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Abstract. We present an algorithm to compute the zeta function of an arbitrary hyper-
elliptic curve over a finite field I, of characteristic 2, thereby extending the algorithm of
Kedlaya for odd characteristic. Given a genus g hyperelliptic curve defined over [Fy», the
average-case time complexity is O (g*+¢n31¢) and the average-case space complexity
is O(g3n?), whereas the worst-case time and space complexities are O (g>+¢n3+¢) and
0(g*n?), respectively.
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1. Introduction

Since elliptic curve cryptosystems were introduced by Koblitz [20] and Miller [29],
various other systems based on the discrete logarithm problem in the Jacobian of curves
have been proposed, such as hyperelliptic curves [21], superelliptic curves [14] and C,,
curves [2]. One of the main initialisation steps of these cryptosystems is to generate a
suitable curve defined over a given finite field. To ensure the security of the system, the
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curve must be chosen such that the group order of the Jacobian is divisible by a large
prime.

Currently, there exist several approaches for computing the number of points on the
Jacobian of random curves. The first method is /-adic in nature: the number of points
is computed modulo sufficient small primes / by working in /-torsion subgroups of the
Jacobian and the final result is determined using the Chinese remainder theorem. This
approach was first described by Schoof [38] for elliptic curves and leads to a polynomial
time algorithm in all characteristics. A detailed description of Schoof’s algorithm and
the improvements by Atkin [3] and Elkies [9] can be found in [4] and [25]. Pila [35]
and later Adleman and Huang [1] extended Schoof’s algorithm to higher genus curves.
Currently, only the genus 2 version of this algorithm is practical [16], [17].

The second approach is p-adic in nature and is especially efficient for algebraic va-
rieties over finite fields of small characteristic. These p-adic algorithms come in two
flavours. The first strategy computes a p-adic approximation of the Serre—Tate canonical
lift and the action of Frobenius on this lift. This approach was first described by Satoh [36]
for elliptic curves. An overview of the many variants and further optimisations of Satoh’s
algorithm can be found in [41]. Mestre [27] presented a “dual” algorithm using the
Arithmetic—Geometric mean and sketched how it could be extended to ordinary hyperel-
liptic curves [28]. Results by Lercier and Lubicz [26] show that this algorithm is very effi-
cient as long as the genus is small; this is due to the exponential dependence on the genus.

The second strategy computes the action of Frobenius on p-adic cohomology groups.
Kedlaya [19] described such an algorithm for hyperelliptic curves over finite fields
of small odd characteristic, using the theory of Monsky—Washnitzer cohomology. The
running time of the algorithm is O (g*+¢n3+%) for a hyperelliptic curve of genus g over
F .. The algorithm readily generalises to superelliptic curves as shown by Gaudry and
Giirel [15]. A related approach by Lauder and Wan [22] is based on Dwork’s proof of the
rationality of the zeta function and results in a polynomial time algorithm to compute the
zeta function of an arbitrary algebraic variety over a finite field. Despite its polynomial
time complexity, a first implementation indicates that cryptographical sizes are out of
reach. Note that Wan [42] already suggested the use of p-adic methods, including the
methods of Dwork and Monsky, several years ago. Using Dwork cohomology, Lauder
and Wan [23] specialised their original algorithm to curves which are Artin—Schreier
covers of the affine line minus one point, leading to an O(g>"*n3**) time algorithm.
In [7] we described an extension of Kedlaya’s algorithm to the same class of curves in
characteristic 2 with the same time complexity. More recently, Lauder and Wan [24]
extended their work to a larger class of Artin—Schreier covers (that does not however
include all hyperelliptic curves in characteristic 2).

In this paper we extend Kedlaya’s algorithm to arbitrary hyperelliptic curves defined
over a finite field of characteristic 2. Given a genus g hyperelliptic curve defined over F,»,
the average-case time complexity is O (g***n>*¢) and the average-case space complexity
is O(g’n?), whereas the worst-case time and space complexities are O(g>*n+¢) and
0] (g4n3), respectively. Note that for the curves treated in [24], Lauder and Wan obtained
a worst-case time complexity of O (g®"¢n3+¢). Animplementation in the C programming
language shows that cryptographical sizes are now feasible for any genus g. This paper
is the theoretical version of [40]: it provides a detailed description of the underlying
mathematics, presents all missing proofs and corrects the complexity analysis.
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The remainder of the paper is organised as follows: Section 2 reviews the basics of
Monsky—Washnitzer cohomology and Section 3 shows how to extend Kedlaya’s algo-
rithm to characteristic 2. Section 4 contains a ready to implement description of the
resulting algorithm and a detailed complexity analysis. Finally, Section 5 presents run-
ning times and memory usages of an implementation in the C programming language.

2. Monsky—Washnitzer Cohomology

In this section we briefly recall the definition of Monsky—Washnitzer cohomology as
introduced by Monsky and Washnitzer [34], [31], [32]; more details can be found in the
lectures by Monsky [33] and the survey by van der Put [39].

Let X be a smooth affine variety over a finite field k := F, with ¢ = p" elements.
Denote the coordinate ring of X by A. Let R be the ring of Witt vectors of F,, i.e. the
degree n unramified extension of the p-adic integers Z, with residue field I, and let K
be the fraction field of R. Elkik [10] showed that there always exists a smooth finitely
generated R-algebra A such that A ®r F, = A. In general A does not allow a lift of
the Frobenius endomorphism F on A; Monsky and Washnitzer solve this problem by
constructing a subalgebra A" of the p-adic completion of A, whose elements satisfy
growth conditions. The dagger ring or weak completion A is defined as follows: write
A= R[x1,...,x,0/(f1, ..., fm), then

A= R, ) e fou)s

where R{xi, ..., x,) consists of power series
{Zaax“ € R[[x1,...,x,]]113C, p eR,C>0,0<p < 1,V : |ag| < Cp'“'},

with o = (e, ..., ), Xx* i=x]" - x% and || := Y " .

Let B/k and B/ R be smooth and finitely generated with B ® F, = B and let B be
the dagger ring of B. Given a morphism of k-algebra’s G : A — B, there always exists
an R-morphism G : AT — BT lifting G. This last property implies that we can lift the
g-power Frobenius from A to AT

For AT we can define the universal module D'(A") of differentials

D' (AT := (AT dx; +---+ AT dx,)/ (ZAT< of; dx; + - o dx,,)).
Bx,,
Let D'(A") := A\’ D'(A") be the ith exterior product of D'(A") and denote with
d; : D'(A") — D'*1(AY) the exterior differentiation. Since d; | o d; = 0 we get the de
Rham complex D(AT)

0 — D(AT) & DA™y 4 p2aT) & p3aT)..
The ith cohomology group of D(AT) is defined as H (A/R) := Ker d;/Im d;_; and

H'(A/K) := H'(A/R) ®z K finally defines the ith Monsky—Washnitzer
cohomology group. One can prove that for smooth, finitely generated k-algebra’s A
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the map A > H*(A/K) is well defined and functorial, which justifies the notation. Re-
placing AT with A in the above construction of the ith Monsky—Washnitzer cohomology
group H' (A/K) gives rise to the ith algebraic de Rham cohomology group H/,, (A/K).
Unlike the Monsky—Washnitzer cohomology, the algebraic de Rham cohomology es-
sentially depends on the algebra A and in general H'(A/K) will not be isomorphic to
Hpr(A/K).

Let F be a lift of the g-power Frobenius endomorphism of A to AT, then F induces an
endomorphism F, on the cohomology groups H'(A/K). The main theorem of Monsky—
Washnitzer cohomology is that these groups satisfy a Lefschetz fixed point formula.

