
J. Cryptology (1997) 10:151-161 Journol of

CRYPTOLOGY
�9 1997 International Association for
Cryptologic Research

A Construction of a Cipher
from a Single Pseudorandom Permutation*

Shimon Even
Computer Science Department, Technion, Israel Institute of Technology.

Haifa, Israel 32000
even @cs.technion.ac.il

Yishay Mansour
Computer Science Department. TeI-Aviv University,

Tel Aviv, Israel

Communicated by Oded Goldreich

Received 27 April 1993 and revised 2 July 1996

Abstract. We suggest a scheme for a block cipher which uses only one randomly
chosen permutation, F. The key, consisting of two blocks, KI and K2, is used in
the following way. The message block is XORed with Kt before applying F, and the
outcome is XORed with K2, to produce the cryptogram block. We show that the resulting
cipher is secure (when the permutation is random or pseudorandom). This removes the
need to store, or generate a multitude of permutations.

Key words. Pseudorandomness, DES. Block cypher.

I. Introduction

Shannon defined a random cipher as a collection of randomly chosen permutations, one
for each value of the key. Following Shannon [4], a cipher, C, consists of:

1. A finite set of messages (and cryptograms), M.
2. A finit, set of keys, K.
3. Each key x 6 K is assigned a permutation I-IK: M ~ M.

If each of the permutations FIK is chosen randomly, with uniform probability, from the
set of all [MI! permutations, then C is called a random cipher. I f M -- {0, I}", then C is

* Shimon Even was supported by the Fund for the Promotion of Research at the Technion, and by Bellcore.
Morristown, NJ 07940. U.S.A. Part of the work was done while Yishay Mansour was in the IBM T.J. Watson
Research Center.

151

152 S. Even and Y. Mansour

K 1 K2

M , ~ . j -i

Fig. 1. Schematic model of the encryption scheme.

called a block-cipher. One might view DES [3] as an attempt to realize an approximation
of a random block-cipher.

We propose a block-cipher scheme where only one permutation is randomly chosen
and used. This permutation is publicly accessible (as a black-box), and anyone that tries
to attack the cipher has access to it. The security is proved under the assumption that the
permutation is a random permutation (or at least a pseudorandom one) and the only way
to access it is through a black box.

The key K, which consists of two blocks, KI and K:, is used in the following way.
The message block is XORed with KI, then we apply F, and the outcome is XORed
with K2, to produce the cryptogram block. To decode the cryptogram we perform the
reverse order of steps, using the inverse permutation F - 1.

As one can immediately see, the key modifies the permutation in a very simple and
fast to implement way. Note that the encryption of the messages for different keys are
not independent. Thus, in the conceptual level, our system is not a random cipher, and
is not even an attempt to approximate one. Yet we show that from the point of view of
an efficient adversary the situation is similar to the one when a random block-cipher is
used; i.e., the probability of the adversary to crack the system is negligible.

As in many other applications, if instead of choosing a permutation at random we
choose it pseudorandomly, every efficient attack on the system still has a negligible
probability to succeed. It is easy to see that if one has a family of pseudorandom per-
mutations, then it can be used to build a secure cipher; simply choose for each key one
of the permutations of the family. The novelty of our scheme is that we use only one
pseudorandom permutation.

2. The Scheme

Let {0, I }n denote the set of binary words of length n, let F be a common and publicly
known permutation on {0, 1 }n, and let F-1 be its inverse. It is assumed that, for any
given x E {0, 1 }n, it is easy to get F(x) or F - l (x), either by a direct computation or by
using an easily and commonly accessible black-box (oracle).

A key K consists of two subkeys, K1 and Ka, each chosen at random from {0, 1 }~.
Initially, it is assumed that the key is known to the legitimate parties only; all other parties
have no knowledge about it. Also, it is assumed that the key remains fixed and is used,
by the legitimate parties, to encrypt messages and decrypt cryptograms, repeatedly, for
a relatively long time.

