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Introduction
The book, The Fourth Paradigm: Data-Intensive Sci-
entific Discovery, was a collection of provocative,
forward-looking essays published in 2009. It now
seems a good time to look back at some of the sig-
nificant developments in data-intensive science and
scholarly publishing that have happened in the last
10 years and see how the predictions of the authors
have fared.

The book was dedicated to Turing Award winner
Jim Gray of Microsoft Research, who was tragically
lost at sea in January 2007. Jim’s vision for this Fourth
Paradigm for research had its origins nearly 10 years
earlier with Jim in the USA, and with “eScience” in
the UK. In the late 1990s Jim had recognized that the
next “Big Data” challenge for database technologies
would likely come from science rather than from
commerce. He understood the very real technical
challenges that the management and analysis of very
large scientific datasets would pose for scientists,
and the key role that IT and computer science could
play in extracting new science from their data. In the
UK, the Director General for Research, John Taylor,
had initiated an “eScience” programme in 2001 to
help meet the challenge of the coming era of data-
intensive science. The eScience programme covered
many scientific research fields and was primarily
focused on the technologies needed to manage, ana-
lyze, visualize and curate “Big Scientific Data”. Or
in Jim Gray’s words, “eScience is where IT meets
scientists”.

The Fourth Paradigm: visions and reality
The Fourth Paradigm book contains many intrigu-
ing insights and predictions. We note some from

each section below, together with a brief commen-
tary on how these projections compare with the
situation in scientific research 10 years on.

Earth and environment
– From Jeff Dozier and Bill Gail on “The Emerging

Science of Environmental Applications”
The emerging third phase, knowledge developed
primarily for the purpose of scientific understanding
is being complemented by knowledge created to
target practical decisions and action. This new
knowledge endeavor can be referred to as the science
of environmental applications.

– From Jim Hunt, Dennis Baldocchi and Catharine
van Ingen on “Redefining Ecological Science Using
Data”
These changes require a new approach to resolving
resource management questions. . . . Addressing
these challenges requires a synthesis of data and
models that span length scales from the very local
(river pools) to the global (oceanic circulations) and
spans time scales from a few tens of milliseconds to
centuries.
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– From John Delaney and Roger Barga on “A 2020
Vision for Ocean Science”
The cabled ocean observatory merges dramatic
technological advancements in sensor technolo-
gies, robotic systems, high-speed communications,
eco-genomics, and nanotechnology with ocean
observatory infrastructure in ways that will sub-
stantially transform the approaches that scientists,
educators, technologists, and policymakers take in
interacting with the dynamic global ocean.

Commentary. Each day the National Oceanic and
Atmospheric Administration (NOAA) collects over
20 terabytes of data and data.noaa.gov hosts over
97 thousand data sets [1]. This is just one of the
sources of data about the ocean and the life within in
it. As Delaney and Barga predicted, the availability
of such data is now beginning to transform both
policy and behaviour. This does not necessarily
happen without some prompting. The Big Ocean
Button Challenge, for example, offered prizes for
apps based on using this data to provide services for
fishing, shipping, ocean acidification, public safety
and exploration [2].

As another indication that attitudes to data are
changing, funding agencies now insist that all re-
search proposals contain a data management plan.
In addition, several digital data repositories have
emerged for storing research data where no funded,
discipline-based archive is available. In the US, the
Dryad repository for research data curation and
publishing was established in 2012: in 2018 there
were almost 45,000 downloads from Dryad’s 24,000
datasets [3]. In Europe, the European Commission’s
OpenAIRE project partnered with CERN to set up
Zenodo1, a general repository for European funded
research outputs, both data and software [4]. In July
2019, the Alfred P. Sloan Foundation funded a part-
nership between Dryad and Zenodo “to make open
research practices more seamless for researchers” [5].

Health andwell-being
– From Michael Gillam et al. on “The Healthcare

Singularity and the Age of Semantic Medicine”
Today, the dissemination path for medical infor-
mation is complex and multi-faceted, involving

1 Zenodo is derived from Zenodotus, the first librarian of the Ancient Library of
Alexandria and father of the first recorded use of metadata, a landmark in library
history.

commercials, lectures, brochures, colleagues, and
journals. In a world with nearly instantaneous
knowledge translation, dissemination paths would
become almost entirely digital and direct.

– Horvitz and Kristan: Toward a Computational
Microscope for Neurobiology
We foresee that neurobiologists studying popu-
lations of neurons will one day rely on tools that
serve as computational microscopes – systems that
harness machine learning, reasoning, and visual-
ization to help neuroscientists formulate and test
hypotheses from data. Inferences derived from the
spatiotemporal data streaming from a preparation
might even be overlaid on top of traditional optical
views during experiments, augmenting those views
with annotations that can help with the direction of
the investigation.

