J. Cryptol. (2011) 24: 247-268

DO 10.1007/500145-010-9083-9 Journal of

CRYPTOLOGY

Glitch and Laser Fault Attacks onto a Secure AES
Implementation on a SRAM-Based FPGA

G. Canivet

TIMA Laboratory (Grenoble INP, UJF, CNRS), 46 av. Félix Viallet, 38031 Grenoble, France
Gaetan.Canivet@imag.fr
and
CESTI/CEA-LETI, Minatec, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9, France

P. Maistri and R. Leveugle

TIMA Laboratory (Grenoble INP, UJF, CNRS), 46 av. Félix Viallet, 38031 Grenoble, France
Paolo.Maistri @imag.fr; Regis.Leveugle @imag.fr

J. Clédiere
CESTI/CEA-LETI, Minatec, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9, France
Jessy.Clediere @cea.fr

F. Valette

DGA/CELAR, 35171 Bruz Cedex, France
Frederic. Valette @dga.defense.gouv.fr

M. Renaudin

Tiempo, 110 Rue Blaise Pascal, 38330 Montbonnot Saint Martin, France
Marc.Renaudin @tiempo-ic.com

Received 1 September 2009
Online publication 26 October 2010

Abstract. Programmable devices are an interesting alternative when implementing
embedded systems on a low-volume scale. In particular, the affordability and the versa-
tility of SRAM-based FPGAs make them attractive with respect to ASIC implementa-
tions. FPGAs have thus been used extensively and successfully in many fields, such as
implementing cryptographic accelerators. Hardware implementations, however, must
be protected against malicious attacks, e.g. those based on fault injections. Protections
have been usually evaluated on ASICs, but FPGAs can be vulnerable as well. This work
presents thus fault injection attacks against a secured AES architecture implemented
on a SRAM-based FPGA. The errors are injected during the computation by means of
voltage glitches and laser attacks. To our knowledge, this is one of the first works deal-
ing with dynamic laser fault injections. We show that fault attacks on SRAM-based
FPGAs may behave differently with respect to attacks against ASIC, and they need
therefore to be addressed by specific countermeasures, that are also discussed in this
paper. In addition, we discuss the different effects obtained by the two types of attacks.

Key words. AES, SRAM-based FPGA, Power glitch, Laser fault injections, DDR.

© International Association for Cryptologic Research 2010

mailto:Gaetan.Canivet@imag.fr
mailto:Paolo.Maistri@imag.fr
mailto:Regis.Leveugle@imag.fr
mailto:Jessy.Clediere@cea.fr
mailto:Frederic.Valette@dga.defense.gouv.fr
mailto:Marc.Renaudin@tiempo-ic.com

248 G. Canivet et al.

1. Introduction

In our modern society, embedded devices often contain confidential or critical informa-
tion that needs to be protected from unauthorized use. Secure devices are often made
in ASICs, but these kinds of devices are limited to high production volumes. Another
solution consists of using programmable devices like SRAM-based FPGAs, thanks to
their low cost and high flexibility. In recent times, FPGAs have been reported many
times as a valuable mean for cryptographic implementations.

The security of the implemented cryptosystem can be compromised by cryptanalytic
attacks aiming at specific weaknesses of the algorithms and protocols that are used.
However, thanks to the fact that most cryptographic standards must now stand a large
scrutiny effort before public acceptance, this possibility is usually unlikely. On the other
hand, attacks against the actual implementations can take advantage of the characteristic
of the device itself, such as the power consumption [1], electromagnetic emission [2—4],
or susceptibility to computation errors [5].

Fault-based attacks [6], in particular, can be very powerful. Usually, differential crypt-
analysis can recover the key only from block ciphers with a reduced number of rounds;
power analysis attacks can break a regular implementation after a few thousands en-
cryptions, depending on the implementation and on the noise level of the measurements.
Fault attacks, on the other hand, can break an implementation just after a few encryp-
tions [7]. They exploit the same principles of differential cryptanalysis: in fact, they
can attack full-sized ciphers by injecting the differential error in the latest rounds of the
encryption process. Even if most works target transient faults, research has shown that
even permanent faults can be exploited to mount an attack [8].

Faults can be injected in different ways, but usually the attacker aims at controlling
the fault injection as much as possible. For this reason, the most used techniques are
based on power glitches, or laser injections. They allow fine tuning of the injection time
and, in the case of lasers, also a good precision in choosing the attack target.

Most effort, so far, has been dedicated to attacking ASIC implementations, due to
their large diffusion and to the relative ease of altering the behavior of the system in a
non-permanent way. In [9], for instance, the authors have attacked an AES implementa-
tion on a smart card: errors are injected by progressively reducing the voltage supplied
to the core, until timing errors are introduced. The same approach has been applied suc-
cessfully to FPGA implementations [10]; on the other hand WDDL proved to be robust
against such fault injection technique [11]. Laser attacks may be much more powerful
but at a higher cost. On the other hand, it is well known that optical-based attacks are
possible even with much cheaper equipment [12], and EM-based fault injections are
starting to be considered as well [13].

To our knowledge, there are few works dealing with fault attacks against SRAM-
based FPGA implementations. This is probably due to the fact that such devices may be
much more sensitive to perturbations than ASICs. This leads to different error models in
presence of fault attacks, which make cryptanalysis more difficult. Nonetheless, attacks
may still be possible. So far, previous works have mainly addressed the characterization
of the behavior of a programmable board in harsh environments, in particular for spatial
applications [14]. A few works have dealt with the analysis of the global effects of a
laser-based attack, either with multiple shots and error accumulations [15] or single
shots [16]. No paper presents attacks against a cryptographic design implemented on

Glitch and Laser Fault Attacks onto a Secure AES Implementation 249

FPGA, except [17] that introduced the dynamic fault injection during an encryption
with the Data Encryption Standard; however, no analysis of the ciphering error is done.

This paper is one of the first works describing glitch- and laser-based attacks against
a secured cryptographic implementation onto a SRAM-based FPGA. Unlike glitch at-
tacks, we show that laser fault injections pose a serious threat to FPGA implementa-
tions, since they may alter the configuration of the FPGA in a semi-permanent way.
Many error detection schemes developed against fault attacks are designed considering
only transient faults, which is the predominant model in the literature. However, when
the laser modifies the configuration of the device it may also change the function that
is computed; due to the SRAM technology, the modification remains until the device is
reconfigured. We hence propose an improved version of our error detecting implemen-
tation, which is able to sustain also laser-based fault attacks on the FPGA.

