(lf(x)]) > |x|. We recall the notion of the extended
many-one reduction: A 52 B if there exists a polynomial time Turing machine M
with an output tape, where on input x, M does one of the following: M outputs
f(x) e X* and x € A <> f(x) € B, M outputs ACCEPT and x € A, or M outputs
REJECT and x ¢ A.

Polynomial time oracle machines are used to characterize both Turing and truth-
table reductions. The query set of an oracle machine M on input x with oracle A is
denoted as Q(M#(x)). The notation M4 (x) is also used as a notation for the out-
come of the computation of machine M on input x with oracle A. This can be either
accept/reject or a string y. In the latter case—the machine computes a function—we
also use the notation f4(x). We assume enumerations {M;}; ({fi};) for all conve-
nient classes of machines (functions). A polynomial reduction is nonuniform if it is
in P /poly,ie. A <b/P™ Bif3f € FPand h € poly where A = {x| f (x, h(]x])) € B},
here poly ={g | Vn, |g(n)| < p(n) for some polynomial p}. Many times the amount
of advice is more or less restrictive, this restriction is on the function £ in the defini-
tion above. Namely, for one bit of advice the range of / is {0, 1}. We denote a one-bit
nonuniform many one reduction by 5,1,7,/ !'In many complexity classes K will stand
for the generic complete set, e.g., KA = {(i,x, k) | MA(x) accepts in < k steps} is
the canonical complete set for EXP with oracle A. To avoid confusion we will sub-
script K with the appropriate complexity class, e.g., Kgxp. Mg or Nx will be the
machine accepting this set for deterministic, or resp. nondeterministic complexity
classes.

A reduction from set A to B is considered to be adaptive if the membership of
a string x € A is decided by a polynomial-time Turing machine which has oracle
access to B. Here the computation is allowed to adapt to membership queries to B,
by basing future queries on previous answers. This reduction is denoted A <7 B
and is commonly referred to as a Turing reduction. It is natural to consider reduc-
tions that are computed with oracle access to the set B, but are not adaptive. We
say A reduces to B nonadaptively, denoted, A 5{: B if there exist a polynomial-
time function, r and Turing machine M where r(x) = (q1,92,--.,qm) and M (x,
[¢q1 € Bl,[q2 € Bl, ..., [gm € B]) accepts if and only if x € A, these reductions are
commonly referred to as truth table reductions.

In this work we consider the measure hypothesis on NP formulated by Lutz which
states that NP does not have p-measure 0, 1(NP) # 0. This is equivalent to assum-
ing that there is no polynomial time martingale that succeeds on every language
in NP. A martingale is a function d : £* — [0, c0) where (Vw € ¥*)[2d(w) =
d(w0) + d(w1)]. A martingale succeeds on language L if limsup,,_, o, d(A=") = 0.
Given a time bound 7(n) a language L is considered to be 7 (n)-random if no O (¢(n))
martingale succeeds on L. Informally this relates to whether or not NP is a “large”
subset of E.

The measure hypothesis on NP also implies the existence of a DTIME(2")-bi-
immune set within NP [28]. A set is C-immune if it does not have any infinite subsets
in C, it is C-bi-immune if it and its complement are both C-immune.

is length increasing, <fn ji» if in addition, Vx, | f(x)| > |x|. A reduction is honest if

@ Springer



Theory Comput Syst (2010) 47: 317-341 321

3 Adyvice to Strengthen Reductions
3.1 Length Increasing Reductions

Hitchcock and Pavan [22] show that some reductions can be made length increasing
under the assumption that NP is not small. We improve upon the advice needed in
their paper in the following theorem.

Theorem 1 1 (NP) #0 == Every <b -complete set is 551/ 1? (loglog")—complete.

Proof Choose € > 0 and let R be a n!T¢-random set in NP. Recall that this means
1 . .
no O (n'*€) time martingale succeeds on R. For every n, let x(')’, e, xé’log 42 be the

lexicographically first 2logn + 3 strings of length n. We claim that for all but finitely
many lengths n, there is an i, i <2logn + 2 where [R(0") # R(x;)].

Assume not, then we have infinitely many lengths n’ where Vi,i < 2logn’ + 2,
[R(0") = R(x;)]. Now consider the following betting strategy. First divide the cap-

ital so that at each length n we have in capital. Recall, Y. 2# < 1. At every

length n bet evenly on {0"}. Use the outcome of R(0") to bet all or nothing on
X, ..., xglognﬂ. If the length n is one of the n’ where (Vi <2logn’ +2)[R(0") =
R(x;)] then we make 221;5#
If n is not one of these lengths, we bet until we loose our capi-

. . 2logn’+2
tal for that length, then we bet evenly until the next length. Since 2 ;i,z > 1 and

there are infinitely many such n’, this martingale succeeds on R, contradicting our
assumption that R is a n!T¢-random set.
To identify an index i for which R(0") # R(x;) we need about loglogn bits. Let

at this length as we double our capital for each

n' n'
XL s Mologn/42°

D={{x,y,¢) | Ix| =yl =1¢| A R(x) + R(y) + SAT(¢) = 2}.

Now let A be a 5,1,’1-complete set in NP, and let M calculate the reduction from D
to A.

Next we show that by combining a padded version of the reduction from SAT to
D and the reduction from D to A then gives a length increasing reduction from SAT
to A using O (loglogn) bits of advice—the advice is needed to give the length of the
padded string which might be polynomially longer than the input.

Suppose that for every k there are infinitely many (x,y,¢) such that
IM((x,y, )| < |{x,y,¢)|'/¥. The set A is in NP so it is DTIME(2")-computable
for some ¢. Hence for infinitely many (x, y, ¢) itis DTIME(2") computable whether
(x,y,¢) isin D. This gives a betting strategy since M ({x, y, ¢)) ¢ A implies x ¢ R
or y¢ R and M({x,y,¢)) € A implies x € R or y € R. Assume x is lexicograph-
ically less than or equal to y. Given the outcome of M ({x,y,¢)) € A use 1/3d of
the capital on x € R and, if necessary, the remaining 2/3d of the capital on y € R. In
either case the capital grows to 4/3. So SAT ff’n/ lliog logn qu’honest A which proves
the theorem. 0

With a weaker assumption but a less standard notion of reduction we arrive at an
even stronger conclusion.

@ Springer



322 Theory Comput Syst (2010) 47: 317-341

Theorem 2 (V¢ > 0)[(AR € NP)[R is DTIME(2" )-bi-immune] => [A is <[ -

complete = A is 55/ lli-complete]].

Proof Suppose that A is in NTIME(n?). Let

D= (¢,O)Z¢€SAT\/()‘¢|€R
(@, 1):p € SATA O e R

It is easy to see that SAT 55/ ]11 D. Tt therefore suffices to prove that D 5’[; honest A-
Let M be the reduction from D to A. By definition of D. ’

P¢SAT = [0¢ cR < M((9,0)) € Al,
peSAT = [0?'eR< MUp, 1) €Al

If (VK)@*)[IM (¢, b))| < |(¢,bl)|%], then (VK)@®$)[|M (. 0)] < |(¢. 0)]F] or
(VE)@*PIM (¢, 1)] < [{¢, 1)[*].

Then by the DTIME(2™ )-bi-immunity of R and the fact that M ((¢, b)) in A is
NTIME(n¢) and hence DTIME(2”d) computable if |M((¢, b))| < |q§,b|5 we can
conclude for almost all of these ¢ in the first case that ¢ € SAT; if ¢ ¢ SAT, we
could calculate 0'?! € R in DTIME(2"). Similarly, in the second case we know that
¢ ¢ SAT. So, for a suitable k whenever |M((¢,b))| < |(¢,b)|'/¥, we can decide
membership of ¢ in SAT in P. In the remaining cases M is honest. d

Hitchcock and Pavan [22] show that for nondeterministic exponential time, no
assumption is needed to make the many-one complete sets length increasing complete
via reductions that use a polynomial amount of advice. Next we will improve this
result to n — logn bits of advice.