– Buchan, Winn, and Bishop: A Unified Modeling
Approach to Data-Intensive Healthcare
We anticipate a fourth paradigm of healthcare
information .. . whereby an individual’s health data
are aggregated from multiple sources and attached
to a unified model of that person’s health. The
sources can range from body area network sensors
to clinical expert oversight and interpretation, with
an individual playing a much greater part than at
present in building and acting on his or her health
information. Incorporating all of this data, the uni-
fied model will take on the role of a “health avatar”
– the electronic representation of an individual’s
health as directly measured or inferred by statistical
models or clinicians. Clinicians interacting with
a patient’s avatar can achieve a more integrated
view of different specialist treatment plans than
they do with care records alone.

Commentary. These insights in the potential for
healthcare and related areas to be transformed
by new forms of data and by aggregating differ-
ent data sources is now the major challenge for
national healthcare systems. However, although
much progress has been made we are still far from
the vision of a “healthcare singularity” in which
medical knowledge flows frictionlessly and imme-
diately from research to practice. Similarly, although
Horvitz and Kristan’s vision for a computational
microscope for neuroscience has not been fully re-
alized, it is clear that machine learning technologies
are becoming increasingly important for use with
healthcare data to predict healthcare outcomes.
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For example, researchers at the European Molecu-
lar Biology Laboratory (EMBL) have developed
computational methods that allow the analysis of
multiple types of molecular data from individuals.
Such a multi-omics approach integrates genomic,
epigenomic, transcriptomic, metabolomic and other
molecular data to build a profile of a given pa-
tient. The Multi-Omics Factor Analysis (MOFA)
designed by the EMBL team has been tested on
data collected from leukemia patients and shown
to lead to improved diagnosis. This is a pre-cursor
for the personalized treatment of cancer and other
diseases [6].

The amounts of data available in the form of
clinical and pathological images as well as patient
biometric data are now leading to the beginnings of
truly personalized medicine. In fact, machine learn-
ing technologies have now been shown to have better
than human performance for certain tasks such as
image recognition [7] and strategy games [8]. AI
algorithms are now being used in areas such as the
detection of tumours and melanomas, where they
have been shown to be able to differentiate between
images of malignant and benign skin lesions as
well as certified dermatologists [9]. There are many
other examples of the growing realization of digi-
tal healthcare and of machine learning algorithms
that support the vision of the authors of the Fourth
Paradigm [10, 11].

Research Infrastructure
– Alex Szalay and Jose Blakeley on “Gray’s Laws:

Database-centric Computing in Science”
Cloud computing is a recently emerging paradigm.
It offers obvious advantages, such as co-locating
data with computations and an economy of scale in
hosting services.

– Mark Abbott on “A New Path for Science”
Today, semantic web and ontologies are being
proposed as a means to enable knowledge discovery
and collaboration. However, as with databases, it is
likely that the science community will be reluctant
to use these inherently complex tools except for the
most mundane tasks.

– Christopher Southan and Graham Cameron
on “Beyond the Tsunami: Developing the
Infrastructure to Deal with Life Sciences Data”
ELIXIR is now a reality. . . . the mission of the ELIXIR
project . . . aims to ensure a reliable distributed
infrastructure to maximize access to biological

information that is currently distributed in more
than 500 databases throughout Europe.

– Carole Goble and David De Roure on “The Impact
of Workflow Tools on Data-Centric Research”
. . . data-centric science could be characterized as
being about the primacy of data as opposed to the
primacy of the academic paper or document, but it
brings with it a method deluge: workflows illustrate
primacy of method as another crucial paradigm in
data-centric research.

Commentary. Cloud computing is now a reality, and
in addition to commercial offerings from Amazon,
Microsoft and Google and others, we are now seeing
the emergence of “on-premise” Cloud infrastructure
and hybrid clouds, which connect these on-premise
computing resources to commercial clouds [12].

The last decade has also seen a move towards
recognizing research infrastructure as an im-
portant component of the national infrastructure
with data resources now also classified as a le-
gitimate part of such a national infrastructure.
In the UK, the National Infrastructure Commis-
sion [13] has commissioned a number of activities
under the premise of data for the public good [14].
This recognizes data as infrastructure [15] and
focuses on the collection of the right data and
on standards for sharing data – with data both
from government as well as government re-
search agencies. The creation of the important
initiative for Data and Analytics for National
Infrastructure (DAFNI) is recognition of the im-
portance of both data resources and computational
data needs [16].