A Construct ion of a Cipher from a Single Pseudorandom Permutat ion 153

The encr3,ption (or cryptogram) EK (M) of a message M E {0, 1 }" by the key K =
(K~, K2), is performed by

E^,(M) = F (M ~ KI) @ K2,

where ~ denotes the bit-by-bit exclusive-or operation.
The dec~.ption of a cr).'ptogram C E {0, I }", is performed by

DK(C) = F - I (C (9 K2) G Ki.

It is easy to verify that for every M E {0, I}" and K E {0, 1} 2", the following identity
holds: D x (E K (M)) = M, i.e., DK decrypts messages that were encrypted using Etr

Before we continue showing the security of our scheme it would be worthwhile to
point out why simple variants on the same idea do not work. For example, if E (M) =
F (K ~ M), since the adversary has access to the permutation F, F - i (E (M)) = K ~ M,
which is clearly insecure. Another example is E (M) = K ~ F (M) , then the adversary
can recover the key by having access to a message M and its encryption E(M) , since it
may access the permutation with M, receive F (M) , and compute K = E (M) ~ F(M) .

3. Definitions of Security and Their Relations

The two most important applications of conventional cryptosystems are concealment of
messages from eavesdroppers, and authentication of the identity of correspondents. We
assume that F is a random (i.e., randomly chosen) or pseudorandom permutation, and
investigate the security of the system from these two points of view.

Our aim is to model an adversary who, for a while, can get the system to encrypt
messages and decrypt cryptograms for him, as well as use the permutation F, as a black-
box, in both directions (i.e., F and F-~), but has no direct access to the key K. For this
reason the access of the adversary to this operation is modeled by oracles, which only
answer queries of a particular nature.

Of the different notions of security we discuss two, analogous to the above applications.
We show that for out" system, these two notions (defined as problems) are hard to solve.
We believe that this demonstrates the security of our system.

The cracking problem, CE is an attempt (by an adversary) to decode a given encryption
Co = EK (Mo), without any a priori knowledge of the key K. The algorithm, employed
by the adversary, has access to the following four oracles.

I. F-oracle: Presented with x E {0, 1}", the oracle supplies F(x) .
2. F I-oracle: Presented with x E {0, 1}", the oracle supplies F - I (x) .
3. E-oracle: Presented with M E {0, 1}", the oracle supplies EK(M).
4. (Co-Restricted) D-oracle: Presented with C E {0, 1}" (such that C :~ CoL the

oracle supplies DK(C).

The algorithm is successful if it outputs MII = DK (CI)). The success probability of
the algorithm is the probability that on a randomly chosen encryption Co = EK(Mo) it
outputs MI~, where all CI~ are equally likely.

154 s. Even and Y. Mansour

The cracking problem is sometimes called chosen plaintextA'iphertext attack or two-
sided attack.

In the existential f o r g e ~ problem, EFP, the adversary has access to four oracles:
F-oracle, F-J-oracle , E-oracle, and (unrestricted) D-oracle. The latter is defined as
follows. Presented with any C 6 {0, I }", the oracle supplies DK (C). The task is to lind
a new pair (M, C), C = EK(M); i.e., a pair which does not consist of a query and an
answer, as previously supplied by either the E-oracle or the D-oracle. Actually, EFP
is the authentication problem. A forgery here means, intuitively, that the adversary can
send messages as though it was one of the parties in the protocol.

Let f (n) be a function defined from the positive integers to the interval [0, 1]. We say
that f (n) is polynomially negligible if for every polynomial p(n) there is an no, such
that i fn > no, then f (n) < l ip (n) .

Assume that the adversary employs a randomized algorithm, whose time is polynomi-
ally bounded (in n), to solve one of these problems. We say that the problem is hard if, for
every such algorithm, the success probability is polynomially negligible; the probability
is taken over all choices made in the design of the system (i.e., the choice of F), the keys
chosen by the user and coin-flips performed by the adversary algorithm.