The paper is organized as follows. The next section briefly resumes the basics of the
Advanced Encryption Standard and describes the architecture we attacked. The archi-
tecture was first validated against emulated fault injections: the results are described in
Sect. 3. Then, we implemented and attacked an actual FPGA implementation: the board
is described in Sect. 4; Sects. 5 and 6 present power-based and laser-based fault injec-
tions. Given the experimental results, we addressed the specific flaws and improved the
protection scheme, which was again validated with both emulated and laser-based fault
injections: this is presented in Sect. 7. Finally, Sect. 8 concludes this paper.

2. Architecture

2.1. The Algorithm

The architecture attacked in this paper implements the Advanced Encryption Standard
(AES). AES [18] is a symmetric block cipher, standardized by NIST in 2001 as a substi-
tute to the old and flaky DES cipher. It is based on a substitution-permutation network
and it can encrypt (or decrypt) 128-bit inputs by using 128-, 192-, or 256-bit keys.

The cipher has an iterative structure and the number of rounds depends on the length
of the key: 10 rounds for 128-bit keys, whereas 12 and 14 rounds are used for 192- and
256-bit keys, respectively. Each round is made of four different operations:

1. SubBytes. It is a non-linear byte substitution based on the multiplicative inver-
sion in binary finite fields. It can be implemented as a lookup table (in ROM or
synthesized as a multilevel combinational network) or as a functional block over
composite fields following the algebraic definition. The latter implementation is
smaller and it allows being easily pipelined, thus higher frequencies can be easily
reached at a small cost.

2. ShiftRows. This operation is a row-wise permutation: rows are rotated by 0, 1, 2,
or 3 bytes, depending on the row index.

3. MixColumns. It is a multiplicative scaling of each column with fixed coefficients
in a binary polynomial field.

4. AddRoundKey. The modulo-2 addition with a round-dependent key.

The operations are generally byte-oriented, although some operate on wider elements.
For sake of symmetry, which simplifies the implementation of architectures supporting
both encryption and decryption, the first round is preceded by an initial key addition;
conversely, the last round lacks the MixColumns operation.

250 G. Canivet et al.

The decryption process is obviously made of the inverse operations in reverse order.
An additional process is dedicated to generate the key material (i.e., all the round keys)
from the initial secret key. This process is often referred to as the key scheduler, and it
is based on some operations used also in the encryption process, which allows sharing
some functional blocks. For further details, the reader is invited to refer to the original
specifications [18].

2.2. The Implementation

The architecture implemented and attacked in this paper is equipped with an error de-
tection mechanism based on temporal redundancy. The basic principle is based on re-
peating the computation twice (or more) and then comparing the results. If any of the
outcomes is different from the others, it is conservative to state that at least one error
has occurred. This is a well-known approach and it allows detecting all transient faults
that do not modify the state of the circuit in a permanent way.

Temporal redundancy can be applied at different levels and with different techniques.
For instance, it can be easily adopted at application level, forcing the application to run
twice in order to compare the results. At the hardware level, two interesting applications
of detection schemes based on temporal redundancy have been proposed: pipeline [19]
and DDR [20] redundancy. The architecture implemented in this paper uses the latter.
The DDR technique is based on the exploitation of both clock edges to perform com-
putation and to control the memory elements. A suitable subset of the register space is
partitioned in order to identify those flip-flops that will store data on the rising edge of
clock, and those switching on the falling edge. One register from the “positive” data
path and one from the “negative” can be coupled together to form a single DDR regis-
ter: the combinational logic implementing the functional operations can be thus shared
through the connection to the DDR register.

Under proper conditions, this approach allows processing twice the data for each
clock cycle, thus halving the computation time (in terms of clock cycles). The spare
time can be used to reissue the same computation and then check the results. However,
redundancy requires that selected DDR registers are also duplicated in order to store
and compare both the primary and the backup computations. Not all the registers need
to be duplicated: intermediate results that are in the pipeline still need to be stored into
a DDR register (since two values are computed for each clock cycle), but they do not
need to be saved for later verification and hence the backup register is not needed.

The architecture which has been protected with the DDR scheme is made of three
functional blocks:

— the main data path, which is based on an implementation presented in [21] and
equipped with four substitution boxes and 16 functional blocks implementing the
linear operations and containing the state registers;

— the key scheduler, which shares the substitution boxes with the encryption data
path;

— and the controller, which uses two finite state machines (FSM), one for each clock
edge, synchronized with each other.

Only the main data path works in DDR mode, since most fault attack models target
the temporary state of the encryption. The registers are partitioned and grouped into

Glitch and Laser Fault Attacks onto a Secure AES Implementation 251

| L[] | L[] |
i G B @ ® ® O
e O D ®® O ®®
e @D D ® ® @ ® ®
redundancy . o o @ @ o

Fig. 1. Comparison of different techniques of temporal redundancy. The symbol Dx identifies subsequent
data tokens processed through the pipeline.

DDR registers; then, each DDR register storing the internal state is accompanied by an
auxiliary backup element. There is no need for backup registers in the S-Boxes, since
they process only temporary values. The key scheduler does not use the DDR template
in the implemented version and it is not protected against faults; adding protection in
this part of the circuit would be straightforward but it was not necessary for this study.
The controller, on the other hand, is protected with dedicated techniques: validation of
the state encoding, verification of the state transitions for both FSMs, duplication of
critical elements (e.g., the iteration counter) [20].

The DDR scheme is exemplified and compared to the regular pipeline and to the
pipeline redundancy scheme in Fig. 1. Although pipeline redundancy can be adopted in
an existing design flow more easily, it is more vulnerable to faults lasting longer than one
clock cycle. If a fault lasts two cycles, in fact, it may affect both the main computation
and its repetition, and there will be no way to detect that an error has occurred. DDR
redundancy, on the other hand, computes the same operations in cycles that are far apart:
an attacker must thus be able to alter both the primary and the secondary execution in
the same way in order to inject an undetected error. In principle, such approach based
on distancing the computations might be applied also to the implementations based on
pipeline redundancy: in this case, however, the interventions made to adapt the design
would void the main advantage of the pipeline approach, which is its easy integration
and adaptability to the traditional design flow.

We will show the detection capabilities of the DDR technique in the following sec-
tions.

3. Emulated Fault Attacks

The robustness of the implemented design against fault attacks has been initially evalu-
ated through emulated fault injections. This approach gives significant advantages over
simulated faults: although it requires a synthesizable description of the system, on the

252 G. Canivet et al.

other hand it ensures that the model is quite realistic, and moreover the hardware accel-
eration gives very large speedup of the experimental campaigns. We used a dedicated
tool to instrument the netlist of the architecture: this automated approach allowed simple
control over the flip-flops chosen as a target for fault injections. The hardware acceler-
ation speeded up the experimental campaign significantly, which was the major benefit
from the emulated injections. The tool allowed targeting only upset faults, which means
that we were able to alter the content of any flip-flop in the architecture at a specific
clock cycle; on the other hand, we could not inject transient faults (SET) into the com-
binational logic. This is not a major issue: this work is aimed at fault attacks (few bit
errors concentrated in a single register) and not at analyzing the dynamics of a SET
propagation tree.