Theorem 3 (V¢ > 0)[A <l — complete for NEXP = A 55/ ﬁ_dog" complete].

Proof Let A be any </, NEXP complete set and let K be the standard 1-1, length
increasing, paddable, many-one complete set computable in NTIME(2"). Let p :
¥* x ¥* — ¥* be a polynomial time padding function for K where VxVr x € K <
p(x,r) € K, and let f be a polynomial time 1-1 reduction from K to A. Since f and
p are both 1-1, for every n there is some r,, € »*1 where | f(p(x,ry))| > |x]| for all
x € T". Let r’ be r,, with the last clogn bits removed. Now consider the function p’
which takes x, r’ as input and tries all possible n bit strings, r;, that are extensions
consistent with " and outputs f(p(x, r;)) for the first r; where | f(p(x,r;))| > |x].
We know that such an extension exists and that it will be polynomial in z to find such
an r;. Let g(x) = p/(x, r’) be the reduction from K to A. d

The same proof yields a trade-off between the amount of advice and the honesty
of the reduction.

Theorem 4 Forall c, c > 0, the many-one complete sets for NEXP are g(|x|)-honest
for reductions that use g(|x|) — clogn bits of advice.

@ Springer



Theory Comput Syst (2010) 47: 317-341 323

Corollary 5 [17] For any c, the many-one complete sets for NEXP are clogn-honest
complete.

Next we show that this amount of advice is optimal relative to some oracle. First
we construct an oracle witnessing that NEXP has a many-one complete set which
is not complete under length increasing many-one reductions. We then show how to
adapt this oracle to witness that NEXP has a many-one complete set which is not
complete under length increasing many-one reductions that use less than logarithmic
advice.

Theorem 6 There exists an oracle witnessing that NEXP has a many one complete
set that is not complete under length increasing reductions.

Proof We construct sets A, C, and D, such that C = KﬁEXP — D is complete for
NEXPA, but not via length-increasing reductions. The construction has two phases,
a diagonalization phase in which we take care that {0}* is not reduced to C via a
many-one reduction that is length increasing on almost all strings, and an encoding
phase, in which the strings in D that are also in KI‘\?EXP are encoded into the oracle in
such a way that a nondeterministic exponential time set, here C, can compute them
on inputs that are exponentially smaller. We use a fast growing but easy to compute
function b (i) which is at least double exponential, i.e., b(i + 1) > 22",

Phase 1: Diagonalization—In this phase we construct D, and part of A.

Additional notation: For integers i and j, and sets X and Y, let gnexc(i, j, X, Y)
denote the first query of the form ¢ = (0, j', x), computed by f*(0°®) with |g| >
b(i),x¢Y,q¢X,and j' < j,if any, and A otherwise.

1: Stage0: A=0, D=0,
Stage i: set j = 111620 D, —¢): A; = 0;
while (¢ = gnexi(i, j, AU Ai, D)) # 1 do
A; = A; U{(0, ¢, m3(q)) | 0°1°22(0) < ¢ < j}: recall that m3(g) is the projection of
the third element in ¢q.
Di=D;iU{m(q)lj=j—L;
end while
if | 9% (0°@)| > b(i) then

D =DUD; U{fi(0"));
A=AUA; U{(0,c, fi(0"D)) | 071820 < ¢ < j);

0: end if
Phase 2: Coding—here we make adjustments to the oracle A such that K4 — D
remains incomplete via length increasing reductions. However, strings in D are re-
encoded in A such that a NEXP machine can recover these strings on inputs of loga-
rithmic lengths.

1: Stage x:

2: if x € K4 N D then

3: Let c =max{i | (0,i,x) € A};

4 Let k = b(i)' where b(i) < |x| < b(i);
5o Lety=min{z||z| =k> A (L c,2) ¢ Q(f(0°(1) U{QNE () | v <x)
6
7

Eoal i

D A

—_

A=AU{(l,c,y)};
. end if

@ Springer



324 Theory Comput Syst (2010) 47: 317-341

Interleaving The diagonalization phase and the coding phase can be executed simul-
taneously, but interleaved. The diagonalization at stage i assumes that the oracle is
fixed below length b(i). Therefore the coding of all such strings has to be done be-
fore this stage starts. This means that the coding of all x’s in K4 N D that require
changes to the oracle at lesser length have to be encoded before stage i. The x’s in
U{D; | j < i} are of length at most b(i — i)'~1. To determine whether these x’s are

also in K4, queries must be made to A at lengths at most b=t (note that this
may be changed by the encoding itself, but not by stages > i of the diagonaliza-
tion, moreover this encoding stabilizes by the fact that queries of previously encoded
strings are avoided). Then these x’s are encoded at length |x|2 which is at maximum
(b(i — 1)I~12. However (Vi) [b(i — 1)—D? < 2bG=D""" ~ p(i)], since b(i) is dou-
ble exponential. It follows that diagonalization and coding can be safely interleaved
by first doing an entire diagonalization stage, and then coding the strings that entered
D during that stage.

Lemma 7 (Room to diagonalize) Whenever strings need to be added to A during the
diagonalization phase, there are enough strings not yet determined.

Proof The diagonalization phase during stage i adds strings of length between b(i)
and b(i)'. The number of these strings is bounded by (i)’ x le’% J, which is less

than b(i)> . For all but finitely many x this is less than Zb(i)i, the number of strings
not yet set in the oracle at this length. g

Lemma 8 (Room to encode) Whenever strings need to be added to A during the
encoding phase, there are enough strings not yet determined.

Proof Whenever a string x needs to be encoded, we search for a string y of length
|x|? such that (1, ¢, x) is not yet in the oracle. Note that strings added by the diag-
onalization phase are all of the form (0, u, v), so these do not matter. Other strings
that could be prohibited from entering the oracle are strings queried in a computation
of M4 »» oninputs y < x. There are less than 2l of these strings, each giving

KNEx
22|x|+1

rise to at most 2*! queries. It follows that this number is bounded by which is

much less than the 2’ strings available for almost all x. O

The complete set C is defined as follows.
1: input (i, x) : i € {0, 1};

2. ifi =0and x € K* — D then accept

3: end if

4 if Ay)[ly| =22 A (1, x, y) € A] then accept
5: end if

6: reject

Lemma 9 C € NEXP4,

Proof It follows more or less straightforward from the construction and the way di-
agonalizing and coding is interleaved that computing whether an input is in D can

@ Springer



Theory Comput Syst (2010) 47: 317-341 325

be done in deterministic exponential time. Observe that strings for which nonde-
terministic exponential time computations must be simulated are all exponentially
smaller. x € K4 can be decided in nondeterministic linear exponential time, and an
oracle query of length 2%¥! can be built in nondeterministic linear exponential time
as well. O

Lemma 10 {0}* does not reduce to C via a reduction that is almost always length
increasing.

Proof Suppose it does, then this length increasing reduction has some index i where
b(i 4+ 1) is large enough to satisfy all room to diagonalize/code conditions and more-
over M; (0°D) > b(i). At stage i the oracle is fixed so that the output M; (0°@) is in
D and hence not in C, a contradiction. O

The final part is the definition of the reduction F from K4 to C.
1: input x

2: Let k =max{i | b(i) < |x|}

3 if (0,071°220) x) ¢ A then output (0, x);

4: else

5 Let £ =max{j | (0, j,x) € A};

6 output (1, £);

7: end if

The final lemma for this construction then says that C remains complete.

Lemma 11 K4 <% C.