Instead of proving that CP and EFP are hard separately, we first reduce the EFP to
CP; i.e., we show that the existence of a (successful) CP attack implies the existence of
an EFP attack. The following theorem, which is a folklore theorem and is given here for
the sake of completeness, shows that the reduction from EFP to CP holds for an~' block
cipher scheme.

T h e o r e m 3.1. Let t: iV" ~ JV" and ~: A/" ~ [0, 1]. If there exists a CP attack which
runs in time t(n) and its success probabili~., is e(n), then there is an EFP attack which
runs in time t(n) and its success probability is E(n) / t (n).

Proof. We show how to construct an attacking algorithm A, for the EFP, making use
of a cracking procedure P. Fix n E A/" for which P performs the CP (Cracking Problem)
attack in time t (n) and its success probability is e(n).

We use the fact that the range of the encryption is sampleable; for our encryption
scheme this holds trivially, since the range is {0, 1 }".

Also, we may assume, without loss of generality, that P queries the E-oracle on its
output; i.e., the cracking procedure P, while attempting to decrypt its input Co, checks
the correctness of its output M, by feeding M to the E-oracle, and comparing Eh, (M)
with Co. If P inverts a cryptogram Co successfully, then there is a critical time i < t (n),
such that at time i, P queries the E-oracle about M0, and at no prior time M0 has been
queried.

We construct A as follows.

1. Randomly, choose a cryptogram Co.
2. Feed it, as an input, to P.
3. Randomly, with uniform distribution, choose 1 < r < t(n).
4. Let P run exactly r - 1 steps. If at the rth step, P queries the E-oracle about a

value M', output (M', Co) (without querying the E-oracle).

The probability that A generates a legitimate pair, i.e., that M' = DK(Co), is at least

A Construction of a Cipher from a Single Pseudorandom Permutation 155

e(n)/t (n). This follows from the fact that with probability e(n), P inverts Co successfully,
and with probability l / t (n), P has been stopped at the critical time. []

From the previous theorem we immediately deduce the following corollary.

Corollary 3.2. If for ever3., polynomial-time EFP attack the success probabili~. ' is poly-
nomialS, negligible, then fi)r eve~. polynomial-time CP attack the success probabili~.; is
polynomially negligible.

In general the converse of Theorem 3.1 does not hold for any block cipher, since, for
example, there might be a message whose encryption is always known, regardless of the
key. (For example, in RSA when M = I.)

4. The Immunity of the System when F Is Truly Random

In this section we assume that the permutation F is a truly random permutation, i.e., it has
been chosen randomly, out of the set of all 2" ! permutations, where all permutations are
equally likely to be picked. In addition, the key K is chosen uniformly from {0, 1 }2n and
remains fixed. Under this assumption, we show that solving EFP for our system is hard;
i.e., that for every polynomial-time EFP attack on our system, the success probability is
polynomially negligible. By Corollary 3.2, solving CP is also hard. In fact, we prove a
stronger result, namely, any algorithm that makes only a polynomial number of queries
has an exponentially small probability of success, regardless of its running time.

Recall that the adversary asks queries of two forms:

1. E /D queries. For a given message Mg, the E-oracle returns EK(Mi), or for a
given cryptogram EK (Mi), the D-oracle returns Ma. We say that (Mi, EK (Mg)) is
an E-pair.

2. F / F -I queries. For a given value Aj, the F-oracle r e t u r n s F(Aj), or for a given
F(Aj), the F-~-oracle r e t u r n s Aj. We say that (Aj, F(Aj)) is an F-pair.

An algorithm A for EFP asks various queries of the four types and then computes a
new E-pair (M, Ex(M)) (i.e., an E-pair which was not generated through the E/D-
oracles). We show that for every algorithm A, if it asks only polynomially many queries,
then its probability to succeed is exponentially small. The probability is taken over the
random choices of the algorithm and the choice of the random permutation F and the
key K.