Our setup is based on a Virtex-II Pro board in order to take advantage of the embedded
processor. Thus, we can distribute the injection tasks at several levels: from the hardware
blocks, to the embedded processor, and to the host PC used to configure the board itself.
This approach allows great flexibility and it allows partitioning the computation and
communication tasks as it is most convenient. To enable fault emulation and access inner
memory cells, the original circuit was instrumented: thus, selected memory elements
of the design could be fully controlled and observed during the computation process.
Unlike scan chains, the computation did not have to be stopped in order to interact with
the internal state of the circuit.

The AES algorithm is very regular. This means that the relative error propagation
pattern does not depend on the absolute location of the fault. This observation is fun-
damental, because it allows reducing the size of the test campaign without affecting the
validity of the results significantly. In particular, in the reported experiments, only one
substitution box (S-Box) and one linear computing element were instrumented; then,
every possible error value was verified for each target, for each computation cycle, and
for errors lasting up to nine clock cycles. We performed a large number of emulated
fault injections: as term of reference, the number of faults injected into the S-Box was
about 10°.

To characterize the effects of fault injections, we classified the outcome of the exper-
iments into five different classes. These classes are:

1. No effect: the internal state of the circuit was not modified at all. Class 1 means
that the injection was unsuccessful and it can be applied only to real experiments
(reported hereafter), since during the emulation campaign an error is always in-
jected.

2. Silent errors: the state of the circuit (either configuration or data) is modified, but
the result is correct and no error detected. This may occur when altering logic or
values that are not used at that stage of the computation process.

3. False positives: there is actually an alteration, and an alarm is raised, but the result
is nonetheless correct.

4. Detected errors: the fault led to an unexpected result and it was successfully de-
tected.

5. Undetected errors: no error is detected, but the cipher is not the expected value.
This is the most dangerous situation, since it may lead to a security breach.

The detailed report on the campaign results can be found in [20]. Here we want to
highlight the behavior of the DDR design against transient faults in the user memory

Glitch and Laser Fault Attacks onto a Secure AES Implementation 253

Undetected Faults

1.E+00

1.E-01 — e
o /
1.E-04 \ / \>
veos |\ / A\
1E-06 \ /{ \

1.E-07 \ /
1:E-08 : \/ \Q

1 2 3 4 5 6 7 8 9
Fault duration [cycles]

Undetection probability

—&—Linear Layer ——SBox Output —0—SBox Internal

Fig. 2. Undetected transient faults with emulated injections [20].

elements of an ASIC implementation, which are the typical model for fault attacks.
As already anticipated, the results from the emulated campaigns may belong only to
classes 2 to 5: since we can control finely the content of each register, an error was
actually introduced for all the experiments. This may not hold for the real experimental
campaign, where we need to deal also with the success rate of the injection technique.

This protection scheme has a very good coverage rate for short or very short faults
targeting the flip-flops (see Fig. 2): when the fault is shorter than a complete round
computation (i.e., the regular and the backup computation), then errors are detected with
a probability of 99.9%. As the length of the fault increases, it is more likely that it will
not be detected by the protection scheme, which is based on temporal redundancy, since
both computations will be probably affected by the same error. The confirmation comes
from the fact that the highest probability of an undetected error is for faults lasting six
clock cycles, which is exactly the duration of a round. Such a fault duration is however
quite unlikely when attacking an ASIC.

4. The FPGA Board

The FPGA used in this paper is a Xilinx Virtex-II XC2V 1000, fabricated on a 0.15 pm
CMOS 8-layer metal process. The FPGA is embedded in an 896-pin flip-chip fine-
pitch package. Physically, there are 720 Kbit block RAMs distributed on four columns
with multipliers and 432 available I/Os placed on all the surrounding of the chip. The
device is configured by downloading a configuration file (bitstream) that contains all the
configuration information. All user programmable features inside the Virtex-1I device
are controlled by memory cells that are volatile and must be configured on power-up.
These memory cells are known as the configuration memory and define the Look-Up
Table (LUT) equations, signal routing, Input/Output Blocks (IOBs) voltage standards,
and all other aspects of the user design.

254 G. Canivet et al.

[> TBUF XOY1 e BN
RAM16 ORCY
DTBUFXOV0_[gice Qx\D
X1Y1 5 J L, MU
SRL16
»| Slice |« - W Ragister
Switch COouT | X1Y0 o \s D
i — —~ V)
Slice CIN % % « MUXF5
| X0Y1 SRL16 .
Fast N Y cy Register
| Slice Connects N Lgr_
- | X0Y0 to neighbors o
[aithmatic Logic
CIN DS031_32_101600 DS031_31_100000
(a) CLB (b) Slice configuration

Fig. 3. Virtex-1I Elements [22].

Virtex-1II configuration memory is arranged in vertical frames that are one bit wide.
The length of the frame depends on the size of the device. For the XC2V1000 used
during our campaigns, the bitstream is composed of 1104 frames of 106 32-bit words.
Configuration frames are grouped into six column types that correspond to physical
device resources. Each Virtex-II device has the same configuration column types: IOBs,
Input/Output Interconnects (IOIs), Configurable Logic Blocks (CLBs), Global Clocks
(GCLK3s), BlockRam (BRAM) and BlockRam Interconnects.

The major elements of the Virtex-II independently of the device type are CLBs,
which are composed of four identical slices (logical element) and of interconnections
(Fig. 3(a)).

As shown in Fig. 3(b), each slice is composed of a sequential part (Flip Flops) and a
logical part (LUTs and multiplexers). Each 4-input function generator is programmable
as a 4-input LUT, 16 bits of distributed SelectRAM memory, or a 16-bit shift register
element.

Each Virtex-II device can be represented as an array of logic blocks surrounded by
switch matrices. Long lines are bidirectional wires distributing the signals across the
device; Hex lines route signals to every third and sixth block in all directions; finally,
double lines route signals to every first or second block in all directions.

The device used has three kinds of power supplies: the core (1.5 volts), the input—
output, and the auxiliary (3.3 V). The input—output supply allows defining the voltage
standard used by the design (LVTTL, LVCMOS, LVDS), whereas the auxiliary supply
is used for example to power the JTAG module.