Theorem 1 (Lefschetz Fixed Point Formula). Ler X/ Fy be a smooth affine variety of
dimension d, then the number of F,-rational points on X equals

d
D (=1 Tr(g F, ' |H (A/K)).

i=0
3. Cohomology of Hyperelliptic Curves

3.1. Overview of Kedlaya’s Construction

Let I, be a finite field with ¢ = p" elements and fix an algebraic closure Fq. Throughout
this section we assume that p is a small odd prime. Let Q(x) be a monic polynomial of
degree 2g + 1 over I, without repeated roots and let C be the affine hyperelliptic curve
defined by the equation y?> = Q(x). Kedlaya does not work with the curve C itself, but
with the affine curve C which is obtained from C by removing the locus of y = 0, i.e.
the points (Ei, 0) Fq X Fq where ?i is a zero of E(x). The coordinate ring Aof Cis
clearly given by I, [x, y, y11/(* — 0(x)).

Let K be a degree n unramified extension of Q,, with valuation ring R, such that
R/pR = T,. Take any monic lift Q(x) € R[x] of Q(x) and let C be the smooth affine
hyperelliptic curve defined by y> = Q(x). Let C’ be the curve obtained from C by
removing the locus of y = 0. Then the coordinate ring of C’is A = R[x, y, y~']/(»* —
Q(x)). Let A" denote the weak completion of A. Since F = &", with & the p-power
Frobenius, it is sufficient to lift o to an endomorphism o of A", Tt is natural to define o
as the Frobenius substitution on R and to extend it to A” by mapping x to x° := x” and
y to y? with

o __ P 1/2 o P
R (1+ Q(x)Q(x)goc) ) pz( )(Q(x) MQ(x) )

An easy calculation shows that ord, (11/ 2) > 0 which implies that y° is an element of A"
since p divides Q(x)° — Q(x)”. Note that it is essential that y~! is an element of AT,
which explains why we compute with C’ instead of C.

Since C’ has dimension one, the only non-trivial Monsky—Washnitzer cohomology
groups are H(A/K) and H'(A/K). Finding a basis for H’(A/K) is easy since by
definition H 0(Z/ K) := Ker dy, with d, the derivation from AT into D' AT, which implies
that H°(A/K) is a one-dimensional K -vector space. The case H' (A/K) is more difficult
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and proceeds in two steps. Kedlaya first constructs a basis for the algebraic de Rham
cohomology of A and devises reduction formulae to express any differential form on
this basis. Then he proves that these formulae lead to a convergent process when applied
to the de Rham cohomology of A', i.e. H'(A/K) and concludes that the basis for the
algebraic de Rham cohomology also is a basis for H!(A/K).

The de Rham cohomology of A splits into eigenspaces under the hyperelliptic invo-
lution: a positive eigenspace generated by x'/y*>dx fori = 0,...,2g and a negative
eigenspace generated by x’/y dx fori =0, ..., 2g — 1. Using the equation of the curve,
any differential form can be written as 3 ¢- By > aixi/y* dx with a;; € K and
By, B, € N. A differential of the form P(x)/y*dx with P(x) € K[x] and s € N
can be reduced as follows. Since Q(x) has no repeated roots, we can always write the
polynomial P(x) = U(x)Q(x)+ V (x)Q’(x). Using the fact that d (V (x)/y*~2) is exact,

one obtains
/
PO 4y = (U(x) L2V m) ax
s ( s — 2) ys72

where = means equality modulo exact differentials. This congruence can be used to
reduce a differential form involving negative powers of y tothecase s = land s = 2. A
differential P(x)/y dx with deg P = m > 2g can be reduced by repeatedly subtracting
suitable multiples of the exact differential d (xi2¢ y) fori = m,...,2g. Finally, it is
clear that the differential P(x)/y?dx is congruent to (P (x) mod Q(x))/y? dx modulo
exact differentials. A differential of the form P(x)y*dx with P(x) € K[x] and s € N
is exact if s is even and equal to P (x) Q(x)"*/?! /y dx if s is odd and thus can be reduced
using the above reduction formula.

Kedlaya then proves two lemmata which bound the denominators introduced during
the above reduction process. The result is as follows: let A(x) € R[x] be a polynomial
of degree < 2g, then for k € N the reduction of A(x)y**! dx becomes integral upon
multiplication by pl°&(@s+D&+D=2] ang the reduction of A(x)/y**! dx becomes
integral upon multiplication by pl1°&@*+D] This implies that the reduction process
converges for elements of D' (AT).

The final step in the algorithm consists of computing the action induced by ¢ on a basis
of H'(A/K). Using the Lefschetz fixed point theorem, Kedlaya shows that it is sufficient
to compute the matrix M through which o acts on the anti-invariant part H'(A/K)~
of H'(A/K). Therefore we only need to compute (x'/y dx)® = px?@+D=1/y7 dx for
i =0,...,2g — 1. Using the aforementioned reduction process we express (x'/y dx)°
on the basis of H'(A/K)~ and compute the matrix M. The characteristic polynomial of
Frobenius can then be recovered from the coefficients of the characteristic polynomial
of the matrix MM° --- M°"™" through which the Frobenius F = o” actson H'(A/K)~.

3.2. Cohomology of Hyperelliptic Curves over [Fon

Let I, be a finite field with g = 2" elements and fix an algebraic closure F,. Consider
the smooth affine hyperelliptic curve C of genus g defined by the equation

C:y +h(x)y = f(x),

with h(x), f(x) € F,[x], f(x) monic of degree 2¢ + 1 and degh < g. Write h(x) as
¢-[[i_o(x — 0™ with §; € F,, ¢ € F,\{0} the leading coefficient of /1(x) and define
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H(x) =[Ti_o(x —6;) € Fy[x]. If h(x) is a constant, we set H (x) = 1. Without loss of
generality we can assume that H (x) | f(x). Indeed, the isomorphism defined by x +— x
andy —> y+ i, b;x' transforms the curve in

V ARy =F@) =Y bxd — k)Y bix'.
i=0

i=0

The polynomial H (x) will divide the right-hand side of the above equation if and only
if ?(51-) =" E? . §j2»l for j =0, ...,s. This is a system of linear equations in the
indeterminates Eiz and its determinant is a Vandermonde determinant. Since the 6; are
the zeros of a polynomial defined over IF,, the system of equations is invariant under the
g-power Frobenius automorphism F and it follows that the 51.2 and therefore the b; are
elements of IF,. We conclude that we can always assume that H(x) | T(x).

Let7 : C(F,) — A!(F,) be the projection on the x-axis. It is clear that 7 ramifies at
the points 0;,0) € Fq X Fq fori = 0,...,s where H(0;) = 0. Note that the ordinate
of these points is zero, since we assumed that H (x) | f(x). Let C’ be the curve obtained
from C by removing the ramification points 6;,0)fori =0, ...,s.Then the coordinate
ring A of Cis

Folx, y, Hx) '/ + h(x)y — f(x)).

Let K be a degree n unramified extension of (Q, with valuation ring R and residue
field R/2R = F,. Write h(x) = ¢ - [[/_, P;(x)", where the P;(x) are monic and
irreducible over ;. Let D = max; t;, then h(x) divides H(x)?, since we have the
identity H(x) = [T P;(x). Lift P;(x) fori = 0,...,r to any monic polynomial
P;(x) € R[x].Define H(x) = [[._, P;(x) and h(x) = c-[]'_, Pi(x)", with ¢ any lift of
¢to R. Since H (x) divides f (x) we can define 57@) = f(x)/H(x).Let Qs (x) € R[x]
be any monic lift of 67()6) and finally set f(x) = H(x)Qy(x). The result is that we

have now constructed a lift C of the curve C to R defined by the equation
C: Y +h)y = f().

Note that due to the careful construction of C we have the following properties: H(x)|h(x),
H(x)|f(x) and h(x)|H (x)”. Let K" be the maximal unramified extension of K with
valuation ring R". For k =0, ..., s, let 6; be the zeros of H(x) and note that these are
units in R"". Furthermore, let 7 : C(K) — A'(K) be the projection on the x-axis, then
the (6, 0) are ramification points of .