The following notion is central to the analysis of the scheme. Consider two pairs
(candidates to be E-pairs), (MI, Ct) and (M2, C2). If either Mi ---- M2 or Ci = C2, then
we say that the two pairs overlap. Two overlapping pairs (MI, Ci) and (M2, C2) are
identical when Ml = M2 and Ci = C2. Note that the replies of the (genuine) E-oracle
and D-oracle are such that if two E-pairs overlap then they are identical. Thus, without
loss of generality, we may assume that all queries are nonoverlapping. The definition of
"overlap" and "identical" for F-pairs is similar.

The basic outline of the proof is the following. We define a set of "good" keys, and
show that after each query, with high probability, almost all the keys K = (Kl, K2)

156 S. Even and Y. Mansour

are "good" and are equally likely to be the encryption key. We use this to argue that
the adversary cannot "know" which of the keys is the "true" one. This leads to the
observation, that as long as we know that the encryption key is from that "good" set of
keys, we can choose each time a random key from this set, and the adversary will not
be able to notice this, since the probability distribution that we will generate is identical
to the true one. Finally, when the adversary outputs a pair (M, C) his chances of being
successful are very small, since there are still too many "good" keys.

First, we investigate the number of possible choices of the key, K = (Ki, K2), and
the amount of freedom in the choice of the permutation F, such that these choices are
consistent with a given set of query-answer pairs.

We start by defining when the first subkey Ki is bad. This definition depends only on
the sets of E-pairs and F-pairs generated by the queries. Consider all E-pairs, (Mi. Ci).
Since they are nonoverlapping, all M~'s are different, and therefore all the corresponding
values Mi @ K] (potential inputs to F) are different. Also, since all F-pairs, IAj, Bj),
are nonoverlapping, all Aj's are different. (But this does not exclude the possibility that
Mi �9 Ki = Aj, for some i and j .)

We say that the first subkey Ki is bad, with respect
T of F-pairs if there is an E-pair (Mi, Ci) E S and an
Mi @ Ki = Aj; otherwise, the first subkey Ki is good.
subkey K2 is bad, with respect to a set S of E-pairs and

to a set S of E-pairs and a set
F-pair (Aj, Bj) c T, such that
Similarly, we say that a second
a set T of F-pairs, if there is an

E-pair (Mi. Ci) ~ S and an F-pair (Aj, B)) C T, such that Bj @ K2 = Ci; otherwise,
the second subkey K2 is good. A key K = (K~, K2) is good if both the first subkey K~
is good and the second subkey K2 is good. Note that if all queries have been answered
"honestly," with respect to a fixed pair (K, F), where K = (Kt, K2), then Ki is good
iff K2 is good.

L e m m a 4.1. Let S be a set of nonoverlapping E-pairs and T a set (~nonoverlapping
F-pairs. Then, the number of bad first (second) subkeys, with respect to S and T, is at
most Ira, where l = ISI and m = IT[.

Proof, A first subkey Ki is bad if there are queries i and j such that, Mi �9 Ki = A),
or alternately, Ki = A) �9 Mi. Therefore, at most lm subkeys Kt are bad. A similar
argument holds for the second subkey K2. []

Lemma 4.1 implies that for every set of l nonoverlapping E-pairs and m nonover-
lapping F-pairs, there are at least 2" - lm good first subkeys Ki and at least 2" - Im
good second subkeys K2, which implies that there are at least 22" - 2lm2" good keys
K = (K~, K2), or, alternatively, the fraction of bad keys is at most 21m/2".

We define a permutation I-I to be a (K, S, T) extension, where K = (Kj, K2) is a
key, S is a set of nonoverlapping E-pairs and T is a set of nonoverlapping F-pairs, if,
for each (A, B) 6 T it holds that I-I(A) = B, and for each (M, C) 6 S it holds that
I-I(M ~3 Kt) = C ~ K2. We say that a pair (K. 1-I). where K = (K], K2), is consistent
with a set S of E-pairs if for every (M, C) 6 S, C = I-I (M ~ K l) @ K2. In a similar way,
a pair (K, FI), where K = (Ki, K2), is consistent with a set T of F-pairs if for every
(A, B) E T, FI(A) = B. We say that a pair (K, FI), where K = (Ki, K2), is consistent

A Conslruction of a Cipher from a Single Pseudorandom Permutation 157

with all queo'-answerpairs if it is consistent both with the set of E-pairs and the set of
F-pairs.