5. Power Glitch Attacks

5.1. Experimental Setup

During the fault injections by means of power glitches, the voltage of the power supply
is increased by the attacker for a brief instant. For our campaigns, we used several

Glitch and Laser Fault Attacks onto a Secure AES Implementation 255

Compare with

DUT Reset Load data Config. Read-back golden config.

Operations FPGA Config.] [¥ | “ [. [Read Results |
—

Fault Injection # wait cycles Shot

putcleck [[T

Coprocessor
activity

DUT Operations

Initial Encryption Rounds Final Encryption Rounds

Fig. 4. Timing diagram of the test sequence used for each spatial position.

values for the width and the amplitude of the pulse. The first series of experiments
consisted in applying overshoots between 5 and 80 volts on the rising edge of the clock.
In order to reduce the time required by the whole experimental campaign, we decided to
split the whole campaign into 2 sessions with different voltage ranges. The first session
envisioned overshoots ranging from 5 to 45 volts: we will refer to this campaign as
S1-1; the other session ranged from 45 to 80 volts (referred to as S1-2). A third set of
experiments was also conducted, where the overshoots range again between 45 and 80
volts (as for campaign S1-2), but are applied on falling edge of the clock (this will be
called S2). The voltage incremental step is the same for all campaigns and set to 5 volts.
For all the campaigns, the power glitches were applied for durations ranging from 10 ns
to 100 ns by steps of 10 ns. We targeted the cycles 49 to 60, corresponding to the two
last ciphering rounds.

For these campaigns a specific electronic board was developed, with separated power
supplies (core, 10s, and auxiliary). Thanks to this approach, it was possible to apply the
overshoots only to the chosen power supply lines: in our experiments, the power glitches
were applied only to the core voltage. If glitches had been applied to other power lines
(auxiliary and/or 10s), then the effects would have occurred only during the download
of the bitstream or during the data transmission (key, data, go ciphering ...), without
modifying the data during the encryption process.

Faults were injected during the ciphering following the methodology depicted in
Fig. 4. The FPGA configuration is first sent through a serial interface (JTAG), followed
by data and commands that are needed by the system (e.g., reset, secret key and plain
text, the instant of fault injection, and the start commands). According to the commands
and parameters that have been received, a motherboard sends all the proper signals to
a daughter board with the Device Under Test (DUT), including the clock and the data.
Once the encryption has started, the motherboard counts the rising edges of the clock
in order to stop the DUT clock at the right instant. The fault is injected at the last rising
(or falling) edge before stopping the clock. Since the clock is stopped, we can tune the
duration of the fault injection according to our needs: in fact, the DUT is not working
and its computation is suspended. The fault can be thus injected at a single specific cycle
and with the chosen strength of the power pulse. After the fault injection, the configu-
ration is also read back in order to allow an accurate analysis of the elements that were
modified by the attack. After this step, the clock is re-started to complete the encryp-

256 G. Canivet et al.

—a— Rising edge, 5V to 45V (S1-1) - - Rising edge, 45V to 80V (S1-2) ——Falling edge, 45V to 80V (52)

~
(=]
(=]

|
\

[5,]
o
o

s
o
o
r
_—

ér
A

Average number of faulted bits
8
o
>
»
»
‘\

49 50 51 52 53 54 55 56 57 58 59 60
Fault injection cycle

Fig. 5. Average number of faulted bits onto the configuration using power glitches faults injections for the
different campaigns.

tion process. Finally, the different registers (encrypted result and error) can be read for
subsequent analysis.

5.2. Characterization of the Effects on the FPGA Configuration

Previous articles have shown the modifications of the FPGA configuration due to laser
faults injections [15—17], but no paper dealt with fault injections using power glitches.
This paper allows filling this lack.

In order to know the effects of fault injections in the configuration or in the user flip-
flops, it is necessary to use a mask file defined by the compilation tool ISE-9.2i. The
mask file has the same length than the read-back file (i.e., the configuration read from
the FPGA itself): it allows bit-by-bit comparison and it defines configuration and user
flip-flop bits.

During the different campaigns (S1 and S2), no configuration bit of the design was
modified, only the content of user flip-flops. This means that the injected errors can be
accurately modeled as transient bit-flips. The same results were observed independently
of the overshoot parameters.

Figure 5 shows the average number of modified bits as a function of the clock edge
(rising or falling) and of the overshoot amplitude. These average numbers are computed
from the total number of modified bits for each injection cycle and normalized with
respect to the number of faulted configurations. We always observe the same trend for
faults injected during the rising edge, independently of the voltage range, whereas the
average number depends on the range: the higher the voltage, the more bits are modified.

Comparing the results obtained for both edges in the same voltage range (45 to 80
volts), we note that the average number of modified bits during the falling edge is twice
than for the rising edge. A possible reason for these results may be the difference in the
physical layout. Flip-flops are made of two latches (Fig. 6): the first one (Latch 1) is
transparent when the clock is at one level and the second (Latch 2) is transparent during
the other level of the clock. Latch 1 is connected only to Latch 2, while Latch 2 may be

Glitch and Laser Fault Attacks onto a Secure AES Implementation 257

...

Fig. 6. Flip-flop schematic based on two latches.

Table 1. Global results obtained with overshoots included between 5 volts and 80 volts. No. = Number,
Perc = Percentage.

Over-voltage Rising edge Rising edge Falling edge

range S5Vtod5SV 45Vto80V 45Vt 80V

Class No. Perc No. Perc No. Perc
No effect 1027 95.1% 809 84.3% 268 27.9%
Silent error 0 0.0% 0 0.0% 12 1.2%
False positive 16 1.5% 55 9.3% 60 6.2%
Detected error 37 3.4% 89 5.7% 157 16.4%
Undetected error 0 0.0% 7 0.7% 463 48.2%
Total 1080 960 960

connected to several elements and signal drivers. This may result in design differences
making one latch more sensitive to voltage spikes than the other.

5.3. Global Results

The majority of fault injections using power glitches on the rising edge have no effect
onto the configuration and onto the ciphering (line No effect of Table 1). We observe in
this table that a fault injection into the configuration always leads to a ciphering error
(0% of silent error).

When the overshoot is between 5 and 45 volts, the proportion of error detection
among the altered executions is 100%, including about 30% of false positives; no un-
detected errors at all are obtained. For glitch amplitudes between 45 and 80 volts, the
proportion of errors is more significant (more than 15%) but most faults lead to false
positives (57% of the corrupted executions). Some undetected errors were also obtained
(4% of the errors, or 0.7% of the attacks) showing the possibility to bypass the coun-
termeasure. In the next section, we will analyze these global results with respect to the
injection cycle in order to identify which cycle is the most critical.