Consider the curve C’ obtained from C by deleting the ramification points (6, 0) for
k=0,...,s,then the coordinate ring A of C’ is

Rlx,y, Hx)'1/(* + h(x)y — f(x))

and there exists an involution : on A which sends x to x and y to —y — h(x). Let AT
denote the weak completion of A. Using the equation of the curve, we can represent any
element of AT as a series Y ;°°__ (U;(x) + Vi(x)y)S(x)’, with the degree of U;(x) and
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Vi (x) smaller than the degree of S(x), where S(x) = H(x)ifdeg H > Oand S(x) = x if
H (x) = 1. The growth condition on the dagger ring implies that there exist real numbers
8 and € > 0 such that ord, (U; (x)) > € - |i| + 8 and ord,(V;(x)) > € - |i + 1| + §, where
ord, (P (x)) is defined as min; ord,(p;) for P(x) = ) pjxj € K[x].

Lift the 2-power Frobenius & on F, to the Frobenius substitution ¢ on R. We extend
o to an endomorphism of A" by mapping x to x? and y to y°, with

O+ h(x)y — fx)° =0 and y° =y’ mod?2.

Using Newton iteration we can compute the solution to the above equations as an element
of the 2-adic completion A as

W2+ h(x)” Wi — f(x)°
2Wi + h(x)®

The only remaining difficulty in the above Newton iteration is that we have to invert

2W; + h(x)° in the ring A®. Since h(x) | H(x)P?, it makes sense to define Qy (x) :=

H(x)P/h(x) and we clearly have 1/h(x) = Qy(x)/H (x)P. We can now compute the

inverse of 2Wj, 4+ h(x)? as

Wigr = Wi — mod 251, (1)

O (x)?
H@)?P - (14 (Qu(x)*Q@Wi + h(x)? — h(x)?)/H (x)*P)

2

Note that 4(x)° = h(x)?> mod 2, which implies that the denominator in the above formula
is invertible in A°°. Contrary to the odd characteristic case it is not immediately clear
that the solution W := limy_, 1o W; is an element of AT. A theorem by Bosch [5]
guarantees the existence of such a solution, but does not provide bounds on the rate of
convergence. Since these bounds are needed in the complexity analysis, we prove the
following lemma.

Lemma l. Fork > 1,let W, = ZiA:k_Lk U; (x)S(x)! +ZQ—Lk Vi(x)S(x)'y € A, with
S(x)=H(x)ifdegH > 0,S(x) =xif H(x) =1 anddegU; < deg S,degV; < deg§
satisfy

W2+ h(x)° Wy — f(x)° =0mod 2¥  and W = y* mod 2

withUys, #0,Vp, #0,U_r, # 00rV_, # 0and such that U; = 0 orord,(U;(x)) < k
for —L; <i < Ay and V; = 0orordy(V;(x)) < kfor —Ly <i < By. Then Ay, By and
Ly can be bounded for k > 2 as

Av < 2(k — 1)(d] —2d") + 24P,

By < 2(k —2)(d] —2d") + (d] —db),

Ly < 4(k—1)D—-2D, 3)
with d‘Sf :=deg f/deg S and d" := degh/deg S.

Proof. An easy calculation shows that W; = f(x) — h(x)y mod 2, thus A; < d'sf,
By <d¥ L, <0and that

_ FX)7 = f(x)? —hx) f(x) n h(x)° +2f(x)
= h(x)2 A

W, mod 4,
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which implies that W, satisfies the lemma. The Newton iteration (1) can be rewritten as

h(x)? Wipr = —W2 + (h(x)? — h(x)”) Wi + f(x)° mod 2K

Let o (x) = Z;Z_Lk U;(x)S(x)" and Bi(x) = IB:k_Lk Vi(x)S(x)" such that W, =
ax(x) + Br(x)y. Note that W, = W;_; mod 2!, so we can define
o (%) — atg—1(x) Bie(x) — Pr—1(x)
Ags(x) = %T“ and  Agy(x) = "ZT"]

fork > 1 and Ay o(x) := Ag(x) := 0. It is clear that Wy can be written as
Wk = Aa,l —|— 2Aa,2 —|— e —|— 2k_1Aaqk —|— y (Aﬁ.l —|— ZAﬁyz + s —|— 2k_1Aﬁ!k) .

Plugging this into the Newton iteration gives the following equation

h(x)* Wig
=— Y 2T (AgiBas + (f(X) = h(X)Y) ApilAg )
i+jl—si<<jk+]
—y Z 2i+j71Aa’iAﬂ,j
i+j—l<k+1

— Y 2UV(AL + (f) —h@AG,)
2(i—1)<k+1
+ () —h(0)7) Y 27 (Agi + Apiy) + f(x)7 mod 27,
i<k+1

By definition Qp(x)h(x) = H(x)?, which implies 1/h(x)> = Qp(x)?/H (x)*P and
deg Oy = Ddeg H — degh. Since deg A,; < A; and deg Ag; < B;, we conclude that
Apy 1s less than or equal to

A B A f A . f
max <i+rjr1<akx+2(A, + Aj, Bi+ Bj +dy), 22213(2&, 2B; +dy),

A; +2d" 24 ) — 24",
P +2ds, S) S

Using the bounds given in (3) for A; and B; and the bounds A; < dg , B < d;’ and
L, <0, we see that Ay also satisfies the bounds (3). Similar reasoning can be used to
prove that By and Ly also satisfy the given bounds. O

Lemma 1 implies that the g-power Frobenius F can be lifted to an endomorphism
F on the dagger ring A", since we can simply take F := o". If we are to compute the
action of F on the first Monsky—Washnitzer cohomology group H'(A/K), we need to
determine a basis for H'(A/K). Following Kedlaya, we proceed in two steps: we first
determine a basis for the algebraic de Rham cohomology group Hp)y(A/K) and then
show that this is also a basis for H'(A/K).
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Analogous to the odd characteristic case, the algebraic de Rham cohomology
HJ:(A/K) of A splits into eigenspaces under the hyperelliptic involution. The pos-
itive eigenspace HJ)(A/K)" is generated by x'/H(x)dx fori = 0,...,s and the
negative eigenspace H)y(A/K)~ is generated by x'y dx fori =0,...,2¢ — 1. Note
that the positive eigenspace corresponds to the deleted ramification points (6, 0) for
k =0,...,s. Every element of HﬁR(A /K) can be written as a linear combination of
differentials of the form x* H (x)"y' dx, x* H(x)"y* dy with k,! € Nand m € Z. Using
the equation of the curve, we can reduce to the case / = 0 or 1. Since d (x* H (x)"y) and
d(x*H (x)™y?) are exact, we conclude that Hl,(A/K) is generated by differentials of
the form x* H (x)" dx and x* H(x)"y dx withk € Nand m € Z.

It is clear that x* H (x)" dx is exact fork € Nandm > 0.If deg H > O and m < 0
we can assume that 0 < k < deg H and since H (x) is square-free we can write x* as
A(x)H (x) + B(x)H’(x), which leads to

xFH @)™ dx = A(x)H (x)" " dx + B(x)H'(x)H (x)™ dx.

Since d(B(x) H (x)™*!) is exact we can reduce the above differential further form < —1
by using the relation

B B/(x)H(x)m—H

B(x)H (x))H(x)" dx = p——

dx,

where = means equality modulo exact differentials. As a result we can now reduce
any form x* H (x)" dx to a linear combination of the differentials x’/H (x) dx for i =
0,...,s.

For m > 0 we can reduce the differential form x*H (x)"y dx for k € N if we
know how to reduce the form x’y dx for i € N. Rewriting the equation of the curve as
2y +h(x))? = 4 f(x)+h(x)? and differentiating both sides leads to 2y +A(x)) d 2y +
h(x)) = 2f'(x) + h(x)h'(x)) dx. Furthermore, for all j > 1, we have the following
relations:

xI 2y + h(x)?dQ2y + h(x))
—1@y +h(x)) dx!