Proof If x ¢ D then x € K iff x € C. In this case no string of the form (0, y, x)
is in A by construction, so the reduction, which is identity in this case, works. If
x € DN K# then for the maximum ¢ such that (0, c, x) is in A, there exists a string y
of length |x|* with (1, y,c€ A),hence c e C.If x € D — K4 then no such y isin A,
hence ¢ ¢ C. |

O

By the following observation, the construction can be adapted to reductions that
have k bits of advice by the following observation. In stage i of the construction
we diagonalize against many-one reduction M;, resulting in the coding of n’ strings
from K4 into strings of length log(n') = i logn. Instead of diagonalizing against just
M; the same construction can be used to diagonalize against 2¥ different advices for
M; resulting in a coding of 2%n! strings from K“ into strings of length log(2¥n’) =
k+ilogn.

Corollary 12 There exists an oracle witnessing that NEXP has a many one complete
set that is not complete under length increasing reductions that use k bits of advice.

The oracle above works for nondeterministic polynomial time as well as nonde-
terministic exponential time. The only significant change in the constructions above

@ Springer



326 Theory Comput Syst (2010) 47: 317-341

is that we pad the counter so that the replacement in C is only polynomially smaller
in length than the original element taken from C.

Theorem 13 There exists an oracle witnessing that NP has a many one complete set
that is not complete with length increasing reductions.

Proof As before, we construct sets A, C, and D, such that C = Kf\?P — D is complete
for NP4, but not via length-increasing reductions. Again, the construction has two
phases, a diagonalization phase in which we take care that {0}* is not reduced to C via
a many-one reduction that is length increasing on almost all strings, and an encoding
phase, in which the strings in D that are also in KI‘\}‘P are encoded into the oracle in
such a way that a nondeterministic polynomial time set, here C, can compute them
on inputs that are polynomially smaller. We use a fast growing but easy to compute
function b (i) which is at least double exponential, i.e., b(i + 1) > 22",

Phase 1: Diagonalization—In this phase we construct D, and part of A. Let
gnext(i, j, X, Y) be defined as above. Here the major change is the length of our

1
counter j, we pad it to 1602 pigs.
1: Stage0: A=0, D=0,

1
2: Stagei:set j = Ob("m_"'lg(l’("))li'lg(b(i)); D, =0; A; =0,
3: While (q = quX[(i7 j’ AU Aiv Dl)) 75 A dO
1

A =A; U{(0,c,m3(9)) | 0°D% < < jk;
D;i=D;U{m(q)}; j=Jj—1;
end while
if | 94 (0°@)| > b(i) then
D =DUD; U{f;(0*D)};

1
% A=AUAU{(0c, f;(0"D)]0PDF <c < j);
10: end if
Phase 2: Coding—again adjustments to the oracle A such that K4 — D remains
incomplete via length increasing reductions, however strings in D are reencoded in
A such that an NP machine can recover these strings. Unlike before, these strings are
polynomially smaller in length.

® XNk

1: Stage x:

2: if x € KA N D then

3: Let c =max{i | (0,7, x) € A};

4:  Letk=>b@)" where b(i) < |x| <b@)';

s: Lety=min{z | |z] =k* A (L ¢, 2) ¢ Q(fA(0°(1)) U{Q(Ng(v) | v < x}

6: A=AU{1,c,y)};

7: end if
Interleaving As with NEXP the diagonalization phase and the coding phase can be
executed simultaneously, but interleaved.

Again because of the size of our function b, diagonalization and coding can be

safely interleaved by first doing an entire diagonalization stage, and then coding the
strings that entered D during that stage.

@ Springer



Theory Comput Syst (2010) 47: 317-341 327

Lemma 14 (Room to diagonalize) Whenever strings need to be added to A during
the diagonalization phase, there are enough strings not yet determined.

Lemma 15 (Room to encode) Whenever strings need to be added to A during the
encoding phase, there are enough strings not yet determined.

The proofs for encoding and diagonalization exactly follow the cases for NEXP.
We define a similar complete set C, the only difference is the length of our witness.

1: input (i, x) : i € {0, 1};

2. ifi =0and x € K4 — D then accept

3: end if

4: if @y)[ly| =4|x| A (1,x,y) € A] then accept
5: end if

6: reject

Lemma 16 C € NPA.

Proof As before, this follows from the construction of the diagonalization and the
encoding. We can decide whether an input is in D in polynomial time. x € K4 can
be decided in nondeterministic polynomial time, and an oracle query of length 4|x|
can be built in nondeterministic linear time as well. O

Lemma 17 {0}* does not reduce to C via a reduction that is almost always length
increasing.

Proof Suppose it does, then this length increasing reduction has some index i where
b(i + 1) is large enough to satisfy all room to diagonalize/code conditions and more-
over M; (0P@) > b(i). At stage i the oracle is fixed so that the output M; (0°®) is in
D and hence not in C, a contradiction. The final part is the definition of the reduction
F from K4 to C.

1: input x

2: Let k =max{i | b(i) <|x|}

3 if (0,071°220) x) ¢ A then output (0, x);

4: else

5 Let £ =max{j | (0, j, x) € A};

6 output (1, £);

7: end if

The final lemma for this construction then says that C remains complete.

Lemma 18 K4 </ C.

Proof If x ¢ D then x € K4 iff x € C. On the other hand in this case no string of the
form (0, y, x) is in A by construction, so the reduction, which is identity in this case
works. If x € D N K# then for the maximum ¢ such that (0, ¢, x) is in A there exists
a string y of length |x|*> with (1, y, c € A), hence ¢ € C. If x € D — K then no such
yisin A, hence ¢ ¢ C. 0

O

@ Springer



328 Theory Comput Syst (2010) 47: 317-341

3.2 1-Truth-Table Versus Many-One Reductions

Sometimes 1-tt reductions can be converted into many-one reductions. Under a rather
strong assumption we can prove this theorem for 1-tt reductions that use one bit of
advice.

Theorem 19 Let A be §f_n complete for NP. If there exists a set R in NP that is

NTIME(2") N co-NTIME(2")-bi-immune, then A is also <L/'-complete for NP.
Proof Let A be < complete and let

D= (¢,0)3¢€SAT\/O‘¢|€R
" (@, 1):p € SATA O e R

Since R € NP, D € NP and so D Sf_n A. Obviously SAT an/] D. The single bit of

advice needed is whether 0/?! € R. Let M be the </ reduction from D to A. M,
on input (¢, 0), produces a string z. Then, depending on the program of M, (¢, 0) €
D« zeAor(¢,0) e D« z¢ A. In the first case we say M is of type m (many-
one) on input (¢, 0) and in the second case that M is of type m on input (¢, 0). We
now claim that the bi-immunity of R implies M can be of type m for only finitely

many unsatisfiable ¢. Or, in other words,

(3¢ ¢ SAD)[type(M(¢,0)) =m] = _
@B)[||B] = 0o A B € NTIME(2*") N co-NTIME(2*") A[B S RV B € R]].

We first prove this claim. Consider

C ={0"|3¢ ¢ SAT, |¢| = n, type(M (¢, 0)) =m},
[Cll=00—[|ICNR|=00V|CNR|=00].

Assume |[C N R|| = 0o. Set B = CNR.Now B € NTIME(2%") by the following algo-
rithm. On input 0" guess ¢ with |¢| =n and ¢ ¢ SAT; Check that type(M (¢, 0)) =m
and verify 0" € R using the reduction to A. It is also the case that B is in NTIME(22")
by the following algorithm. On input 0" check that for every ¢ of length n either
¢ € SAT or that type(M (¢, 0)) = m, or that there exists a ¢ ¢ SAT of length n for
which type(M (¢, 0)) =m but m(¢p, 0) € A (which means 0" ¢ R).

We conclude that under the assumption of the theorem there can only be finitely
many unsatisfiable ¢ such that M (¢, 0) is of type m. A similar proof shows that there
can be only finitely many satisfiable ¢ such that M (¢, 1) is of type m. From this we
can build our many-one reduction. g

The premise of the previous theorem seems rather strong. Yet it is not impossible
that NP does have such sets. To provide evidence for this statement we construct

precisely such a set in the following theorem.