During the fault injection campaigns on the rising edge, more than 84% of the over-
shoots had no visible effect, while this proportion goes down to 28% when attacking on
the falling-edge (Table 1). This result may be explained by the sensitivity of the flip-flop
as mentioned in the previous section. The proportion of attacks with detected errors is
more important for the falling edge campaign (16% for S2 against 5% for S1), but the
proportion of undetected errors is also noticeably increased (48%). However, each cor-
rupted outcome was always set to zeroes, which corresponds to a reset of the different
registers (UART, crypto-processor). The configuration was not altered; further encryp-

258 G. Canivet et al.

OSilent Fault OFalse Positive EDetected Error M Undetected Error
100% =

90%

80%

70%

60%

50%

40%

30%

20%

10%

Normalized repartition of effects obtained
during the campaign

b

0% Ll ele | J)

49 50 51 52 53 54 55 56 57 58 59 60
Injection cycle

Fig. 7. Percentage of classes obtained for each injection cycle for power glitches between 5 volts and 45
volts.

tions would hence therefore give the correct results. Since no information on computed
data is leaked, these errors are therefore not exploitable to mount a fault analysis attack.

To conclude, these results demonstrate the efficiency of the implemented countermea-
sure against transient faults when injected during the rising edge. We have also demon-
strated the difference of sensitivity of flip-flops with respect to the injection edge. Fi-
nally, although more errors go undetected when injecting on the falling edge, the wrong
encryption results cannot be exploited by the attacker.

5.4. Results with Respect to the Injection Cycle

In the previous section, we have shown that injecting faults during the clock falling edge
is not effective to recover the key because each outcome was zeroed. So, in this section,
we will present only the results obtained for the rising edge.

In Fig. 7, we observe the repartition of the classes obtained at each injection cycle for
overshoots between 5 and 45 volts. We observe that some cycles are more prone to some
classes; for example, if the fault is injected during the two cycles at the beginning of the
round, then the fault mainly leads to false positives. Nevertheless the countermeasure is
efficient because the detection alarm is raised for each fault leading to ciphering errors.

The same results were observed for glitch amplitudes from 45 to 80 volts (Fig. 8). We
have previously mentioned the possibility to obtain undetected errors. This occurs only
if the glitch is injected during the last operation of the encryption process. However, this
kind of error should be not exploitable because it affects only the key addition and/or
the register writings. The attacker may try to distinguish different bit transitions (0-to-1
and 1-to-0) by monitoring and analyzing the power consumption or the EM emissions:

Glitch and Laser Fault Attacks onto a Secure AES Implementation 259

OSilent Fault OFalse Positive B Detected Error W Undetected Error

1 000/0 — —— [o 'f ’:.' ™
% e |
1 ke B 5
3 90% | R S
£ B ‘\.:o:
S g% e
e B £
® o F S
2 c 70% B 2
=) ke 2
€8 oo 2
o o 60% B]
s & - o
°m B o
c O U B 2
S S 50% i :
b 0, st
T o 40% B2
gt B
&%
S2 30% e
® 53]
N 5 £
= 20% K
4
S 10% B
Z
0%

55 56
Injection cycle

49 50 51

Fig. 8. Percentage of classes obtained for each injection cycle for power glitches between 45 volts and 80
volts.

however, such an approach would be disturbed by all the noise generated by the power
spike used to alter the computation process.

6. Laser Attacks

6.1. Setup

During the laser-based experiments, the device was configured with a Universal Asyn-
chronous Receiver Transmitter (UART) and the secure AES crypto-processor presented
in Sect. 2. Some place-and-route (PAR) constraints were added to reduce the experiment
duration. The target device measures approximately 1 cm?; since the displacement step
used for the campaign was 20 um, studying the entire device would have taken more
than 6 months without constraints. Therefore, we constrained the placement and rout-
ing of one column of the state: one S-Box, the linear function, and one DDR register.
Only these three elements are studied because they are representative of a large part of
the design. The results can be thus considered valid, with proper considerations, for the
whole encryption data path. The three blocks were placed at the top left corner of the
device, while the rest of the design (crypto-processor and UART) were placed at the
bottom (Fig. 9). Thus, only the desired elements have been modified during the attack.
The device used is Flip-Chip encapsulated and it was attacked backside through the
substrate (Fig. 10). The initial XC2V1000 device has a width of 10.6 mm, a length of
9.7 mm, and a thickness of 790 um. Following a classical attack procedure, a mechanical
process was employed to thin the die until a residual thickness of 30 pm. This is usually
done to ensure a good optical transmission of the light in the active layers of the device.
Without this thinning, the laser light does not affect the active layers and no errors

260 G. Canivet et al.

oM

g

Place-and-Route
Constraints

Linear Sbox DDR

il

o E L
ot e e B R

=800 pm = 1000 pm =600 pm

BB
bl b

&
o

=720 ym

L]

AR LY
Tow

All other elements of the design

Fig. 9. Place-and-Route Constraint used during the experiments.

Fig. 10. Laser fault injection equipment (inner view).

are generated. The laser wavelength is about 900 nm in order to have a good laser
penetration depth; the beam had a power of a few Watts and a 20 um spot diameter.
Figure 10 shows the test board with the device under the laser equipment.

For these experiments, the attacked area (Fig. 9) approximately measures 500 um by
600 um. A systematic scan of the selected zone was done using an X-Y table.

Faults have been injected during the ninth ciphering round to seek exploitable re-
sults and a simple cryptanalysis step. Earlier injection would be difficult to analyze; on
the other hand, injecting later may not guarantee to give exploitable results. Since the
crypto-processor uses six clock cycles per round [20] and the main state machine is

Glitch and Laser Fault Attacks onto a Secure AES Implementation 261

active on the rising edge, we injected the faults at the rising edge only from the 49th to
54th clock cycles.

The test sequence used during the laser experiments is similar to the one presented in
Sect. 5.1. Unlike the approach in [17], the fault can be injected during a single specific
cycle. Thanks to this methodology, the pulse duration is unconstrained.

6.2. Characterization of Laser Effects

It must be first noticed the high sensitivity of the CLB tiles [16]. The average number
of modified bits per shot can be quite high and clearly depends on the laser spot size.
The actual number also depends on the initial configuration, since the probability to flip
a ‘1’ is greater than the probability to flip a ‘0’.

As previously mentioned, a CLB tile is composed of two different parts: the internal
logic and the interconnections. For the logical part, the most sensitive parts are the LUT
contents and the internal multiplexers. For the interconnection part, the effect of the
fault depends on its initial state and on the fact that each connection may be defined
by one to three bits in the configuration. When there was no connection, then a new
one may or may not be actually created: in most cases, even if the configuration was
modified, there were no actual consequences on the connection. This is due to the fact
that multiple bits must be properly modified and this is not so likely. If a connection
was already set, then the injected fault may lead to different patterns: the connection
is modified, there is no effect, the connection is suppressed, or further connections are
added. These two latter situations are the most likely.