X2 f'(x) + h(O)R (X)) 2y + h(x)) dx

—%xj_l @f(x)+h(x)*Q2y + h(x))dx.

Since P(x)h(x)dx is exact for any polynomial P(x) € K[x], we finally obtain that
|:xj(2f’(x) + h(x)h'(x)) + %xj_l 4f(x)+ h(x)z):| ydx =0.

The polynomial between brackets has degree 2g 4 j and its leading coefficient is 2(2g 4
1) +4j/3 # 0. Note that the formula is also valid for j = 0. This means that we can
reduce x'y dx for any i > 2g by subtracting a suitable multiple of the above differential
for j =i —2g.

For m < 0 we need an extra trick to reduce the form x*H (x)"y dx with k € N.
Recall that Qy(x) = f(x)/H(x) and since the curve is non-singular, we conclude
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that gcd(Qr(x), H(x)) = 1. Furthermore, H(x) has no repeated roots which im-
plies gcd(H (x), Qf(x)H'(x)) = 1. Leti = —m > 0, then we can partially reduce
xky/H (x)" dx by writing x* as A(x)H (x) + B(x)Q(x)H'(x), which leads to

xk _ AW) B(x) Qs (x)H'(x)
- ydx = — ydx + —————
H(x) H(x)i~! H(x)

ydx.

The latter differential form can be reduced using the following congruence:

%(Zf'(x) + h(x)h'(x))(2y 4 h(x)) dx
(x)
B(x)

T Hx)

2y +h(x))*dQ2y + h(x))

B(x)

—_1 3 ~7
=—32y+hx))d (H(x)i) .

Substituting the expressions h(x) = QOp(x)H(x), f(x) = Qf(x)H(x) and
Qy + h(x))? = 4f(x) + h(x)?, we get

B(x) Qs (x)H'(x)
H(x)!
_ B(H'Qj —6Q) —30,') — B'(4Qs + Quh)
- (6 —4i)H!~!

ydx

I
dx + —dx,
yax + 7

where I(x)/H (x)dx is a suitable invariant differential. As a result we can write any
form x*H (x)™y dx for k € N and m € Z as a linear combination of the differentials
xiydxfori =0,...,2¢g —land x'/H(x)dx fori =0, ...,s.

To show that the Monsky—Washnitzer cohomology H'(A/K) is generated by the
same differential forms as the algebraic de Rham cohomology, we need to bound the
denominators introduced during the reduction process.

Lemma 2. Let A := R[x, y]/(y> + h(x)y — f(x)) and suppose that

2g—1
x"ydx = Zaixiydx +dS, 4
i=0

withr € Nya; € Kand S € A® K. Then 2"a; € R, o' g — B € A, where m =
3+ |_log2(r + g+ I)J, m =14+m+ |_10g2(2g + degh)J and B is some suitable

element in K.

Proof. The proof has two distinct parts. The first part is similar to Kedlaya’s argument
in Lemma 3 of [19], and is based on a local analysis around the point at infinity of the
curve C. Putr = x8/y, then one easily verifies that

[e¢]

o0
x =12 (1 + Zajt/) and y=¢"%"" (1 + ﬂjtj) , ®)
j=1 j=1
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with «;, B; € R. To see this, put z = 1/x, rewrite the equation of the curve C as
z+tz8Mh(1/7) — t2z%6*! f(1/z) = 0 and write z as a power series in ¢ using Newton
iteration. The relation (4) can be rewritten as

2g—1
271X 2y 4 h(x)) dx = Z 2" a:x! 2y + h(x)) dx + dT,
i=0

with T € A ® K. Considering the involution 1 of A which sends x to x and 2y + h(x) to
—(2y+h(x)), we see that we can write T = ZZNZO A;x'(2y + h(x)), with N big enough
and A; € K. This yields

2g—1
2" X2y +h(x) dx — Y 2" laix' 2y + h(x)) dx
i=0

N
=d (Z Aix' 2y + h(x))) ) (6)
i=0

In the above equation we express x and y in terms of r using equalities (5). Since
xty =¢727281 4. we getx! 2y +h(x)) dx = (—4t%28=% 4 ...) dt, which yields

m—1 J
2Nyt at
Jj=—max(2r+2g-+4,6g+2)

N
e (Z 24,77 ) Ay (cr TR ')) :
i=0

with y; € K forall j and y; € Rwhen j < —2(2g —1) —2¢g —4 = —6g —2andc
is the leading coefficient of 2(x). Note that ¢ is a unit in R. Integrating with respect to ¢
and dividing by 2 gives

N N
. . A; .
rej (4—2i—2g—1 ! —2i—2degh
| yjt/ = §__ Ai(t +)+ §_ 5 (et +o0 ()
Jj>—max(2r+2g+3,6g+1) i=0 i=0

with yj/ € K forall j and yj/ € R when j < —6g — 1. Indeed, the integration process in-
troduces denominators which become integral after multiplication with 2!1082r+2¢+2)] —
2"=2ifr > 2g—1. Afirst consequence of (7)is that A; = Oforalli > max(r+1, 2g). We
claim that (7) implies that A; € R foralli > 2g. Suppose the claim is false. Then let iy be
the largest integer with iy > 2g and A;, ¢ R. Note that —2ip —2g —1 < —6g — 1, since
ip > 2g. Hence the monomials in the left-hand side of (7) with degree < —2ip —2g — 1
have coefficients in R. Moreover, the monomials of degree < —2iy — 2g — 1, in the
first sum in the right-hand side of (7) also have coefficients in R, but this is false for
the monomial of degree —2iy — 2g — 1. Hence the second sum in the right-hand side
of (7) contains a monomial of degree —2iy — 2g — 1 whose coefficient is not in R. That
means that there is a maximal i} with A;, /2 & R and —2i; —2degh < —2ip —2g — 1.
Because of parity we have that —2i; — 2degh < —2iy — 2g — 1. Since c is a unit, the
right-hand side of (7) contains a monomial of degree —2i; —2degh < —2ip —2g — 1
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whose coefficient is not in R. However, this contradicts what we said about the left-hand
side. This finishes the claim that A; € R for all i > 2g.

We now turn to the second part of the proof. Note that (2y + h(x))> = v(x) with
v(x) :=4f(x) + h(x)2. Moreover, dRy + h(x)) = (w(x)/2y + h(x))) dx, where
w(x) = 2f'(x) + h(x)h'(x). We use these formulae to deduce from (6) a relation
which does not involve y. For this purpose we multiply (6) with (2y + A(x))/dx =
w(x)/d(2y + h(x)) obtaining

2g—1 N N
21y u(x) — Z 2 lgixiv(x) = Z Ajix' o) + ZAixiw(x).
i=0 i=0

i=0

We rewrite this in the form

21 2 28
(Z 2m‘1aixi) v(x) + <Z Aiixi‘1> v(x) + (Z A,-x’) wx) =F(x), (8)

i=0 i=0 i=0
where
Fx):=2""x"v@) — Y Aixo@) = Y Ax'w() )
i=2g+1 i=2g+1

is a polynomial over R, since A; € R for all i > 2g. From (8) and (9) it follows
that lei 0 A,H]i has valuation > 0 for each root 6; of H(x), because v(6;) = 0 and
w(By) # 0. To eliminate the disturbing factor 2 in the definition of w(x), we consider
q(x) ;= W' (x)H(x)/h(x) € R[x] and u(x) := J(w(x) — g(x)v(x)/Hx)) = f'(x) —
2¢g(x) f(x)/H(x). Note that u(x) € R[x], degg = max(0,deg H — 1), degu = 2g and
that the leading coefficient of u(x) is a unit in R. Rewrite (8) in such a way that w(x)
gets replaced by u(x):