Theorem 20 For every constant c, there exists an oracle A such that NP has a set
that is NTIME(2") N co-NTIME(2")-immune.

@ Springer



Theory Comput Syst (2010) 47: 317-341 329

Proof We use a construction appearing in [9] in which the oracle is created from an
infinite Kolmogorov random string. The language that will have the property stated
in the theorem will be the following. For all oracles X define Dy = {x | QAy)[|y| =
n% A xy € X}. Let Y be an infinite string that has the property that (Yn)[K (Y[1.4]) >
n¢]. We will construct A by stages. A, is the oracle defined by the end of stage s
and A4 C Ay for all 5. The oracle A may have 2" strings of length n +n>¢. We now
describe the initial oracle Ag.

To encode a string x into D, we need a sequence of |x|%¢ bits. For this encoding we
use substrings of Y. Up to |x| we have used bits of ¥ for }; |, 21 < 21 strings, so
if we let the substrings of Y that encode strings of length |x| start at the 2 |x|*th
bit of Y, there will never be a conflict (two strings in A taking their encoding from the
same substring of Y, note that strings smaller than x require less bits for encoding).
Moreover, we have sequence from the 211 % x| th bit up until the 2XF1 5 |x|%¢th
bit of 2! substrings of length |x|> that can be used to encode strings of length |x|.
The encoding of strings of length |x| 4 1 then starts at the 2I+1 x |x + 11%th bit
of Y, which is quite a bit further along. For Ag up to the ith string of length m we
use a substring of Y, say YZ’()’i of length 2" m?¢ + im® bits. The incompressibility of
Y implies that for some constant d and all m and i it holds that K (Y Xlo’i) > 2" m? +
im?¢ — d. This is the property we will use to prove correctness of our construction.
This ends the description of the initial oracle Ap. We shall next describe a stage
construction of the oracle that has the desired properties.

At each stage s we will decide the membership of the string x; in D, where x;
is the sth string in the lexicographical ordering of X*. Deciding membership of x;
is deciding whether to remove x;y from A where x;y is the only string that is an
extension of x; currently in A. The Kolmogorov property that makes the entire con-
struction work is that a (nondeterministic) machine that rejects some string x; with
oracle As must also reject x; with oracle A or else it will allow us—via a descrip-
tion of the position of a query on the least accepting path—to describe some initial
segment of Y using significantly less bits than the length of this segment, which then
violates the aforementioned Kolmogorov property.

Let {M;}; be an enumeration of all nondeterministic Turing machines, where
2" is the time bound on inputs of length n for all machines in the enumeration.
The construction maintains two sets of requirements. First, a set U; of yet unsat-
isfied requirements to which occasionally a new element is added and from which
satisfied requirements are removed. Second, a set V, in which satisfied require-
ments are kept. Sometimes a satisfied requirement will be moved from V; to Uy at
which time it will become unsatisfied again. Every requirement corresponds to a lan-
guage in NTIME(2"") N co-NTIME(2™), represented by nondeterministic 2" -time
bounded machines M; and M;. Even requirements Ry ;) will represent the need
to establish a nonempty intersection of L(M;) N L(M;) with D, whereas odd re-
quirements Ry(; jy4+1 Will represent the need to establish a nonempty intersection of
L(M;) "L(M;) with D.

@ Springer



330 Theory Comput Syst (2010) 47: 317-341

We will prove that the construction of A meets the following requirements for all
(i, j)-
L Rogi i ILIMM =00 = [IL(MP) # LIMHTV LM N Dy # P11
2. Ry jy+1: ILIMI] =00 = [[L(M) # LMDV [L(M) N Dy # P11.

There are two ways to fulfill these requirements. Either maintain a difference be-
tween L(M;) and L(M;), i.e., the pair M;, M; does not represent a language in
NTIME(2") N co-NTIME(2""), or maintain a string in the intersection of L(M;)
and D, respectively D.

A requirement R, with e = 2(i, j), or e = 2(i, j) + 1 is active at stage s if x5 €
L(MZA‘Y). Now the construction can be described as follows.

1. stage s:
2: if no requirement is active then
3: Agp = Ag;

4: Vs+1 = Vs; Us+1 = Ux;

5: else

6: let e be the least active requirement in Us;

7: if e is even then

8: Ust1=Us —{e};

9: Vir1 = Vs U {{e, x5)}; Ag1 = Ay

10: else

11: if {(i,x) e Vi | (i <e) AP > |xs))} =¥ then

12: Vit1 =V —{{i,x) e Vs i >e}

13: Us41=Us U{i | ( > &) A @A), x) € Vs]} — {e}s
14: Asr1=As — {{x5, 950}

15: else

16: Asi1=Ag; Vi1 =V U = U

17: end if

18: end if

19: end if

20: if s =2% then Uy = Ugyq U {k}.

21: end if U

We will now prove correctness of our construction in a series of lemmas. The key
lemma in the proof is the following.

Lemma 21 (Y°s)(Ve < logs)[xs & L(MZ) = x, ¢ L(M)].

Proof Suppose not. Let e and s be such that e < logs and x; € L(Mé“) — L(MeA"). Let
. . A / ! .
s’ be minimal such that s’ > s and x; € L(M, **") — L(MeA‘Y ). By construction Ay —
Ay 41 = {xyyy}. The string xyyy must be queried in any accepting computation
Ay . . ’ . .
of M, """ on input x,;. Otherwise MeA * would also have an accepting computation
on input x; contradicting the assumption. On input x;, machine M, can only query
strings of length less than or equal to 21s1° Moreover |{y | y € Ao — Ay}l <logs’
since for every such y there is an odd index in U; — (U5 UV, 1) for some ¢ < s’ and

@ Springer



Theory Comput Syst (2010) 47: 317-341 331

there are no more than log s’ indices in U{U; | t < s'}. Let n be such that n>¢ > |x 2.
We will show how to construct the first 2”11%¢ bits of ¥ using significantly less bits
and hence arrive at a contradiction. Suppose that we have 2"+112¢ — |xy|> bits of Y
that describe the initial segment of Y used to encode Ag for all substrings of ¥ up
to and including strings of length n + n%¢, except yy (for strings of length n + n%
there is a corresponding substring of length n%¢ in Y as explained above. So yy in
Y, x¢yy in Agp). Furthermore suppose that we have a list of at most logs’ strings
Xiys ..., X;, that says which x; jYi; are in Ay — Ag. Note that no strings greater than
Xy Yy are in Ag — A.. Finally let ¢ < 2/!° be the index of the query xyyy in the
leftmost accepting computation of MeA s/+1 (x5). Note that g requires at most |x|¢ bits.
Now we can construct the first 2" 11%¢ bits of ¥ from 2"T1n%¢ — |xy|%¢ + logs’ x
lxgr| 4+ |x5] 4 |x5|€ + O (1) bits of information. We arrive at a contradiction for all but
finitely many s. The difference between |x/ | and logs” x |xy| 4 |x/| + x| 4+ O (1)
will outgrow any constant, and so the complexity assumption on Y will be violated.

Lemma 22 (Ve)[|[{s | (3x)[{e, x) € Vi1 — Vi]}|l < ool

Proof Whenever (e, x) is in V11 — V; there is a smaller index that is moved from
Ui either to oblivion or to V. This means that O can enter V; for only one s and
there is no ¢ such that (0, x) is in V; — V4. By induction for i < e, let #i be the
number of times that index i is in V;41 — V; for some ¢ and x. Then it is clear that
#e < Zf;é (1 + #i) which is finite for all e. [l

Corollary 23 (Ve)[(3®s)[e € Us] = (Y®s)[e € Us]].
Lemma 24 If |L(M2)| = oo then L(M2) N\ D4 # 0.