6.3. Global Results

During the campaign, more than 1400 laser shots have been performed for each clock
cycle during the ninth encryption round. The results are shown in Table 2 and classified
according to the categories presented in Sect. 3. A significant number (about 13%) of
the laser shots were actually ineffective, since the configuration was not modified. This
result can be explained either by the value of the configuration bit or by the shot posi-
tion. In [15] and [23], it was shown that the sensitivity of the bit depends on its initial
value. According to [15], the probability to flip a one is about 2.5 times higher than the
probability to flip a zero which is the configuration default value. An explanation con-
cerning this result is given in [23]. The structure of the configuration memory cell is not
similar to a classical SRAM cell; the 6-transistor structure is replaced by a 5-transistor
memory element with a sixth transistor used to implement the power-up-reset, creating
a dissymmetry between the input and output inverters. This analysis confirms that the
probability to flip a bit initially at ‘1’ is higher than to flip a ‘0’.

When the FPGA configuration is modified, more than 38% of the laser shots, al-
though modifying the configuration, did not produce any tangible effect (silent errors).
About 50% of the experiments led to ciphering errors: in particular, 29% were detected
errors, while a troublesome 18% went undetected. These results demonstrate the insuffi-
cient efficiency of the implemented countermeasure against laser-based fault injections
into a SRAM-based FPGA.

262 G. Canivet et al.

Table 2. Global results of laser injections during the ninth ciphering round.

Class Number Percentage
No effect 1155 13.4%
Silent error 3302 38.4%
False positive 44 0.5%
Detected error 2549 29.6%
Undetected error 1557 18.1%
Total 8610

O Silent Fault OFalse Positive & Detected Error B Undetected Error

100%
B R
£ 9% g%g.g}
3 B E.&:::({:E:))
] 80% B s
S e
£ 709 i e
© 2 60% B S
-.a E s B
© By R
c O 50% K fass 3
S 2 B e
e 40%
©c 2
o £
@5 30%
- T
2 20%
©
£ 10%
=]
z 0%

49 50 51 52 53 54

Injection cycle

Fig. 11. Outcome of the experiments when the configuration is actually modified.

6.4. Results with Respect to the Injection Cycle

We have shown in the previous section that different outcomes can be expected from a
laser shot. An analysis of these effects with respect to the injection cycle is presented
in Fig. 11, only when the configuration is modified. The number of silent faults is close
to 39% independently of the clock cycle. When a fault injection leads to an unexpected
ciphering value, the proportion of detected errors depends on the injection cycle.

If the fault occurs during the main AES computation (clock cycles 49 to 51), the
detection probability is high, while if the error occurs during the second copy of the
round (cycles 52 to 54), then the probability of undetected ciphering faults increases.
The FPGA used here is a SRAM-based device so a configuration error remains until
a new configuration is loaded. If the fault occurs in the last clock cycle of the ninth
round, then the configuration error is present during the whole computation of the last
round (round 10, composed of both the main and verification cycles). Because the AES
architecture uses the same S-boxes for the main and the verification cycle, a fault will

Glitch and Laser Fault Attacks onto a Secure AES Implementation 263

modify both computations and the error will not be detected, in spite of the temporal
redundancy.

Although the fault model used in the two experiments is quite different (long transient
faults in the emulation campaigns, remanent faults occurring during the encryption in
the laser experiments), we can find some common points. In particular, we can clearly
identify in both campaigns the main vulnerability of an approach based on temporal
redundancy. When the fault is able to affect both computations, then it will be hardly
detected. This occurs when the transient fault lasts six clock cycles (i.e., an entire round
and its repetition), or when the remanent fault caused by the laser is created at the
beginning of the last round. Finally, we can also see that the last computation cycles are
also quite vulnerable. All these flaws need to be addressed with further interventions.

7. Securing Against Faults in the Configuration SRAM

7.1. Further Hardening the Design

The detection scheme based on the DDR computation template is well suited to protect
against transient faults, as all mechanisms based on temporal redundancy. This assump-
tion was demonstrated both with emulated fault injections (Sect. 3) and fault injections
by power glitches (Sect. 5). As seen in the previous section, however, laser-based fault
injections on SRAM-based FPGAs are able to alter the configuration of the device.
Since these modifications will remain just until the next reconfiguration, they can be
described as remanent faults.

Remanent faults may be difficult to detect when using an approach based on temporal
redundancy, because they may alter all the process repetitions in the same way. Thus,
a different technique must be used as a complement. For instance, critical components
may be duplicated and different process repetitions may use different resources. This
solution is effective, but also highly expensive, since it may require a large area over-
head: for the considered architecture, this would require duplicating all the substitution
boxes, which are already the largest blocks of the architecture. An approach based on
partial duplication may be used [24], but the overhead would be about 25%, which is
already non negligible.

Similar results, however, can be obtained without directly resorting to hardware re-
dundancy. An alternative approach is based on allocating resource usage differently
each time the process is recomputed. In our design, the main and the auxiliary copy
of data share the non-linear combinational logic (i.e., the S-Boxes) and four functional
units are available in the design working in parallel. Hence, we propose as an addi-
tional countermeasure to rotate data when the computation is repeated on the auxiliary
copy; thus, each value is processed by two different functional units. If a remanent fault
occurs, then it will be detected easily by comparing the different outputs.

During the second computation, each row is permutated before entering the substitu-
tion boxes and the order is restored later. Due to the structure of AES, the overhead is
quite limited: only a few multiplexers are used to manage the permutation at the input
of non-linear layer, while the proper alignment is restored at almost no cost by using the
existing logic that implements the ShiftRows operation. Additionally, the key scheduler
was protected as well, in particular when the shared logic is used: the key is sent to the

264 G. Canivet et al.

Undetected Faults

1.E+00

1.E-01 A
1.E-02 A
1.E-03 A A
1.E-04 A
1.E-05 -
1.E-06 -

Undetection probability

1.E-07 ~

1.E-08

1 2 3 4 5 6 7 8 9
Fault duration [cycles]

—4—Linear Layer —= SBox Output o~ SBox Internal

Fig. 12. Undetected transient faults with emulated injections (new countermeasure).

S-Boxes twice, by exploiting the cycles when they are not in use by the encryption data
path, and the output is verified. Since the key word is never permutated, this allows a
complementary check of the non-linear logic.