Lemma 4.2. Let S be a set of nonoverlapping E-pairs and T a set of nonoverlapping
F-pairs. Let K = (Ki, K2) be a good key with respect to S and T. For any permutation
l-I which is a {K, S, T} extension, the pair (K, l-I) is consistent with all que~.'-answer
pairs.

Proof. Consider the set V of pairs (x, y}, such that x, y c {0, 1 }" and either (x, y} is
equal to one of the given F-pair (i.e., (x, y) c T), o r M i ~ KI = x and y @ K2 = Cg, for
one of the given E-pairs (M~, C~) c S. Since K is good with respect to S and T, both KI
and K2 are good, hence, every two pairs in the set V share neither their first component,
nor their second component. Since l-I is a (K, S, T} extension, it is consistent with the
set V, i.e., l-I(x) = y, for every (x, y} c V. Therefore, (K, I-I) is consistent with both
the F-pairs and the E-pairs. []

The next lemma states that all the good keys are, in some sense, equally likely.

Lemma 4.3. Let S be a set of nonoverlapping E-pairs and T a set of nonoverlapping
F-pairs'. The probabilio' that the encr)'ption key is x, given S and T, is the same for any
k@" x which is good with respect to S and T.

Formall.v, given that the probability over the keys is uniform (i.e., PrObK.F[K = x] =
1/22'', for any x E {0, 1 }2,,) and the probability over the permutations is uniform (i.e.,
ProbK. F [F = 7r] = 1/(!2"), for any permutation 7r), then

Prob^,.F[K = x](K, F} is consistent with S, T]

is the same fi~r any key x E {0, 1 }2,, which is good with respect to S and T.

Proof. We are interested in computing the probability of a good key x, given that the
sets S and T are consistent. By Bayes' formula, this is equivalent to the probability of S
and T given that the key is x, times the a priori probability that the key is x divided by
the probability that a random (K, F} is consistent with S and T. Formally,

ProbA,.F[K = x](K, F) is consistent with S, T]

ProbK.F[K = ~c] x PrObK.F[{K, F) is consistent with S, T]K = g]

PrObK.F[(K. F) is consistent with S, T]

From the hypothesis of the lemma we have that PtvbK.F[K = K] = I/22' ' , for any
K c {0, 1 }2,. Furthermore, the probability of S and T being consistent a priori, i.e.,
ProhA,.F[(K, F) is consistent with S, T], is also the same for all keys, since this event
does not depend on x. Therefore, we should focus on the probability of S and T being
consistent given that the key is Jc, i.e., ProbK,~[(K, F) is consistent with S, TIK = K].
Since we are given the key x = (K~, K2), we can translbrm the E-pairs to restrictions
on the permutation F. Similarly to I,emma 4.2, let,

S' = {(M G Kj, C G K2)I(M, C) c S}.

158 S. Even and Y. Mansour

(Note that if the messages where encrypted using (K, F) and (x, y) E S', then F(x) = y.)
Clearly. [SI = [S'I since there is a one-to-one mapping between the pairs in S and S'.
Since the key tc is good, it implies that there is no overlap between S' and T, i.e.,
S' f) T = ~o. Therefore, the probability of S and T being consistent, given that the key tc
is the probability that the permutation F obeys the ITI + ISI constraints in V = S' U T,
which is

fS l+ lT! - I l

ProbFlV(x, y} ~ V" F(x) = y] = 17
2" i" i=0

This probability does not depend on the particular choice of x, therefore it is identical
for all good keys, which completes the proof of the lemma. []

Now we are ready to show the main theorem.

T h e o r e m 4.4.
and K are chosen randomly and uniformly, is bounded by

0 ~ 2 "

where l is the number of E~ D queries and m is the number of F~ F - 1 queries.