Proof Let e be such that ||L(Mé“)|| = 00 and L(Mf) N Dy =0.1If 2e in Vi1 then
L(MEA’T“) N D 4s+1 # . Since L(ML,A) N D4 = (J there are infinitely many s such that
2e ¢ V. It follows from Corollary 23 that 2e € U; for almost all s. Consequently,
there are infinitely many s such that x; € L(MZ2) where 2¢ € U and e < logs. At
stage s there are two possibilities.

1. x, € L(M;:S).
2. xg & L(M™).

In case 1, since x5 ¢ Dy there is some ¢’ < e such that 2¢’ + 1 € Uy — U,. Hence
case 1 can appear only finitely often. Case 2 must appear infinitely often. Consider a
stage where case 2 appears. Then we have e < logs and x; € L(MeA) — L(Mfs), SO
it follows from Lemma 21 that this can also appear only finitely often, a contradic-
tion. O

Lemma 25 If L(M}) = L(MJA) and | L(M{)|| = oo then L(M{*) N' D4 # §.

Proof We will first arg&that for almost all i and j, if 2(i, j) + 1 isin Uy — (Us+_1 U
Vit1) then L(M#) N'Dy # §. Note that a particular language in NTIME(2"") N

@ Springer



332 Theory Comput Syst (2010) 47: 317-341

co-NTIME(2™) is represented by infinitely many pairs (i, j). Suppose that for
some (large) s the index 2(i, j) + 1 is in Uy — (Ugy+1 U Vg41). This means that
xs € Dy and x; ¢ L(M; 45) 1t follows from Lemma 21 that x, ¢ L(M] 4) and hence
from the assumption L(M) = L(MA) that x; € L(M). If (Y®s)(3x)[(e, x) € Vi]
then let ¢+ be maximal so that e ¢ V, Since A; = A;41, it is then the case that
X; € L(MiA’“) N L(M;\’“) and moreover since (e, x;) € V, for all u >t + 1, sub-
sequent changes to the oracle are made only at lengths greater than 2 “ hence x; €
L(Ml.A) N L(Mj.‘). In this case there is nothing to prove. Finally, let e = 2(i, j) + 1
be such that L(M}) = L(M//.‘) and |L(M?)| = oo and L(M#) € D4 and more-
over (V®s)[e € Us]. By Corollary 23 also (V*°s)(Ve' <e)[e’ € Uy = ¢’ € Usyq],
i.e., no requirement of higher priority will be satisfied at stage s. Consider only two
stages where x5 € L(MZ.A) and (Ve' <e)[e' € Uy = ¢’ € Usy1]. At any of these
stages there are two possibilities.

1. x; € L(M™).
2. xg ¢ L(M™).
In the first case 2(i, j) + 1 ¢ Us4 contradicting the assumption and in the second

case x5 € L(MiA) — L(MI.AS) so this case can occur only finitely often according to
Lemma 21. O

The following lemma concludes the proof.
Lemma 26 |Da| = o0 and | Dl = 0o

Proof This is immediate from the fact that both sets have nonempty intersec-
tions with languages in NTIME(2") N co-NTIME(2") at infinitely many different
points x;. g

O

4 When Does Advice Help?

As we stated in the introduction, reductions with advice seem to inhabit a higher
level of complexity than do uniform reductions. In the next theorem we show a sim-
ple diagonalization that demonstrates incomparability of uniform 2-tt reductions and
many-one reductions with advice.

<y.q-hard for EXP but not 5,’3/1—

hard for EXP, and there exists a set A’ € EXP that is an/ " hard for EXP but not
-hard for EXP.

Theorem 27 There exists a set A € EXP that is <%

Ztt

Proof First we show that there is a set A € EXP that is <2 «-hard for EXP but not

5,’3/ -hard for EXP. We start with an enumeration {M;}; of all polynomial time trans-
ducers that take one bit of advice and look at the outcome of the computations on

@ Springer



Theory Comput Syst (2010) 47: 317-341 333

input 0" for n spaced exponentially far apart. Our exponential-time computable set
D that we use for diagonalization is a subset of {0}* U {1}*, where strings of this
type appear with exponential gaps between them. Our complete set A is a subset
of {(b,x) | b € {0, 1}}, and the 2-tt reduction from Kgxp to A on input x computes
(0,x) € A (1,x) € A and accepts if the outcome is 1. On suitable inputs 0" we
diagonalize against M;. If M; accepts or rejects without querying, or queries a part of
A that has already been set, i.e., exponentially smaller than the input, we diagonalize
by letting M; (0") compute the wrong answer. If the queries are not of the form (b, x)
then we do the same, so for the rest of the proof we assume that M; on input 0" com-
putes a query that has not yet been set of the form (b, x), given advice 0 or 1. There
are several possibilities:

1. M; computes (b, x) with advice 0 and (b;, y) with advice 1 where x # y. Then
we set 0" € D, (b1, x) ¢ A, and (b2, y) ¢ A, furthermore, set (1 — by, x) in A if
xeK,andset (1 —by,y)inAifye K.

2. M; computes (b, x) both with advice 0 and 1. Then we set 0" € D and set (1 —
b, x) toreflect x € K correctly.

3. M; computes (b, x) with advice 0 and (1 — b, x) with advice 1. Now we set 0" € D
and compute M; (1) with advice 0 and 1. The case of small query strings is treated
in the same way, and the cases above are treated in the same way. If we cannot
already diagonalize on 1" alone then it must be the case that M;(1") computes
(by,y) and (1 — by, y). There are three cases.

(@) x =y and b = by. In this case we set 0" € D and 1" ¢ D. Set (b, x) and
(1 — b, x) consistent with x € K.

(b) b=1—by. Inthis case we set 0" € D, 1" € D, and MO0m) =M1 ¢ A.

(¢c) x # y. In this case we set 0" € D and 1" € D and let M°(0") ¢ A and
MY(1") ¢ A.

In the reverse case we have to deal with an enumeration of polynomial time truth-
tables. We use the same complete set, but use the advice to either produce (0, x) or
(1, x) on input x. There are again some cases to consider, but in this case we only
need a subset of {0}* to diagonalize. O

Yet reductions with advice and the induced completeness notions show familiar
properties. Sets complete for EXP are complete under length-increasing, one-one
reductions and are dense.

Theorem 28 If A is complete for EXP under 5,’:,/ l-reductions, then A is complete

for EXP under length-increasing 5,1,71/ U reductions as well.

Proof Let {M;}; be an enumeration of polynomial time many-one reductions that use
one bit of advice. Let D be defined as follows. For b € {0, 1} if |Ml.”((b, i, x))| <|x|
then let (b,i,x) € D iff x ¢ A. Else let (b,i,x) € D iff x € K. Since A is complete
for EXP, one of the reductions, say j must compute the reduction from D to A. For
this reduction, it is never the case that the |[M; ((b, i, x))| < |x| when b is the correct
advice for |(b, i, x)|. Hence the reduction f(x) = M;({b, i, x)) where b is the correct

advice for |(b, i, x)| is a <&, /1 length-increasing reduction from K to A. O

@ Springer



334 Theory Comput Syst (2010) 47: 317-341

Theorem 29 Let A be complete for EXP under gﬁ,’/ ! reductions, then A is dense.

Proof We construct a set W in EXP as follows. For b € {0, 1} and x € {0, 1}*. If
there is an x’ < x such that Mib((b,i,x)) = Ml.b((b,i,x/)), then (b,i,x) € W <
(b,i,x") ¢ W. Otherwise (b, i,x) € W. The set W is exponential time computable
and dense (it has at least one of (0, i, x), (1, i, x) for every i and x). The reduction

from W to A cannot have collisions for the correct advice, hence A must also be
dense. O

Theorem 30 Let A be complete in EXP under 5,‘;’1/ ! -reductions, then A is also com-
plete under Si{i_l’li-reductions.