It is interesting to note that the new countermeasures do not increase the area used on
the FPGA: a slightly larger number of flip-flops are used, due to the additional registers
in the key scheduler, but on the other hand less slices are actually required, thanks to
optimized resource usage. Without the PAR constraints that were used to facilitate the
laser injection campaign, the new implementation uses 54 additional flip-flops (2023
against 1969), but 41 less slices (1699 against 1740).

7.2. Emulation Results

Before performing the laser injection campaigns, the new countermeasures were vali-
dated with emulated fault injections. The same campaigns were run as in Sect. 3; the
results are shown in Fig. 12.

It can be seen that the number of undetected faults is drastically reduced. The new
countermeasures help detecting almost all possible transient faults. In particular, only a
very small number of faults into the state register are not detected: namely, those which
inject the same value in both the main and the auxiliary copy for an entire encryption
round. Likely, the faults injected in the substitution boxes are all suppressed, except
some of those lasting a complete round.

7.3. Laser Results

For this new countermeasure, we use place-and-route constraints that are comparable
to the previous version; the same zone is also studied. However, the netlists are slightly
different, which must be taken into consideration when comparing the results.

Glitch and Laser Fault Attacks onto a Secure AES Implementation 265

Table 3. Global results of fault injections during the ninth ciphering round (new countermeasure).

Class Number Percentage
No effect 4698 54.6%
Silent error 1548 18.0%
False positive 89 1.0%
Detected error 2263 26.3%
Undetected error 11 0.1%
Total 8610

OSilent Fault CFalse Positive [@Detected Error M Undetected Error
100%

90%
80%
70%
60%

50%

40%

30%
20%

10%

Normalized repartition of effects obtained
during the campaign

0%

49 50 51 52 53 54
Injection cycle

Fig. 13. Outcome of the experiments when the configuration is actually modified (new countermeasure).

Unlike the previous experiments, most laser shots had no effect at all onto the con-
figuration (54.6% for this campaign against 13.4% previously; see Table 3). This result
can be explained by the implemented design, but also by the experimental setup which
can easily change between different experiments (laser focalization, circuit and ambient
temperature). Due to large differences in the fault injection results, it is quite difficult to
precisely compare the new design with the previous one.

Nevertheless, we can observe that only 11 laser shots lead to undetected errors and
they represent only 0.1% of the whole campaign. Additionally, the number of detected
errors increases, which shows that most errors that were undetected are now properly
identified. The new architecture is definitely more secure, since less than 0.3% of in-
jected errors are undetected (against 20.9% of the previous version).

This is independent of the injection cycle as shown in Fig. 13. The percentage of
silent faults is close to 40% for both implemented designs, while the ratio of undetected
faults is considerably different. When the injected fault induced a corrupted encryption
result, the error is detected in 99% of the cases.

266 G. Canivet et al.

7.4. Exploitation of the Attack

Since the undetected faults are very few, it is interesting to study whether the errors
are exploitable to recover the secret key. In a real case, this step would be hard for the
attacker: rewinding the execution to understand the effects of the faults can be easily
accomplished by already knowing the secret key, but it would be quite difficult in a
black box approach.

A few different patterns were recognizable in the 11 faulty outputs. It was seen that
the same or similar errors were injected by a pair of injections, which were related by
injection coordinates and timing. As expected, adjacent locations gave the same error
when the shots were only slightly delayed in time.

In six experiments, we were able to suppress the key addition for a single byte. This
can be easily exploitable by an attacker, who may recover a byte of the last round key
just by comparing the final outputs. This result was a consequence of the fine area op-
timizations performed on the design, which increased the criticality of some functional
blocks. This vulnerability can be easily addressed by increasing the redundancy in the
key addition logic: the overhead will be very limited when compared to the entire archi-
tecture.

A few other faults suppressed the computation of the MixColumns operation. This
vulnerability can be quite serious, since it removes completely the diffusion layer of
AES. If the fault affects the architecture from the beginning of the encryption, then each
byte of the result depends on only one byte of the input. Hence, the secret key may be
found by incremental brute search one byte at a time. Again, this is due to the quite
aggressive optimizations chosen when designing the linear functional blocks. Again,
this vulnerability can be addressed by hardening the vulnerable functions.

It must be observed that all the control signals were encoded in dual rail for improved
security. However, due to characteristics of the FPGA and the difficulty to control the
synthesis process, this was not enough against the laser-based injections, since connec-
tions and routing are still controlled by few bits. It is thus mandatory, in a real case
application, to verify that all the countermeasures are properly implemented during the
design flow.

8. Conclusion

SRAM-based FPGAs are becoming common for low-volume markets, thanks to their
affordability and versatility. Cryptographic accelerators are one of the possible appli-
cation fields: on the other hand, we must consider vulnerabilities coming from side-
channel analysis or fault attacks.

In this work, we have implemented an AES architecture secured against fault attacks;
we have then conducted extensive fault injection campaigns by means of power glitches
and laser-based attacks. To our knowledge, this is the first time that a secured crypto-
graphic implementation on FPGA has been attacked with laser-based injections during
runtime. We have shown that, although the implemented countermeasure had proved
itself very resistant against transient faults, FPGA implementations may also be vulner-
able to remanent faults, i.e. faults that modify the configuration of the device.

This additional source of weakness, which is due to the specific technology of the
considered class of FPGAs, has been addressed with further dedicated and inexpensive

Glitch and Laser Fault Attacks onto a Secure AES Implementation 267

protections. A new experimental campaign proved it to be very efficient: only a very
limited percentage (0.1%) of injected faults remained undetected. The undetected errors
affected the functionality of the device: the ciphering algorithm was significantly al-
tered and some operations were completely suppressed. This revealed a few exploitable
vulnerabilities in the linear functional blocks of the architecture. However, due to the
simplicity and the small size of these blocks, effective countermeasures can be envi-
sioned, at a limited cost with respect to the entire design. Additionally, the designer may
choose to extend the additional proposed countermeasure (implemented here only for
the substitution boxes) to the whole encryption data path to improve robustness against
permanent faults at a reasonable cost.

This work shows that secure implementations on reconfigurable devices must face a
large variety of threats. One of the major contributions is that remanent faults may be
an effective mean to get the secret key: the fact that the function computed by the circuit
may be changed allows altering the computation, such as by making the device skip
some ciphering steps. In one of our experiments, for instance, the diffusion function
was suppressed: running further encryptions on such a faulty device would easily com-
promise the confidential information. It must be said, however, that a thorough analysis
without any knowledge on the circuit or on the key (i.e., a black box approach) would
be quite difficult. On the other hand, the attacker may find an easy breach by performing
some selected encryptions, which would be used to gather useful information.