The probability of an algorithm A to solve the EFP problem, when F

(l)

Proof. Given an algorithm A that can solve the EFP problem, we would like to bound
the success probability of A. The algorithm A asks queries of various types and get
replies from the appropriate oracle using a pair (K, F).

In our analysis we plan to deviate from this way of generating the replies. First let us
define how we plan to reply to A's queries. Later we justify the way that we generate
the answers to the queries, and at the end we compute an upper bound on the success
probability of the algorithm A.

Initially we choose a pair L0 = (K, F) , where K = (Ki, K2) , with a uniform
distribution. Let S li) be the set of E-pairs and let T ~i) be the set of F-pairs up to the ith
queryof A .A f ter the i thqueryo f A,wechoose, atrandom, agoodkey K (i) = (Kj- (i), K~i~)
with respect to S ~i~ and T (i), and a random permutation F (i) which is a (K (i), S ~i), T (i))
extension. Let Li = (K li~, F~')).

When A performs its ith query, we reply using Li--u. If the ith query of A caused
the key K 0-11 to become bad, then we stop and declare the algorithm A successful,
otherwise we continue. (Therefore, if we can assume that a key K ~ - ~ remains good,
then all the previous keys K (j) where also good.)

By the assumption of the theorem, after l + m queries, the algorithm A outputs a pair
(l+m) k.(/~-m) (M, C), and it is successful if F (t § �9 K I) @ "'2 = C; otherwise it fails.

We first need to justify why the way that we generate the oracle replies is valid.
Later, in order to compute the success probability of A, we bound two probabilities: the
probability that a query will cause a good key to become bad, and the probability that A
outputs a consistent pair (M. C) given that the key is a random good key.

By Lemma 4.3 any good key K has the same probability given the sequence of queries
and replies to the oracles so far. This implies that the posterior probabilities, given the

A Construction of a Cipher from a Single Pseudorandom Permutation 159

conversation, is uniform over all the good keys. In addition, by Lemma 4.2, any good
keys K with a permutation which is a (K, S ~i~, T (i)) extension, are consistent with all
previous query-answer pairs. Therefore, when we choose after each query a new random
pair L i , we are consistent with all previous replies, and we generate the same distribution.

To be more precise, consider the distribution of conversations of A. One way to
sample this distribution is to chose a random key K (from the prior distribution over
keys, which is uniform), a random permutation F, and generate the conversation with
A using K and F. An alternative way is, after each query of A to sample a new key
K {il, using the posterior distribution over the keys (i.e., the conditional distribution of
the keys given the conversation), and a new permutation F li), which is chosen from
the posterior distribution (i.e., the conditional distribution of the permutations given the
conversation and K~i)). By the definition of the posterior probability, those two methods
would generate the same distribution, and thus they are indistinguishable. We chose to
consider the second way of generating conversations, however, we add another twist.
At certain events (namely, if we chose a bad key) we decided that the algorithm A is
successful and we do not continue. Clearly this can only increase the probability of A to
win,

For any fixed i, now we can compute the probability that the key K ~il = (KI i), K~ i))
becomes bad during the (i + l)th query. We need to consider the four different types of
queries which could have been the ith query.

Consider an E-query on the message Mi. If there is a previous E-pair (Mi, C), then,
since Li is consistent with all the E-pairs, the reply will be consistent with (Mi, C), i.e.,
it will be C. In this case, clearly, the key K Ig~ remains good.

Assume the E-query on the message Mi is nonoverlapping with the previous E-pairs.
Such a query adds at most m bad first subkeys Ki and m bad second subkeys K> By
Lemma 4.1, the number of good keys is at least 22" - 21m2". Thus, no matter how A
chooses the query Mi, his chance of making K Ci~ bad is bounded by

2m2" 2m

22" -- 2hn2" 2 ~ - 21m"

The analysis for a query to the D oracle is almost identical, yielding exactly the same
bound. In the case of an F query, or an F -I query, a similar analysis yields the bound

21

2" - 21m"