Proof Let K be the canonical EXP-complete set. Let Ko = {(0",x) |n € N,x € K}.
Clearly, Ky is anylfl’li-complete in EXP. We show a SZ{L]‘H-
to A.

Let {M;}; be an enumeration of polynomial time many-one reductions that take
one bit advice. Let Ml.b (x) denote the output of machine i on input x using advice b.
First we use the constructions of Theorems 28 and 29 to find a reduction M} from
Ko to A that is both length-increasing, and 1-1 on strings of the same length. That is,
if b is the correct advice for |x| then (Vx)[|M,i’(x)| > |x|] and (Vx, ¥)[|x]| = |y| =
My (x) # M{ ().

Without loss of generality, My runs in time n* for almost all inputs, and hence for
almost all x, y and b if |y| > |x|* then MP (x) # MP(y). Now let yo(x) = min{y |
@0y = 02" ~I*Ix]} and define £ (x) = M (yo(x)).

Note that f is polynomial time computable. For every x the length of yo(x) is at

reduction from K

most 2Kt x|, so that the computation of My on yo(x) takes at most 2k2|x|k time,
which is polynomial in |x|. Next, if x % x’ then either |yo(x)| = |yo(x’)| in which
case f2(x) # fP(x’), for b the correct advice for length |yo(x)| by properties of
M, or |yo(x)| # |yo(x")| but then, without loss of generality, assume yo(x’) to be
the longer string |yo(x")| > |yo(x)[¥, then f?(x) # ¥ (x') for b the correct advice
for length |yo(x)| and b’ the correct advice for length |yo(x’)| by the fact that My is
length increasing and n*-time computable. In both cases f is 1-1. The advice given
to f on input x is the advice belonging to M} on input yg(x), which depends only
on |x|. (I

However, unlike the uniform case, EXP has a fﬁi/ l—complete set that is P-bi-
immune.

Theorem 31 There exists a 5,’;/ l-complete set in EXP that is P-bi-immune.

We construct a set A complete under 5,‘,’,/ !reductions that is P-bi-immune by
creating A in such a way that every infinite polynomial time language has an element
in A and in A. We construct such an A length by length in stages. At every stage, n,
we consider the polynomial time machines with a smaller index than n, and we do
so by picking the minimally indexed machine that has not accepted an element in A

@ Springer



Theory Comput Syst (2010) 47: 317-341 335

or A. Specifically, define R;“ to be the requirement that M; accepts some element in A
and Rl.A to be the requirement that M; accepts some element of A. The requirements

are given priority as Rg‘ > Rg‘ > RlA > R{‘ .... We will code K the standard many-
one complete set for EXP into A length by length. We do this encoding by adding
in strings of the form (b, x). Here we will use the bit b to diagonalize against the
polynomial time machines, we keep A 5,’,)1/ l-complete by using the same bit b at
each length, n.

Proof Let {M;}; be an enumeration of polynomial time computable sets. Let K be
the standard <%, EXP complete set. We construct A in stages at each stage n we
create set A, and A =,y Ai

Stage n:

1. Find the minimally indexed machine M; with i < n, with either ||L(M;) N
Ap—tll = [IL(M;)|] or [|L(M;)NA,—1]| = ||L(M;)|| that accepts some (b, x) with
[{(b, x)| =n, where b € {0, 1}, x € {0, 1}*. If such a machine and (b, x) exist then
do one of the following:

(a) If ||[L(M;) N A, ]l = ||L(M;)]| leave (b, x) and all (b, y), with |{b, y)| = n out
of A,. Then V(1 —b,y), {1 —b,y)|=n,put{l —b,y)e A, <> yeK.(We
have fulfilled requirement RiA )

(b) Else ||L(M;) N A,|| = ||L(M;)|| and we put (b,x) in A. Then V(b,y),
[(b, y)| =n, put (b,y) € Ay, <>y € K. (We have fulfilled requirement RlA.)

2. If no machine M; with i < n accepts a (b, x) with [(b, x)| = n, then we need only
keep A complete, V{0, y), |(0, y)| =n,put (0,y) € A, <>y e K.

We claim that for every M; with ||L(M;)|| = o0, L(M;) N A # @ and L(M;) N
A # ). First we show L(M;) N A # (. Assume not, namely, ||L(M;)|| = oo,
L(M;) C A. Notice that at some stage n, M; will be the minimally indexed machine
that accepts some (b, x). Since ||L(M;)|| = oo and L(M;) C A it will eventually
accept some (b, x). We leave that pair out and we have an element in A and a contra-
diction.

The same argument works for the complement. Assume that for some machine M;,
||L(M;)|| = oo and, L(M;) € A. Again at some stage n, M; will be the minimally
indexed machine that accepts some (b, x). This time we put (b, x) in A and obtain
our contradiction.

Note that for a machine which accepts only a finite number strings or strings of a
different form we are unable to fulfill the corresponding requirement, this does not
influence our result as this machine cannot accept an infinite subset in A or A. |

At the cost of more queries, in particular at the cost of adaptive queries, there does
exist a relation between completeness under reductions that use advice and uniform
reductions as the following theorem shows.

Theorem 32 Every set A that is 5,’,’/ ! complete in EXP is also §IT’—complete in EXP.

@ Springer



336 Theory Comput Syst (2010) 47: 317-341

Proof Let A be some 55’,,/ ! complete set, let K be the standard many-one complete
set. We will create a Turing reduction from K to A by using a few intermediate sets
in EXP

These sets will be based on the tableau representation of the exponential time ma-
chine computing x € K. Let the EXP machine computing K be Mk . We assume the
running time of My is 27" for some polynomial p. Consider an exponential size
rectangle that is an encoding of the computation x € K. Where the ith row denotes
the tape contents during the ith step of the computation. The columns of the rectangle
refer to the contents of a particular tape cell throughout each step of the computation.
We call this rectangle the tableau of the computation x € K. Say, a bit in this com-
putation has position i, j, where 1 < i, j < 2P and assume that the final bit in
this computation is 0 or 1 representing reject and accept respectively. Moreover, by
padding i, j, where 1 <i, j < 2P we can ensure that for every x, (x,i, j) is of the
same length for every (i, j). (Namely, i, j will be binary strings between 071 and
10p(n).)

Now consider the language B, the set of (i, j, x) with the following conditions:

1. (i, j) are each padded to length p(|x|) + 1.
2. (i, j) bit in the tableau for Mg (x) is 1.

First notice that B € EXP, and as A is 5,’:,/ l—complete, there is a polynomial
time machine, Mg, where for correct the advice b, (i, j, x) € B < Mg((i, j,x)) € A.
Also notice there is a many-one reduction from K to B, ie. x € K <
(10700 10PD x) € B. Now for all i, j,i’,j between 071 and 107",
(i, j, x) € B corresponds to the (i, j) bit of Mg (x) and |{i, j, x)| = |{i’, j/, x}|. This
means that the same advice bit is used by Mg on all (i, j, x) to compute the bits
of the exponential computation by Mg . Since we would like to remove the advice
consider the computation of Mg and le; over all (i, j, x) with i, j between 0Pm]
and 1077 Let the bits computed by Mg be the O-tableau and the bits by M}g be the
1-tableau. Note that if the final bits in the O-tableau and the 1-tableau are the same,
then we know the answer to x € K.

If the final bits are not the same, then there must be an inconsistency for exactly
one of the two tableaux (the one computed with the incorrect advice). Now we will
show how to recover the correct advice using the inconsistency in the tableau. Con-
sider the set B’ defined as:

B = {(b,i, j,x)
| [(i, j,x) € BAMY((i, j,x)) € AIV (i, j,x) & B A M5, j, x)) ¢ Al}.