2g—1 | . 2¢g - q(x) 2g ]
;2 a;x +2Ai1x + %;Aix v(x)

i=0
2g
+ (Z 2A[xi) u(x) = F(x).
i=0

Write g (x) Y28, Aixi = H(x) Y..%," Bix' + Rem(x), with Rem(x) € K [x] of degree
< deg H. Since Z?ﬁ 0 A,-@li has valuation > O for each root 6; of H(x), the same holds
for Rem(8;). Thus Rem(x) € R|[x] since the discriminant of H (x) is a unit in R. Hence

2g—1 2g

<Z (2" 'a; + (i + DAi1 + B;) xf> v(x) + (Z 2A,-x"> u(x)

i=0 i=0
Rem(x)v(x)

We consider (10) as a system of 4g + 1 linear equations in the unknowns 2"~ 'a; + (i +
1)A;j 1+ Bifori =0,...,2¢g — 1 and 2A; fori =0, ..., 2g. The determinant of this
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system is the resultant Res(v(x), u(x)) of v(x) and u(x) because degv = 2g + 1 and
degu = 2g. This resultant is a unitin R because the valuation of v(£) is zero for each root
& of u(x), since the resultant of f’(x) and 4 (x) is a unit. We conclude that the solutions
of the linear system are elements of R, thus 2A; € Rand 2" 'a; +(i+1)A;; +B; € R.
From the definition of the B; it follows that 2B; € R since 2A; € R and Rem(x) € R[x].
Hence 2™a; € R, which concludes the proof of Lemma 2. O

Remark. Lemma 2 remains valid when we replace Y -5;" by Y.7¢~'** whenever
r > k € N. The proof is the same, except that we also have to show that A; = 0 for all
i < k. This follows from (6) using a local analysis at a point on the curve with x = 6;.

Such a local analysis is given in the proof of Lemma 3 below.

Lemma3. Let A := R[x,y, H(x)’l]/(y2 + h(x)y — f(x)) with degh > 0 and
suppose that

B zgz_l ivd +ibix[ dx + dS (11
——ydx = a;x X X ,

Hy? T T T T i
where r € N, B(x) € R[x] of degree < degH, a;,b; € K and S € A ® K. Then
2"a; € R,2"b; € R,2"S — B € A, withm = 3 + |_10g2(r + I)J, m =14+m+
L10g2(2g + deg h)J and B is some suitable element in K.

Proof. The proof again consists of two distinct parts. The first part is similar to Ked-
laya’s argument in Lemma 2 of [19] and is based on a local analysis around the ramifi-
cation points (6, 0) fork = 0, ..., s. In the completion of the local ring of the curve at
(6x, 0) we can write
X =0 = vy’ + Z ey,
j=3
with ¥, ; € R" and y; > a unitin R". Indeed, to see this write 4 (x) and f(x) as a Taylor
expansion around 6 and use the equation of the curve and the condition f”(6;) #Z 0mod 2,
to express x — 0 as a power series in y using Newton iteration.
Applying the involution 1 to (11), we see that this relation implies

2g—1
2" UB(x)H (x) " 2y + h(x)) dx — Z 2" a;x' 2y + h(x)) dx
i=0
M .
=d ( Z B:(x)H(x)' 2y + h(x))) , (12)
i=—N

with N and M large enough integers. Expressing x — 6y in terms of y, we get B; (x) H (x)’
= uy,;B; (Qk)yzi + - - - with u; a unit in R"". Substituting this in (12) and dividing by 2
we obtain

2" Ny iy dy
j=—2r42

M my g (my)

; i Bi (0) Vi B O oo,

=d<zuk,iBi(9k)y2+l+ k 2 k k,2 ' y2+2 k+
N ny.
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with yk € K" forall j and yk € R" when j < 1. Integrating the left-hand side of this
equatlon with respect to y ylelds a series whose terms of degree < 2 have coefficients in
R"™. The leading term of the right-hand side is uy, _y B_y (8)y~2¥*!, which implies that
B_n(6y) is integral for k = 0, ..., s. Since the discriminant of H (x) is a unit in R we
conclude that B_y (x) has integral coefficients. Bringing the integral terms to the left-
hand side and repeating the same argument, shows that B; (x) € R[x]fori = —N, ..., 0.
This terminates the first part of the proof.

The second part of the proof proceeds along the same lines as in Lemma 2. Rewrite the
sum Z,Ai1 B;(x)H (x)' 2y + h(x)) as Z?io A;x"(2y +h(x)) with M’ e Nand A; € K.
Using the same formulae as in Lemma 2 we deduce from (12) a relation which does not
involve y by multiplying both sides with (2y + h(x))/dx = w(x)/d(2y + h(x)), which
leads to

m—1 () ()_Zgzlzm laxv(x)
H(x)
w
Z B;(x)H (x) w(x) + ZA xw(x)
i=—N

+ Z (Bi ()i H(x)""H'(x) + B/(x)H (x)") v(x)+ZAtx' ().

i=—N

Comparing the valuation at infinity of both sides shows that A; = 0 fori > 2g. We can
therefore rewrite the above equation in the form

20—1 28
(Z 2m=lg ) v(x) + (ZA ix' ) v(x) + (Z Aixl) w(x) = F(x), (13)

i=0 i=0

where
. B(x) i
Fx) = 2" st — Z Bi(x)H () w(x)
i=—N
() . .
— Y (Bi()iH )" H'(x) + B/(x)H(x) )v(x)
i=—N
is a polynomial over R since the B;(x) € R[x] fori = —N,...,0 and the left-hand

side of (13) is a polynomial. From the definition of the A; it follows that H (x) divides
lei o Aix'. It is now easy to see that the rest of the proof is exactly the same as in the
proof of Lemma 2 with Rem(x) = 0, hence 2"a; € R and this concludes the proof of
Lemma 3. O

Remark. Lemma 3 remains valid when we replace the term Z 20 a,x 'y dx in (11)
by Zl__K Ci(x)H(x)'y dx, with A = | (2g — 1)/deg H| and C;(x) € K[x] of degree
< deg H whenever r > k € N. The proof is exactly the same.
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Remark. If r = 0, then in the above proof the B;(x) are zero for all i < 0, and for
0 <i < 2g — 1 the g; are completely determined by (13) as we saw by considering
resultants. This shows that the x’y dx fori =0, ...,2g — 1 and the (x'/H (x)) dx for
i =0,...,s are linearly independent in Hlz(A/K).

An immediate consequence of Lemmata 2 and 3 is that the basis for Hl,(A/K) also
generates H' (A/K): reducing a differential )", , ax;x*S(x)'y dx € D'(A") withk, [ €
Z and 0 < k < deg S introduces denominators whose valuation grows logarithmically
in |/|, whereas the valuation of a; ; grows linearly in |/|. Combining this with the above
remark, we conclude that the basis for HﬁR(A /K) is also a basis for H'(A/K).

Under the action of the hyperelliptic involution, the Monsky—Washnitzer cohomology
H'(A/K) decomposes as the direct sum of the z-invariant part H'(A/K)* and the :-
anti-invariant part H' (A/K)~. Let . be the number of ramification points (6, 0) defined
over I, then the Lefschetz fixed point formula applied to C’ gives

#C(Fp) —rp = #C'(F )
= Tr(¢"F,*|H (A/K)) — Tr(¢" F,*|H' (A/K))
= ¢* —Tr(¢" F,"|H'(A/K)") — Tr(¢" F " |H' (A/K)7)
= q¢" —r—Tr(q"F " |H'(A/K)").