The data infrastructure to support research has
evolved hugely since 2009, with many nations taking
forward open data initiatives and building the infra-
structure and tooling to support these aims. The
Australian site data.gov.au is one of the better ex-
amples of these developments in which data are now
being treated as a national resource that allows easy
access and search capabilities. Other countries have
followed suit, and the UK and USA each have open
data sites data.gov.uk and data.gov, respectively, that
provide similar access to national data resources.

These developments certainly support the pri-
mary importance of data. However, in addition
to data, the importance of method has matured
through the further developments in scientific
workflows. A special edition of Future Generation
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Computer Systems [17] follows developments of
workflow systems over the last decade. Workflow
systems have clearly advanced substantially in ease
of use, support for improved abstractions, automa-
tion of data identification, and inbuilt tools for
provenance. The different workflow communities
came together in 2014 to propose the Common
Workflow Language, CWL [18]. This is an open
standard for describing analysis workflows and
tools in a way that makes them portable and scal-
able across a variety of software and hardware
environments. It is designed to meet the needs
of data-intensive science, such as bioinformatics,
medical imaging, astronomy, physics and chem-
istry. The ELIXIR project is now taking a leading
role supporting experiments with CWL workflows,
as well as many other services for the life science
communities [19].

Scholarly Communication
– Clifford Lynch on “Jim Gray’s Fourth Paradigm

and the Construction of the Scientific Record”
With the arrival of the data-intensive computing
paradigm, the scientific record and the supporting
system of communication and publication have
reached a Janus moment when we are looking both
backward and forward. It has become clear that data
and software must be integral parts of the record –
a set of first-class objects that require systematic
management and curation in their own right.

– Paul Ginsparg on “Text in a Data-centric World”
So we should neither overestimate the role of data
nor underestimate that of text, and all scientists
should track the semantic enhancements of text and
related data-driven developments in the biological
and life sciences with great interest – and perhaps
with envy.

– Herbert van der Sompel and Carl Lagoze on “All
Aboard: Towards a Machine-Friendly Scholarly
Communication System”
Recently, we have witnessed a significant push
toward a machine-actionable representation of
knowledge embedded in the life sciences litera-
ture, which supports reasoning across disciplinary
boundaries. Advanced text analysis techniques are
being used to extract entities and entity relations
from the existing literature, and shared ontologies
have been introduced to achieve uniform knowledge
representation. This approach has already led to
new discoveries based on information embedded in

the literature that was previously readable only by
humans.

Commentary. Recognition of the importance of
publishing data, either alongside journal publica-
tions, or as a dataset in its own right, has grown
enormously in the last decade. In the UK, most uni-
versity research repositories now include both full
texts of research papers and supporting research
data. At the University of Oxford, for example, the
Oxford University Research Archive, ORA, now
supports the submission of data as well as articles
and other submissions [20]. The Nature Science
Data journal is celebrating its 5th birthday this
year [21, 22]; the journal includes data publication,
best practice, standards and related aspects. It is
indicative of the changes that have taken place in
science infrastructure and the important place of
data.

The global movement towards “Open Science”
and “research reproducibility” have also played an
important role in establishing research data and soft-
ware as first-class objects. The OECD defines Open
Science as making: “the primary outputs of publicly
funded research results – publications and the re-
search data – publicly accessible in digital format
with no or minimal restriction” [23]. The EC FOSTER
project – Fostering the Practical Implementation of
Open Science in Horizon 2020 and Beyond [24] –
proposes that open science should be more than just
at the basic level of the OECD definition. In their
view, open science is about extending the princi-
ples of openness to the whole of the research cycle,
fostering sharing and collaboration as early as pos-
sible – a principle that harks back to the vision of the
UK eScience initiative.

What has not been so successful is the predicted
widespread take-up of semantic web technologies –
such as ontologies, RDF, OWL and SPARQL – much
beyond the biological sciences research community.
It appears that Mark Abbott’s rather more pragmatic
analysis of the use of these technologies may be the
reality for most scientific fields. The recent emer-
gence of bioschemas as an extension to schema.org
could be a more practical way forward to adding
useful semantic information to both data and docu-
ments [25, 26]. In addition, the use of JSON-LD for
manipulating linked data has proved to be easier and
more accessible to a wider technical audience than
the original semantic web technologies [27].
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Major developments since 2009

AI and the deep learning revolution. What other
major developments were not strongly identified in
2009? The first and most obvious technical omis-
sion is the “deep learning” technology pioneered
by Geoffrey Hinton, Yann LeCun and Joshua Ben-
gio. These three were the recipients of the 2019
Turing Award [28], and the award citation is “for
conceptual and engineering breakthroughs that have
made deep neural networks a critical component of
computing”.