It follows that the probability A makes K Cil bad by a single E / D query is bounded by
2m/(2" - 21m), and the probability of this happening during any of the I E / D queries
is bounded by 2lm/(2" - 21m). The same expression bounds the probability of making
K ~1 bad by any of the m F / F i queries. Thus, the probability that any K ~il is bad is
bounded by

4lm (l m)
2, _ 2l------~ - 0 ~7 "

From now on we assume that none of the K (i) becomes bad.
Consider the situation after I + m queries, when A outputs a pair {M, C}. We compute

an upper bound on the probability that the pair is "correct," i.e., F{t+m)(M ~ KI t+'J)

160 S. Even and Y. Mansour

K~/+'') = C. The probability that (M, C) makes K ~/+'nl bad is, using the previous
argument, bounded by

2m _ o (I m)
2" - 21m ~7 "

Now we bound the probability that C = F(M @ KI I+''~) ~D K~ I§ given that K ~t+'''~ =

(KIt+''), K~ t+'')) is a good key with respect to S I/" ''') U{(M, C)} and T u+''). Since K It ~ ''~

is good, it implies that there is no F / F -j-pair (A, B) with either A = M @ KI I~-'''}, or

B = C �9 K~ t+''). Now we consider the probability that F(M �9 KIt+'')) = C �9 K~ t+''~.
Since we have not committed to the value of F at M ~3 KIt+''') either directly (using

the I F/F-I-pair) or indirectly (using the m E/D-pair), there are exactly 2" - (m + l)
possible values for F(M @Klt+")), and hence the probability that it is C @ K~ t+m) is

1 _o(Im~
2 . - , , , - l

The theorem follows from summing the probability that K 0~ m) is bad and the probability
that A's output is correct, given that K u+'') is good. []

From the above theorem we deduce the following important corollary.

Corollary 4.5. Consider our system, with a randomly chosen F. For every polynomi-
ally bounded algorithm to solve EFP, the probabiliW, of success is polynomially negligi-
ble.

In general, Theorem 4.4 implies a lower bound of 2 "/2 on the cracking problem. Thus
for this scheme to be secure, n must be chosen so as to make 2 "/2 steps infeasible. We
mention that Daemen [1] investigated the question whether the bound in Theorem 4.4 is
tight. He shows that our scheme, which uses 2n key-bits, can be cracked in time O(2"),
using Known Piaintext Attack, and in space and time O(2n/2), using Chosen Plaintext
Attack.

5. The Immunity of the System when F Is Pseudorandom

Our system remains secure even if F is just known to be chosen pseudorandomly. As
before, we assume that the adversary has access to the four oracles, but has no access to
the innards of the box which implements F. This issue is meaningless when F is chosen
randomly, but when it is chosen pseudorandomly, the difference may be crucial.

Our claims are restricted to the oracle-type attacks. The reason why our result extends
to pseudorandom permutations is that if an efficient algorithm violates the immunity
of the system when F is pseudorandom, then this algorithm can be transformed into a
distinguisher of pseudorandom F ' s from random ones (since for the latter the immunity
must h o l d i b y Theorem 4.4).

A Construction of a Cipher from a Single Pseudorandom Permutation 161

T h e o r e m 5.1. I f F is chosen pseudorandomly and K is chosen uniformly, then for
every polynomially bounded algorithm to solve EFP for our system, the probability of
success is polynomially negligible.

Acknowledgments

The authors would like to thank Reuven Bar-Yehuda, Shai Ben-David , Benny Chor, Guy

Even, Oded Goldreich, Refael Heiman, and Si lvio Micali .

References

[1] J. Daemen, Limitations of the Even-Mansour construction, Proceedings ofAisaCrypt, 1991.
[2] M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions,

SIAMJ. Comput., Vol. 17, No. 2. 1988, pp. 373-386.
[3] National Bureau of Standards, Data Encr3'ption Standard, Federal Information Processing Standard, U.S.

Department of Commerce, FIPS PUB 46, Washington, DC, 1977.
[4] C.E. Shannon, Communication theory of secrecy systems, Bell System Tech. J., Vol. 28, 1949, pp. 656-715.