Let C be the unique smooth projective curve birational to C, then

2¢g
#C(F) =q" +1—-Tr(¢" FHH (A/K) ") =¢" + 1 - Zaf,

i=1

with o; the eigenvalues of ¢ F,! on H! (A/K)~. The Weil conjectures imply that there
exist 2g algebraic integers Bi, ..., B, With B; B, =g fori =1,..., gand |B;| = \/q
fori = 1,...,2g, such that for all k > 0 we have #6(Fqk) =q"+1- lei] ﬂ{‘.
Comparing both expressions, we see that we can relabel the «; such that o; = f;
fori = 1,...,2g. Since then a;a,q; = g, the ; are also the eigenvalues of F, on
H'(A/K)™. Let x() be the characteristic polynomial of F, on H'(A/K)~, then we
can finally recover the zeta function Z(C/F,; t) as

8y (1/1)

Z(C/F i t) = —(1 “od—an’

4. Algorithm and Complexity

Using the formulae of the previous section, we describe an algorithm to compute the
characteristic polynomial of Frobenius x (¢) and the zeta function of a smooth projective
hyperelliptic curve C of genus g over IF, with g = 2".

4.1. Precision of Computation

We have shown that x (1) = 128 4a 8 4. -+ay, can be computed as the characteristic
polynomial of F, on H'(A/K)~. The Weil conjectures imply that g% a; = az,—;, so it
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suffices to compute ay, ..., a,. Furthermore, fori = 1, ..., g the a; can be bounded by

la;| < (2.‘57)!1"/2 < (zg)qg/2 < 2%¢8/2,
i g

Therefore it suffices to compute the action of F, on a basis of H'(A/K)~ modulo 27

with
2g /2
B > |log, (2 q° .
8

However, it is not sufficient to compute y° modulo 28 since we need to take into account
the loss of precision introduced during the reduction process of the differential forms.
Let y° = ay + Byy mod 2" and write By = By Vi(x)S(x)', then Lemma 1

i=—Ly

implies that Ly < 4(N — 1)D — 2D and By < 2(N — 2)(d] — 2d") + (d{ — ab),
with dg := deg f/deg S and d” := degh/deg S. Since we have to reduce the forms
x%*1yo dxfori =0, ..., 2g—1,theloss of precision will be determined by the reduction
of x*~1Vg (x)S(x)B¥y dx and xV_, S(x)"L¥y dx. The highest power of x appearing
in the former differential form is less than 2N (deg f — 2degh) + 6g and by Lemma 2
the loss of precision is bounded by cy ;1 := 3+ LlogZ(ZN (deg f —2degh) +7g + l)J.
Similarly, Lemma 3 implies that the loss of precision introduced during the reduction
of the latter differential form is bounded by cy > := 3 + |log,(4ND — 6D + 1)|. As a
result, we conclude that it is sufficient to compute modulo 2N with

N > B +max(cy 1, CnN2)- (14)

4.2. Detailed Algorithm

The function Hyperelliptic_Zeta Function given in Algorithm 1 computes the
zeta function of a smooth projective hyperelliptic curve C defined over IF, with g = 2".
Step 1 determines the minimal precision N satisfying inequality (14).

In step 2 we call the subroutine Lift_Curve, which first constructs an isomorphic
curve such that H(x) | h(x) and H(x)| f(x) and lifts the curve using the construction
described in Section 3.2. The result of this function is a hyperelliptic curve C : y> +
h(x)y = f(x) over R, a polynomial H(x) and an integer D such that H (x) | h(x),
H(x)| f(x) and h(x)| H(x)P. Since this function is rather straightforward, we have
omitted the pseudo-code.

In step 3 we compute y° mod 2% using the function Lift_Frobenius_y given in
Algorithm 2. The parameters oy, Sy are Laurent polynomials in S with coefficients
polynomials over R mod 2V of degree < deg S. This function implements the Newton
iteration (1), but has quadratic, instead of linear, convergence. Note that Algorithm 2
is in fact a double Newton iteration: « + By converges to y°, whereas y + §y is an
approximation of the inverse of the denominator (2) in the Newton iteration.

Once we have determined an approximation of y°, we compute the action of o, on
the basis of H'(A/K)™ as 2x**1y?dx fori = 0,...,2¢g — 1. In step 4 we reduce
these forms using the function Reduce MW_Cohomology given in Algorithm 3, which
is based on the reduction formulae devised in Section 3.2. Given a differential Gy dx
with G a Laurent polynomial in S, this function computes a polynomial A € K[x], with
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Algorithm 1 (Hyperelliptic_Zeta Function) .

IN:  Hyperelliptic curve 6~over F, given by equation y2+h(x)y = f(x).
OUT: The zeta function Z(C /F; t).

1.B= {log2 (Z(Z;)qg/z)-l; N > B +max(cy.1, Cy.2);
2. (h(x), f(x), H(x), D) = Lift_Curve (h(x), f(x));
3.ayn, By =Lift _Frobeniusy (h, f, H,D,N);
4.Fori =0To2g — 1 Do
4.1. R;(x) = Reduce MW_Cohomology (2x%*18y. h, f,H,B);
42.For j =0To2g — 1 Do M[j][i] = Coeff (R;, j);
Mp=MM°--.-M°"" mod 25;
. x(T) = Characteristic_Pol (M) mod 25;
7.Fori=0To g Do
7.1. 1f Coeff (x,2g —i) > (**)q'/? Then Coeff (x,2g —i) — = 25;
7.2.Coeff(x,i) =q* " Coeff(x,2g8 —1);

~ By
8. Return Z(C/Fq, 1) = m

AN

deg A < 2g such that for a given precision B we have the following equivalence modulo
exact and invariant forms Ay dx ~ Gy dx mod 28, where mod 22 means modulo
2B(Ry dx + --- + Rx*~'y dx). In step 2.3 we use the function XGCD which takes as
input two polynomials A(x), B(x) € K[x]andreturns polynomials C(x), L 4(x), Lp(x)
such that C(x) = gcd(A(x), B(x))and C(x) = L (x)A(x)+ Lp(x)B(x). Note that the

Algorithm 2 (Lift Frobenius.y) .

IN: Curve C: y2 + h(x)y = f(x) over R, polynomial H(x) € R[x] with
H|h and H|f, D € N such that h|HP and precision N.
OUT: Laurent polynomials oy, By in S with S = H ifdegH > 0, S = x
if H = 1 satisfying y° = ay + Byy mod 2V,
I.B=[log; N|+ 1;T = N; Qs := SP div h;
2.Fori=BDown TolDo P[i]=T;T =[T/27;
3.a=fmod2;B=—-hmod2;y =1;6§ =0;
4. Fori =2To B Do
41.T, = ((oe +ho)a+pf — f") . Q% - §720 mod 271,
42.Tp=Qa—h-B+h°)-B- 0% S72P mod 2Fl1;
43. Dy =1+ (h° — h*+2a) - Q% - S72P mod 271-11;
44.Dg =28 Q0% S7*P mod 2P~
45.Va=Dy-y+Dp-8- f —1mod2PLi-1;
46.Vg=Dy -8+ Dp-(y —8-h) mod 2011,
47.y=y —(Va-y +Vg-8- f) mod2Fli~1;
48.86=8—(Vy-8+ Vg -(y —8-h)) mod 2Pt~
49,0 =a— (T4 -y +Ts -8 - f) mod 2°U1;
410.=B—(Ts-8+Tg-(y —&-h)) mod 270,
5.Returnay = «, By = B.
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Algorithm 3 (Reduce MW_Cohomology) .

IN:  Polynomials h(x), f(x), H(x) € R[x] with H\h and H|f, H monic,
Laurent polynomial G = T;(x)S(x)! with S = H ifdeg H > 0 and
S=xifH =1,T;(x) € R[x] withdeg T; < deg S, precisions B, N.

OUT: A € K|[x], with deg A < 2g such that Ay dx ~ Gy dx mod 25.