These threats are, however, difficult to counteract by relying solely on architectural
countermeasures, which might always be circumvented by changing the configuration
logic. It would be therefore advisable to adopt more robust mechanisms in order to
assure the dependability of programmable circuits when used in sensitive contexts.

References

[1] S.B.Ors, E. Oswald, B. Preneel, Power-analysis attacks on an FPGA—First experimental results, in Pro-
ceedings of the 13th International Conference on Field-Programmable Logic and Applications (2003),
pp. 35-50

[2] K. Gandolfi, C. Mourtel, F. Olivier, Electromagnetic analysis: concrete results, in The Proceedings of
Cryptographic Hardware and Embedded Systems (CHES 2001). Lecture Notes in Computer Science,
vol. 2162 (Springer, Berlin, 2001), pp. 251-261

[3] D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi, The EM Side-channel(s), in The Proceedings of
Cryptographic Hardware and Embedded Systems (CHES 2002). Lecture Notes in Computer Science,
vol. 2523 (Springer, Berlin, 2003), pp. 2945

[4] D. Carluccio, K. Lemke, C. Paar, Electromagnetic side channel analysis of a contactless smart card:
First results, in The Workshop on RFID and Lightweight Crypto (RFIDSec05), Graz, Austria, July 13—
15 (2005)

[5] D. Boneh, R. DeMillo, R. Lipton, On the importance of eliminating errors in cryptographic computa-
tions. J. Cryptol. 14, 101-119 (2001)

[6] H. Bar El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The sorcerer’s Apprentice guide to fault
attacks. Proc. IEEE 94(2), 370-382 (2006)

[7]1 G. Piret, J.-J. Quisquater, A differential fault attack technique against SPN structures, with application
to the AES and Khazad, in Proc. Fifth Int’l Workshop Cryptographic Hardware and Embedded Systems
(CHES ’03), vol. 2779 (2003), pp. 77-88

[8] S.-M. Yen, S. Moon, J.-C. Ha, Hardware fault attack on RSA with CRT revisited, in Proceedings of
the Information Security and Cryptology—ICISC 2002. Lecture Notes in Computer Science, vol. 2587
(Springer, Berlin, 2003), pp. 374-388

268

[9]

[10]

(11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

G. Canivet et al.

N. Selmane, S. Guilley, J.-L. Danger, Practical setup time violation attacks on AES, in Proceedings of
the Seventh European Dependable Computing Conference (EDCC 2008), May (2008), pp. 91-96

S. Bhasin, J.-L. Danger, S. Guilley, N. Selmane, Security evaluation of different AES implementations
against practical setup time violation attacks in FPGAs, in Proc. of the IEEE International Workshop on
Hardware-Oriented Security and Trust (HOST 2009) (IEEE CS, Los Alamitos, 2009), pp. 15-21

N. Selmane, S. Bhasin, S. Guilley, T. Graba, J.-L. Danger, WDDL is protected against setup time vio-
lation attacks, in Proceedings of the 6th International Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC 2009) (IEEE Computer Society, Los Alamitos, 2009), pp. 73-83

S.P. Skorobogatov, R.J. Anderson, Optical fault induction attacks, in Cryptographic Hardware and Em-
bedded Systems—CHES 2002, 4th International Workshop. Lecture Notes in Computer Science, vol.
2523 (Springer, Berlin, 2003), pp. 2-12

J.-M. Schmidt, M. Hutter, Optical and EM fault-attacks on CRT-based RSA: concrete results, in The
Proceedings of the Austrochip 2007 (Springer, Berlin, 2007), pp. 61-67. ISBN:978-3-902465-87-0
D.H. Habing, The use of lasers to simulate radiation-induced transients in semiconductor devices and
circuits. IEEE Trans. Nucl. Sci. 39, 1647-1653 (1992)

V. Maingot, J.B. Ferron, R. Leveugle, V. Pouget, A. Douin, Configuration errors analysis in SRAM-
based FPGAs: software tool and practical results. Microelectron. Reliab. 47(9-11), 1836-1840 (2007)
G. Canivet, J. Clédiere, J.B. Ferron, F. Valette, M. Renaudin, R. Leveugle, Detailed analyses of single
laser shot effects in the configuration of a Virtex-II FPGA, in International On-Line Testing Symposium
(IOLTS’08) (2008), pp. 289294

V. Pouget, A. Douin, G. Foucard, P. Peronnard, D. Lewis, P. Fouillat, R. Velazco, Dynamic testing of an
SRAM-based FPGA by time-resolved laser fault injection, in International On-Line Testing Symposium
(IOLTS’08) (2008), pp. 295-201

National Institute of Standards and Technology (NIST), FIPS-197: Advanced Encryption Standard, Nov.
2001

K. Wu, R. Karri, Idle cycles based concurrent error detection of rc6 encryption, in Proceedings of the
16th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT *01) (2001),
pp- 200-205

P. Maistri, R. Leveugle, Double-data-rate computation as a countermeasure against fault analysis. I[EEE
Trans. Comput. 57(11), 1528-1539 (2008)

N. Pramstaller, S. Mangard, S. Dominikus, J. Wolkerstorfer, Efficient AES implementations on ASICs
and FPGAs, in Proceedings of the Fourth International Conference on the Advanced Encryption Stan-
dard (AES ’04) (Springer, Berlin, 2004), pp. 98-112

Xilinx, Virtex-II Platform FPGAs: Functional Description, Data Sheet DS031, module 2 of 4, Novem-
ber 5, 2007

G. Canivet, R. Leveugle, J. Clédiere, F. Valette, M. Renaudin, Characterization of effective laser spots
during attacks in the configuration of a Virtex-II FPGA, in VLSI Test Symposium (VTS’09) (Springer,
Berlin, 2009), pp. 327-332

G. Di Natale, M. Doulcier, M.-L. Flottes, B. Rouzeyre, A reliable architecture for parallel implementa-
tions of the advanced encryption standard. J. Electron. Test. 25(4-5) (2009)

	Glitch and Laser Fault Attacks onto a Secure AES Implementation on a SRAM-Based FPGA
	Abstract
	Introduction
	Architecture
	The Algorithm
	The Implementation

	Emulated Fault Attacks
	The FPGA Board
	Power Glitch Attacks
	Experimental Setup
	Characterization of the Effects on the FPGA Configuration
	Global Results
	Results with Respect to the Injection Cycle

	Laser Attacks
	Setup
	Characterization of Laser Effects
	Global Results
	Results with Respect to the Injection Cycle

	Securing Against Faults in the Configuration SRAM
	Further Hardening the Design
	Emulation Results
	Laser Results
	Exploitation of the Attack

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