A key starting point for the Deep Learning rev-
olution we are now witnessing dates back to the
ImageNet database and the AlexNet deep learn-
ing network [29]. ImageNet was a project led by
Professor Fei-Fei Li from Stanford University and
produced a database containing annotations for over
14 million high-resolution images available on the
Web. The images were labeled by human labelers
recruited using Amazon’s Mechanical Turk. Starting
in 2010, a competition called the ImageNet Large-
Scale Visual Recognition Challenge was held using
the database. The competition used a subset of the
ImageNet collection with roughly 1000 images in
each of the 1000 categories. In all, there were roughly
1.2 million training images, 50,000 validation im-
ages and 150,000 testing images. The intent was to
provide the computer science community with a fo-
cus for evaluating the effectiveness and progress
of computer vision systems. A landmark break-
through in image classification was made in the
2012 competition by Geoffrey Hinton and two of his
PhD students, Alex Krizhevsky and Ilya Sutskever.
AlexNet, as their neural network implementation
came to be called, used a “deep neural network”
consisting of five convolutional layers and three fully
connected layers and was implemented using two
GPUs. Their paper won the 2012 ImageNet compe-
tition and reduced the error rate by an astonishing
10.8 % compared to the previous winner [30]. The
2015 competition was won by a team from Microsoft
Research using a deep neural network with over 100
layers and achieved an error rate for object recog-
nition comparable to human error rates [31]. In
the words of Geoffrey Hinton, the “deep learning
is an algorithm which has no theoretical limita-
tions on what it can learn; the more data you give
and the more computational time you provide, the
better it is” [32].

Can such AI and deep learning algorithms
benefit scientific research? Google’s DeepMind sub-
sidiary in the UK has brought together physicists,
machine learning experts and structural biologists
to create a system called “AlphaFold” [33, 34]. The
DeepMind team entered the biennial competition
organized by CASP (critical assessment of protein
structure prediction) that assesses the state of the art
in three-dimensional protein structure modeling.
The predictions of the AlphaFold system were re-
markably good and better on average than the other
97 competitors.

Towards open science: the OSTP memorandum,
Plan-S and the FAIR principles. In February 2013,
the US Office of Science and Technology Policy in
the Executive Office of the President issued a memo-
randum requiring that Federal agencies investing in
research develop clear policies to support increased
public access to the results of their research [35].
The memo stipulated that “such results include
peer-reviewed publications and digital data”, where
digital data is defined as:

the digital recorded factual material commonly
accepted in the scientific community as necessary to
validate research findings including data sets used to
support scholarly publications, but does not include
laboratory notebooks, preliminary analyses, drafts
of scientific papers, plans for future research, peer
review reports, communications with colleagues, or
physical objects, such as laboratory specimens.

This memorandum was soon followed by similar
declarations from the Global Research Council in
May [36] and from the G8 Science Ministers in June
2013 [37].

All the major US Federal research funding agen-
cies have now developed their policies for “increased
public access” of the research that they fund. This
includes open access to research papers and the need
for researchers to have serious data management
plans in their proposals. Since US researchers funded
by these agencies contribute a large fraction of all
US research papers, there is clearly increasing global
momentum towards “open science”. This necessarily
requires not only open access to research publica-
tions but also to the metadata and data required to
validate and make sense of the research results.

More recently in Europe, in 2018 Plan-S was pro-
posed as an open access initiative in Europe [38].
The plan is supported by cOAlition S, an interna-
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Fig. 1 Jim Gray’s Vision:
All Scientific Data Online

tional consortium of research funders and has the
aspiration that from 2021, scientific publications that
result from research funded by public grants must
be published in compliant Open Access journals or
platforms.

The FAIR data principles published in Scien-
tific Data in 2016 are likely to play an important
role in this area [39]. This proposes guidelines
to make digital assets more Findable, Accessible,
Interoperable, and Reusable. The principles em-
phasize machine-actionability – defined as the
capability of computational systems to find, ac-
cess, interoperate, and reuse data with little or no
human intervention. This is necessary as humans
increasingly rely on computational support to deal
with data as a result of the increase in volume,
complexity, and creation speed of data. Alongside
the production of these standards and policies,
sites have been developed to curate data and meta-
data standards, inter-related to databases and data
policies [40, 41].

Concluding remarks
The example of AlphaFold raises the tantaliz-
ing prospect that we may be able to incorporate
relevant physical, chemical and biological con-
straints with neural networks to create new and
better software tools and environments for advanc-
ing other areas of science. Lastly, with initiatives
in the US and Europe we may be coming closer
to realizing Jim Gray’s dream of an open science
world (Fig. 1).
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