For the correct advice, b, to the reduction Mg, (b,i, j,x) € B’ for all i, j be-
tween 0”71 and 107™. For the incorrect advice, &', there is some (i, j) with
(b,i, j,x)¢ B

We will also need to find this inconsistency in B’. For this we define the set B as
follows: we add in all (b, i’, j’, x), where (i’, j’) is less than (i, j), where (i, j) is the
location of the first inconsistency with M.

A

B={(b,i’,j,x)|{i’, j) is less than the minimal (i, j) with (b, i, j, x) ¢ B'}.

@ Springer



Theory Comput Syst (2010) 47: 317-341 337

Notice that both B’ and B are in EXP, therefore there are polynomial time reduc-

tions from B’ and B to A which use one bit of advice. Let Mg, and Mg be these
reductions respectively.

We are now ready to define the polynomial time Turing machine with oracle access
to A which computes x € K.

On input x

1. Compute p(|x|) where 270D is the running time of M. (Recall that M is the
exponential machine computing K.)

2. Compute go = M%(10P<D 10P(1<D_ x) and g; = ML (1070+D  10P0+D x), where
M g is the polynomial time reduction from B to A using advice b.

3. Askgpe Aandg; € A

If both yes ACCEPT
Else if both no, REJECT
Else continue

4. Now we will assume that 0 was the correct advice and that Mg(lOf’qXD,
1070%D x) € A is the right answer. This assumption also implies that there is
some (i, j) such that (1, i, j, x) ¢ B’. We will use B to find such a location. We do
this using the reduction Mg. Compute /yp = max(i, j) with Mg((l, i,j,x)) €A

and /{ = max (i, j) with Mé((l, i,j,x))€A.
5. There are three possibilities from above:

— If no lp or /1 is found then there is no inconsistency with the 1-tableau, i.e. 1 is
the right advice. If g1 € A ACCEPT, else REJECT.

— One [y or /1 is found or o = /1. This means that there is an inconsistency at /g
and O is the correct advice. If gy € A ACCEPT, else REJECT.

— Both [y and /; are found and [y # /1. Here exactly one of [y, /1 must be correct
and there is an inconsistency within the 1-tableau and O is the correct advice. If
qo € A ACCEPT, else REJECT. g

With a slightly more complicated proof the above theorem can be extended to
reductions using up to clogn advice. The different advice strings then give rise to a
polynomial number of (possibly disagreeing) tableaux. With help of the one correct
advice, an exponential time computation, and thus a polynomial time reduction, can
point out the first errors in the other computations, thus providing proof for the correct
result.

The tableau technique is a nonrelativizing technique. It is no surprise that this
theorem does not relativize. We make this explicit in the following theorem.

Theorem 33 There exists an oracle A and an set B that is 5,’,71/ 1’A-complete for
EXPA but not 51;'A—complete for EXPA.

Proof For this proof we use the construction of an oracle appearing in [15]. Here,
a set A is constructed such that EXP# has a Turing complete sets that is not au-

toreducible. In particular there is a subset of S of {0} such that A — § is no longer

@ Springer



338 Theory Comput Syst (2010) 47: 317-341

Turing complete. The Turing reduction that makes A complete is a very simple one.
If 0¥l € A then x € K <> (0,x) € A else x € K <> (1,x) € A. Of course this is a

5,’,71/ ! reduction and A — S remains 5,1;,/ ! complete under this reduction O

The fact that many-one completeness with one bit of advice can be simulated
using more queries, extends to the delta levels of the polynomial hierarchy. Here the
reduction does not even have to be adaptive as the following theorem shows.

Theorem 34 For every k and every set A in A,’; ,IifAls 5,’,’,/ 1-complez‘e, then A is
<li-complete.

Proof Let X' be the set of variables xi,xé, . .,x,’; and denote a particular assign-
ment to X' as the string w; where the jth bit is the value of x; For each level k of

A,f, we fix ¢, a boolean formula over X'UX2U-.-UX* with kn variables. Consider
the sets:

Si() = (X' | vX23IX3V... 0x*ep (X', X2, ..., Xb) is true},
Ly = {{¢, j) | the jth bit in the lexicographically least element in S (¢) is 1},
Wi(p, X) ={0" |3y, VX'3--- 0X*2¢(X, Y, X', ..., X*2) is not true}.

Notice that Ly is complete for A,f [26] and that Wi (¢, X) € A,’:_l. Let A be a
5,’3/ ! complete set for A ,’: . We show how to compute Lj using a truth table reduction
to A. We will do this by induction on the level k.

We first show this for PNP as a base case, namely, that k = 1. Let M| compute
the reduction from L; to A given advice b, and let M f’((qﬁ, Jj)) be the output of the
reduction, i.e., for the correct advice b it holds that M{’((q&, J)) € A if and only if
(¢, j) € L1. We pad Ly, such that (¢, 0), ..., (¢,n) are all of the same length, i.e.,
use the same advice.

Now compute

¥ = (MY((¢,0)), ..., (MO((p, n))),
wl = (M (¢, 00), ..., (M} (¢, n))).

We know at least one of ¢ (a)(l)) or ¢ (a)}) must be true as 0 or 1 must be the correct
advice and return the bits of the lexicographically least assignment to ¢. This implies
that the other advice either returns an assignment that does not make ¢ true, or an
assignment that is not lexicographically smaller. In any case, by asking the queries
MY((,0)),..., M)((¢,n)) and M]((¢,0)), ..., M| ({¢,n)) we can check which is
which in polynomial time. Thus giving us a </ reduction to A and completing our
base case.

Now we assume that there is a 5{; -reduction from L;_; to A. As before, let M

compute the 5,[:/ !_reduction from Ly to A and let M,f ({¢, j)) be the output for the
correct advice b. Again compute:

) = (MX(($,0), ..., (MP((p,n))),
wp = (M9, 0), ..., (M} ((¢,n))).

@ Springer



Theory Comput Syst (2010) 47: 317-341 339

We know that one of ¢(w,?) or ¢(w,1) is an element of Si(¢). To determine which
we use the fact that Ly_y is A}, complete and the </-reduction from Wy (¢, )
to A and the inductive assumption that there is a fg-reduction from Wi (¢, a),l) to A.

We ask if 01! Wi (o, a)g) and 0% ¢ Wi (o, a)}c). At least one of these queries will
be no as 0 or 1 is the correct advice. If only one says no, we have determined the
correct advice and have a 55 -reduction. If the both are no, one of the assignments
is lexicographically smaller and we again know the correct advice and have a </-
reduction. U

Theorem 35 [15] EXPSPACE has a set that is complete using a many-one reduction
with one bit of advice and is not complete using any truth table reduction.

Proof Consider the EXPSPACE-complete set created by Buhrman et al. [15] which is
complete under truth table reductions that ask 3 queries, but is not autoreducible un-
der nonadaptive reductions. This set A is a subset of {0}* U (0, x) U (1, x). The set has
the property that x € K <> 0*l € AA (0,x) € Aorx € K < 0¥l ¢ A A (1,x) € A.
Here, K is the canonical EXPSPACE complete set. The nonadaptive reduction on
input x queries 0™, (0, x), (1, x). To show that the set is not autoreducible they con-
struct the set so that all nonadaptive reductions must query 0*! to be complete.

We use this fact for our claim, consider the set A — {0}* from [15] we know that
this set is not complete under nonadaptive reductions. However, consider the many-
one reduction x € K — (b, x), where b is the advice bit, and b =0 < 0%l € A. Here
itis clear that K 5,’,’1/ "A- {O}*. This yields a set in EXPSACE complete under many-
one reductions which use one bit of advice that is not complete under nonadaptive
reductions. O

The two previous theorems have some interesting consequences. We don’t know
whether Theorem 32 can be strengthened to truth-table reductions. However there are
two cases.

1. By Theorem 35, if 5,’;/ 1-Completeness implies </-completeness on EXP then

EXP # EXPSPACE.
2. By Theorem 34, we know if
on EXP, then PH # EXP.