1.Qr=fdivS; Qp=hdivS; P =0;V =0;v6 =Valuation(G);

2.Fori =vg To —1

2.1.V = P+ Coeff (G,i) mod2V;
22.P=VdivSmod2"; V=V — P-Smod2";
23.(1,La, Lg) =XGCD (S, Qf - §');
24. L, = V~LAm0d2N;L23=V-LBmod2N;
. /! / / !/
s p o P+LA+LB —H0O;,-S 3(2Qfﬂ;_Q|_Zi h")—L% - (407+Qnh) n

.dg =Degree (G);dr = (dg + 1)-Degree (S); T =0;

.Fori =dgDown To0Do T =T -8+ Coeff (G,i) mod2";T =T + P;

5.For i =dy Down To 2g

od 2V

B~ W

‘ i —2g
S1P=x"2Qf +h-I)+ %x”g—l@f + h2) mod 2V;
52T =T — (Coeff(T,i)-P)/ Coeff (P,i) mod2V;

6. Return A = T mod 25.

remarks after Lemmata 2 and 3 imply that the result of Algorithm 3 is correct modulo
28 since we computed modulo 2V and N satisfies N — max(cy.1,cy2) > B. The
result of step 4 of Algorithm 1 is an approximation modulo 25 of the matrix M through
which o, acts on H'(A/K)~. In step 5 we compute its norm My as MM° --- M°"".
Note that since M is not necessarily defined over R, we could lose up to cn bits of
precision, where 2¢ is the largest denominator appearing in M. By Lemmata 1 and 2, c is
bounded by O (log g) independently of n. In theory we would therefore have to replace
the bound B in Algorithm 1 by B + cn, which does not change the complexity of the
algorithm.

In practise however it turns out that the largest denominator appearing in Mg is
almost always the same as the largest denominator appearing in M and therefore it is
not necessary to increase B. This phenomenon can be heuristically explained as follows:
since the eigenvalues of F, = o/ on H'(A/K)~ have non-negative 2-adic valuation
there is an R-submodule of H'(A/K)~ which is stable under the action of o,. For this
R-submodule we can take for instance the canonical image of the crystalline cohomology
of C over R. Note that the R-submodule generated by x'ydx fori =0, ...,2g — 1is
not canonical and in general not stable under o,. Let Ay be the matrix that expresses
x'ydx fori =0,...,2g — 1 in terms of a basis of such a stable R-submodule and let
A be Ay times a power of 2 such that A is a matrix over R which is not zero modulo
2. Then M = A~'UA® where U is the matrix of o, with respect to the new basis.
Note that U is a matrix over R and that the norm of M equals A~'UU? ---U°" " A,
Thus the loss of precision is no more than 2d bits where d is the 2-adic valuation of
det(A). If U and A are generic enough then |c — d| is small. Furthermore, the bound (14)
turns out to be slightly larger than what is needed and compensates for the loss of
2d bits.
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In steps 6 and 7 we recover the characteristic polynomial of Frobenius from the first g
coefficients of the characteristic polynomial of M. Finally, we return the zeta function
of the smooth projective hyperelliptic curve C birational to C in step 8.

4.3. Complexity

In this section we analyse the space and time requirements of Algorithm 1 for a genus g
hyperelliptic curve over [Fo» assuming fast arithmetic, i.e. using the Schonhage—Strassen
algorithm [37] that computes the product of two m-bit integers in time O (m'*®) for
any constant ¢ € R. (. Before proceeding through the individual steps of the algorithm,
we analyse the complexity of the basic operations in Algorithm 1 and the asymptotic
behaviour of the bounds given in Lemma 1.

For a fixed precision N, let Ry denote the degree n unramified extension of Z,/ 2NZ,.
Elements of Ry are represented as polynomials over Z/2" Z modulo a sparse irreducible
polynomial P (¢) of degree n. Since each element of this ring requires O (nN) space, we
can perform the basic operations, i.e. multiplication and division, in time O (n'** N1*¢),

Computing the Frobenius substitution o on Ry can be accomplished in time O (n**¢
N'+¢) as follows. Since  is aroot of P (z), t will also be arootof P(¢) and r° = ¢> mod 2.
Therefore, ° can be computed using the Newton iteration Ty = Ty — P(Ty)/P'(T;)
initialised with ¢2. Since the Newton iteration converges quadratically and we compute
with the minimal precision in each step, the total complexity will be determined by the
last step which takes O(n) multiplications in Ry. Precomputing t° mod 2" can thus
be accomplished in time O (n>*¢ N'*¢). After this precomputation, we can compute the
Frobenius substitution of any element E (¢) as E(¢°), which needs O (n) multiplications
in Ry and thus takes O (n?*¢ N1*¢) time.

Lemma 1 bounds the maximum bit-size of the Laurent series we compute with and
therefore determines the complexity of Algorithm 1. Since these bounds depend on the
degree and splitting type of /2 (x), we make a distinction between average-case and worst-
case complexity. To this end we introduce three parameters which allow us to analyse
both cases simultaneously.

— Let the asymptotic behaviour of deg f —2 deg i be O(g"). Since the degree of f(x)
is 2g 4+ 1 and h(x) is a random polynomial of degree < g, we conclude that A = 0
on average and A = 1 in the worst case.

— Let the asymptotic behaviour of deg H be O(g"). With very high probability a
random polynomial of degree < g has O(g) different roots, which implies that
u = 1 on average and p = 0 in the extreme case.

— Let the asymptotic behaviour of D be O(g"), then v = 0 on average and v = 1
in the worst case, since with very high probability a random polynomial only has
roots with multiplicity O (1).

In step 1 of Algorithm 1 we determine the minimal precision N satisfying inequal-
ity (14), which implies that N is O(gn). The function Lift_Frobenius_y in step 3
is a Newton lifting. Since the precision doubles in every iteration, we see that its com-
plexity is determined by the last iteration, which consists of O(1) multiplications of
Laurent polynomials in S with coefficients polynomials over Ry of degree less than
deg S. Lemma 1 implies that the bit-size of these objects is O ((g* + g"*")nN?). Since
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the cost of the other operations in Lift_Frobenius.y, e.g. computing the Frobenius
substitution of O(g) elements of Ry, is less than the O (1) multiplications, the overall
time complexity of step 3 is O((g"* + g"t") ! Ten!te N2+e),

In step 4 of Algorithm 1 we reduce the 2g differential forms 2x%**!8yy dx for
i =0,...,2¢ — 1 using the function Reduce _MW_Cohomology given in Algorithm 3.
In step 2 the dominant operations are O (1) multiplications of polynomials over Ry of
degree O(g) and the extended GCD computation of two such polynomials. The for-
mer operation clearly takes time O (g'*?n'*¢ N'*+¢) and using Moenck’s algorithm [30]
the latter operation can also be performed in time O(g!**n'**N1+%). Lemma 1 im-
plies that these operations have to be repeated O(g"N) times, so the time complexity
of step 2 is O (g™ +en!** N2+¢). Write By as ZBN V;(x)S(x), then step 4 essen-

i=—Ly
tially is Horner’s rule to compute Zf:’vo V;(x)S(x)". Note that in practise we perform
this step only once for all of the 2g reductions and use a binary tree algorithm which
is asymptotically faster than Horner’s method. The complexity of step 4 then becomes
O(g"**n'** N?*¢). Lemma 1 implies that substeps 5.1 and 5.2 have to be executed
O(g"N) times and since each iteration consists of O (g) multiplications and O (1) di-
visions in Ry, the time complexity of step 5 is O(g'**n'** N?*¢). Since we have to
reduce O(g) differential forms, the overall time complexity of step 4 of Algorithm 1
is 0((g2+A + g2+v+8)nl+aNZ+8)'

In step 5 we need to determine the norm of a 2g x 2g matrix M over K as MM? - -
M°®""" This canbe accomplished by computing M; ;| = M[M{’y fori =0,..., Llog2 nJ
with My = M and combining these to recover the norm of M. This process takes O (log n)
multiplications of 2g x 2g matrices at a cost of O (g>n'**N'*%) time and O (g?logn)

applications of powers of o which takes O (g2n>**N'+*) time if we precompute 17
fori =0,..., Llog2 nJ The overall time complexity of step 5 thus becomes O ((n +
g)anH-eNH—s).