5{7,/ ! -completeness does not imply <[f-completeness

5 Further Research

We have initiated the systematic study of non-uniform reductions. Many of the re-
sults here concern reductions which use only 1 bit of advice. In Theorem 19, we
do not know that even this one bit of advice in necessary. Can it be eliminated? In
places where more advice bits are needed can they be reduced? In general, how much
stronger are non-uniform reductions than their uniform counterparts.

Another, more technical question about reductions left open here, is whether the
extended many-one reductions used in Theorem 2 are really needed? This may be

@ Springer



340 Theory Comput Syst (2010) 47: 317-341

more difficult than it first seems as Theorem 13 presents an oracle where length in-
creasing many-one reductions do not exist for NP-complete sets. Can we add an im-
munity assumption to this oracle showing that non-relativizing techniques would be
required to prove Theorem 2 for standard many-one reductions.

Another line of research is to strengthen some of the theorems concerning NP by
weakening the strong hypotheses used in their proof. In particular, are the immunity
and measure assumptions necessary for Theorems 2 and 19? Part of this paper was
motivated by the recent work of Hitchcock and Pavan [21]. That paper features and
compares a number of these strong hypotheses, and it would be interesting to deter-
mine the minimal hypotheses needed in our results here.

Acknowledgements We thank John Hitchcock, Eric Allender, and Stephen Fenner for useful discus-
sions and feedback. We thank John Hitchcock for his observation that the hypothesis in our length increas-
ing result for NP can be weakened to bi-immunity instead of measure zero.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Agrawal, M.: Pseudo-random generators and structure of complete degrees. In IEEE Conference on
Computational Complexity, pp. 139-147 (2002)

2. Agrawal, M., Biswas, S.: Polynomial isomorphism of 1-L complete sets. In: Proc. Structure in Com-
plexity Theory 7th Annual Conference, San Diego, California, pp. 75-80. IEEE Computer Society,
Los Alamitos (1993)

. Allender, E.: Isomorphisms and 1-L reductions. J. Comput. Syst. Sci. 36(6), 336-350 (1988)

4. Allender, E., Buhrman, H., Koucky, M., van Melkebeek, D., Ronneburger, D.: Power from random
strings. In: FOCS, pp. 669-678. IEEE Computer Society, Los Alamitos (2002)

5. Ambos-Spies, K.: p-mitotic sets. In: Borger, E., Hasenjdger, G., Roding, D. (eds.) Logic and Ma-
chines. Lecture Notes in Computer Science, vol. 177, pp. 1-23. Springer, Berlin (1984)

6. Balcazar, J., Diaz, J., Gabarrd, J.: Structural Complexity I. Springer, Berlin (1988)

7. Berman, L., Hartmanis, H.: On isomorphisms and density of NP and other complete sets. SIAM J.
Comput. 6, 305-322 (1977)

8. Buhrman, H., Mayordomo, E.: An excursion to the Kolmogorov random strings. In: Proceedings
Structure in Complexity Theory, 10th Annual Conference (STRUCTURES95), Minneapolis, pp. 197—
205. IEEE Computer Society, Los Alamitos (1995)

9. Buhrman, H., Torenvliet, L.: Complicated complementations. In: Proceedings 14th IEE Conference
on Computational Complexity, pp. 227-236. IEEE Computer Society, Los Alamitos (1999)

10. Buhrman, H., Torenvliet, L.: Separating complexity classes using structural properties. In: Proceed-
ings 19th IEE Conference on Computational Complexity, pp. 130-138. IEEE Computer Society, Los
Alamitos (2004)

11. Buhrman, H., Torenvliet, L.: A Post’s program for complexity theory. In Bulletin of the EATCS 85,
pp. 41-51 (2005)

12. Buhrman, H., Homer, S., Torenvliet, L.: On complete sets for nondeterministic classes. Math. Syst.
Theory 24, 179-200 (1991)

13. Buhrman, H., Spaan, E., Torenvliet, L.: Bounded reductions. In: Ambos-Spies, K., Homer, S., Schon-
ing, U. (eds.) Complexity Theory, pp. 83-99. Cambridge University Press, Cambridge (1993)

14. Buhrman, H., Spaan, E., Torenvliet, L.: The relative power of logspace and polynomial time reduc-
tions. Comput. Complexity 3(3), 231-244 (1993)

15. Buhrman, H., van Melkebeek, D., Fortnow, L., Torenvliet, L.: Using autoreducibility to separate com-
plexity classes. SIAM J. Comput. 29(5), 1497-1520 (2000)

16. Fenner, S., Fortnow, L., Kurtz, S.A.: The isomorphism conjecture holds relative to an oracle. In: Proc.
33rd IEEE Symposium Foundations of Computer Science, pp. 30-39 (1992)

W

@ Springer



Theory Comput Syst (2010) 47: 317-341 341

17.

20.

21.

22.

26.
27.

28.

29.

30.

31.

Ganesan, K., Homer, S.: Complete problems and strong polynomial reducibilities. In: Proc. Sympo-
sium on Theoretical Aspects of Computer Science. Springer Lecture Notes in Computer Science, vol.
349, pp. 240-250. Springer, Berlin (1988)

. GlaBer, C., Selman, A.L., Travers, S.D., Zhang, L.: Non-mitotic sets. In: Arvind, V., Prasad, S. (eds.)

STTCS. Lecture Notes in Computer Science, vol. 4855, pp. 146—157. Springer, Berlin (2007)

. Hartmanis, J., Hemachandra, L.: One-way functions and the non-isomorphism of NP-complete sets.

Theor. Comput. Sci. 81(1), 155-163 (1991)

Homer, S., Kurtz, S., Royer, J.: A note on many-one and 1-truth table complete sets. Theor. Comput.
Sci. 115(2), 383-389 (1993)

Hitchcock, J.M., Pavan, A.: Hardness hypotheses, derandomization, and circuit complexity. In: 24th
Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 336-347.
Springer, Berlin (2004)

Hitchcock, J.M., Pavan, A.: Comparing reductions to NP-complete sets. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, 1. (eds.) ICALP (1). Lecture Notes in Computer Science, vol. 4051, pp.
465-476. Springer, Berlin (2006)

. Homer, S., Selman, A.L.: Oracles for structural properties: the isomorphism problem and public-key

cryptography. J. Comput. Syst. Sci. 44(2), 287-301 (1992)

. Homer, S., Selman, A.L.: Computability and Complexity Theory. Springer, New York (2001)
. Kurtz, S., Mahaney, S., Royer, J.: The isomorphism conjecture fails relative to a random oracle. In

Proc. 21nd Annual ACM Symposium on Theory of Computing, pp. 157-166 (1989)

Krentel, M.: The complexity of optimization problem. J. Comput. Syst. Sci. 36, 490-509 (1988)
Ladner, R., Lynch, N., Selman, A.: A comparison of polynomial time reducibilities. Theor. Comput.
Sci. 1, 103-123 (1975)

Mayordomo, E.: Almost every set in exponential time is p-bi-immune. Theor. Comput. Sci. 136(2),
487-506 (1994)

Ronneburger, D.: Kolmogorov complexity and derandomization. PhD thesis, Rutgers University, New
Brunswick, NJ, October 2004

Watanabe, O.: A comparison of polynomial time completeness notions. Theor. Comput. Sci. 54, 249—
265 (1987)

Young, P.: Juris Hartmanis: Fundamental contributions to the isomorphism problems. In: Selman,
A.L. (ed.) Complexity Theory Retrospective, pp. 108-146. Springer, Berlin (1990)

@ Springer



	Non-Uniform Reductions
	Abstract
	Introduction
	Notation
	Advice to Strengthen Reductions
	Length Increasing Reductions
	1-Truth-Table Versus Many-One Reductions

	When Does Advice Help?
	Further Research
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