Finally, we need to compute the characteristic polynomial of a 2g x 2¢ matrix over K,
which can be done using the classical algorithm based on the Hessenberg form [6, Section
2.2.4]. The complexity of this algorithm is O(g?) ring operations or O(g*n!T*N!*+¢)
time.

Since (14) implies that N is O (gn), we have proved the following theorem.

Theorem 2. The zeta function of a hyperelliptic curve of genus g defined over Fon
can be computed in O((g" + g°)g**ten+®) time and O ((g* + g"")g’n?) space, where
A, w and v are defined as in the beginning of Section 4.3. This implies the following
complexities:

— Average case: O(g*¢n+®) time and O (g3n?) space.
— Worst case: O(g>+*n>*®) time and O (g*n?) space.

5. Implementation and Numerical Results

In this section we present running times of an implementation of Algorithm 1 in the
C programming language and give some examples of Jacobians of hyperelliptic curves
with almost prime group order.
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Table 1. Running time and memory usage for genus 2, 3 and 4 hyperelliptic curves over Fon

Size of Jacobian Genus 2 curves Genus 3 curves Genus 4 curves
gn Time (s) Mem (MB) Time (s) Mem (MB) Time (s) Mem (MB)
120 22 4.5 28 54 26 5.2
144 35 5.7 46 7.3 43 7.2
168 60 8.6 78 11 76 11
192 89 13 112 14 109 13
216 143 16 171 17 157 16

The basic operations on integers modulo 2V for N < 256 were written in assembly
language. Elements of Ry are represented as polynomials over Z /2" Z modulo a degree
n irreducible polynomial, which we chose to be either a trinomial or a pentanomial.
For multiplication of elements in Ry, polynomials over Ry and Laurent series over
Ry [x] we used Karatsuba’s trick [18], which allows to multiply two m-bit integers in
time O (m'°22%). Redoing the complexity analysis then results in an average-case time
complexity of O(g>!7n*7%) bit-operations.

5.1. Running Times and Memory Usage

Table 1 contains running times and memory usages of Algorithm 1 for genus 2, 3 and 4
hyperelliptic curves over various finite fields of characteristic 2. These results were
obtained on an AMD XP 1700+ processor running Linux Redhat 7.1. Note that the field
degrees are chosen such that gn, and therefore the size of the group order of the Jacobian,
is constant across each row.

Although of no importance to cryptography, it is worth mentioning that Algorithm 1
is also practical for large genus hyperelliptic curves, e.g. the zeta function of a genus
350 hyperelliptic curve over [F, can be computed in 83 hours. For more information, we
refer the interested reader to Section 4.4.4 of [41].

5.2. Hyperelliptic Curve Examples

In this subsection we give three examples of Jacobians of hyperelliptic curves with almost
prime group order. The correctness of these results is easily proved by multiplying a
random divisor with the given group order and verifying that the result is principal, i.e.
is the zero element in the Jacobian Jx(F,).

It is clear that the given curves are non-supersingular, since the coefficient a, of x (T')
is odd [12]. Furthermore, all curves are immune to Weil descent [13] and multiplicative
reduction [11].

Leta = Y '~  a;t’ € Fp, then « is represented by the integer Y/ ;2" written in
hexadecimal notation.

Genus 2 Hyperelliptic Curve over Fys

Let Fys be defined as Fo[r]/P(¢) with P(z) = ¥ +t7 + t* + t> + 1 and consider the
random hyperelliptic curve C, of genus 2 defined by

2 4
Y+ (Zhix’) y=x"+)" fixl,
i=0 i=0
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3B167A2F520486B2A8A60

ho = 4D168CAB78F1F7EB78D54 hy
h, = 507FC6D8D98A1411D1F24

fo = 6ABF379716E615F0997AF f1 = 1D13C5C10A58A238681F3
f» = 3ACC287DAA28D01EDDB58 f3 = 74BF8FFD1A04B1ES8B845B
fa = 10046A0ED36CF3B146071

The group order of the Jacobian Jz, of C; over Fys is
#Jz =2 -46768052394612054553468807679365619497317916118893,

where the last factor is prime. The coefficients a; and a, of the characteristic polynomial
of Frobenius x(T) = T* + a\ T3 + a,T? + a3 T + a4 are given by

a; = 4789617893650 and a, = 12304549269471460402134471.

Genus 3 Hyperelliptic Curve over Fyso

Let Fys be defined as Fo[r]/P(¢) with P(z) = t>° +t7 + t* + t* + 1 and consider the
random hyperelliptic curve C3 of genus 3 defined by

3 6
Y+ (Zhix") y=x"+)" fixl,
i=0

i=0
where

ho = 44ECOA3F607D5FE h; = 183AFFC60B6C97A
h, = 5E8C286F052173E h3 = 39BFF4C327D0FCC
fo = 2CE03A6BD01418F f1 = 15160EE501EA31D
f» = 2DDF3B805A56673 f3 = 72EAAC2B03D6F33
fa = 30BF8CAFACF398A fs = 288F45CEB700047
fe = 692BDF3913214F7

The group order of the Jacobian Jgz, of C5 over F» is
#Jz, = 2-95780971232851005943503002779523943538413536699032693,

where the last factor is prime. The coefficients a;, a; and a3 of the characteristic poly-
nomial of Frobenius x(T) = T% 4+ a,T> + a,T* + a3T> + a4 T? + asT + ag are given
by

a; = —428922942,
ay = 394510910624097420,
a3 = —307916874056151778020344677.
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Genus 4 Hyperelliptic Curve over Fyn

Let o be defined as F,[¢]/P(¢) with P(t) = t*” + > 4+ 1 and consider the random
hyperelliptic curve C4 of genus 4 defined by

4 8
o (Zh> y =243 fi,
i=0 i=0

hy = 45EDAAG69BB7B hy = 29185CC987F2 h, = 5B56AF467634
h; = 063A420D7308 hy = 3AD67360D2FB

fo= 116A64DA4E4LA fi = 1267C8BFEDF4 f» = 5DED53867285
f3 = 3E2486D3500B fa = 66718C5D41BD fs = 5FBD515320F1
= 4B960757EC52 f7 = 67B0202BA7D5 fs = 545283F149A8

>
I

The group order of the Jacobian J, of C4 over s is
#J’CV4 =2-196159429641733316151830117421270924231809135724223902787,
where the last factor is prime. The coefficients a;, a,, as and a4 of the characteristic

polynomial of Frobenius x(7) = T8 +a;T” + axT® + a3 T° + a4 T* + asT> + agT? +
a;T + ag are given by

a; = 294806,

a; = —5127513198846,

a3 = 236526738819576049756,

as = 31534922966327446198018115985.

6. Conclusion

In this paper we have presented an extension of Kedlaya’s algorithm to compute the zeta
function of an arbitrary hyperelliptic curve C over a finite field of characteristic 2. The
main difference with Kedlaya’s algorithm is that the hyperelliptic curve can no longer be
lifted arbitrarily; instead, a very specific liftis needed to ensure that the algebraic de Rham
cohomology and the Monsky—Washnitzer cohomology are isomorphic. For a genus g
hyperelliptic curve defined over F,., the average-case time complexity is O (g*n3+¢)
and the average-case space complexity is O(g’n®), whereas the worst-case time and
space complexities are O(g>*n3+¢) and O (g*n?), respectively. An implementation in
the C programming language shows that cryptographical sizes are now feasible for any
genus g, e.g. computing the order of a 160-bit Jacobian of a hyperelliptic curve of genus
2, 3 or 4 takes about 75 seconds. Due to the generality of the cohomological approach,
it seems likely that Kedlaya’s algorithm can be extended to arbitrary curves. For a first
step in this direction, we refer to [8] which presents an algorithm to compute the zeta
function of any non-singular C,;, curve over a finite field of small characteristic.
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