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Abstract Light field (LF) cameras record multiple
perspectives by a sparse sampling of real scenes, and
these perspectives provide complementary information.
This information is beneficial to LF super-resolution
(LFSR). Compared with traditional single-image
super-resolution, LF can exploit parallax structure
and perspective correlation among different LF views.
Furthermore, the performance of existing methods
are limited as they fail to deeply explore the
complementary information across LF views. In this
paper, we propose a novel network, called the light
field complementary-view feature attention network
(LF-CFANet), to improve LFSR by dynamically
learning the complementary information in LF views.
Specifically, we design a residual complementary-view
spatial and channel attention module (RCSCAM) to
effectively interact with complementary information
between complementary views. Moreover, RCSCAM
captures the relationships between different channels,
and it is able to generate informative features for
reconstructing LF images while ignoring redundant
information. Then, a maximum-difference information
supplementary branch (MDISB) is used to supplement
information from the maximum-difference angular
positions based on the geometric structure of LF
images. This branch also can guide the process of
reconstruction. Experimental results on both synthetic
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and real-world datasets demonstrate the superiority of
our method. The proposed LF-CFANet has a more
advanced reconstruction performance that displays
faithful details with higher SR accuracy than state-of-
the-art methods.

Keywords light field (LF); super-resolution (SR);
attention

1 Introduction

Light field (LF) cameras, e.g., Lytro and RayTrix,
provide 4D LF images, unlike conventional cameras,
and thus LF imaging technology has been used widely
in many applications, such as VR [1, 2], tracking [3–6],
3D reconstruction [6, 7], and saliency detection [8, 9].
As shown in Fig. 1(a), these cameras place a micro-
lens array between the main lens and the sensor
to provide multiple views of a scene. LF images,
captured by a handheld LF camera [1, 2], record
spatial information (accumulation from the same
object point) and angular information (intensity
values for all ray directions). However, due to the
limitation of sensor resolution, the spatial resolution
of LF images is much lower than that of commercial
2D cameras. Therefore, image super-resolution (SR)
technology plays an important role in LF applications,
as it effectively enhances the quality of LF images.

LF super-resolution (LFSR) is an ill-posed problem.
This problem can be solved by exploring efficient
use of sub-pixel information from different views to
reconstruct SR images. Traditional methods generally
solve the SR problem using multiple views based
on prior disparity information, such as a Bayesian
framework [10], a variational framework [11, 12],
or a Gaussian mixture framework [13]. However,
these methods suffer from inaccurate prior disparity
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Fig. 1 Principle of LF camera and structure of 4D LF. (a) Schematic LF camera. (b) 4D LF structure. The angular position (u, v) in an LF is
determined by the number of sensor pixels under each micro-lens, while the spatial position (h, w) is related to the number of micro-lenses in the array.

estimation and high computational cost. With the
development of deep learning, learning-based methods
[14–17] have been used to address the problem of
the complex 4D structure of LF data and to improve
results compared to traditional approaches. Although
improvements have been continuously made [18, 19],
the inherent complementary information provided by
sub-aperture images (SAI) is still not fully utilised,
because parallax information is treated equally for
each view, and feature fusion between complementary
views is inadequate. These issues limit improvement
of LFSR methods.

Taking advantage of the attention mechanism
in SR networks [20–22], we propose a spatial and
channel attention network, namely the light field
complementary-view feature attention network (LF-
CFANet), to improve the spatial resolution of LF
images. As shown in Fig. 2, this network consists of
two main modules, the residual complementary-view
spatial and channel attention module (RCSCAM) and
the maximum-difference information supplementary
branch (MDISB). Specifically, the RCSCAM is
designed to fuse the complementary information
among pairs of LF images. With RCSCAM,
reconstruction features can be combined with
complementary sub-pixel information and local
similarity information from different auxiliary
views by computing an attention map. Meanwhile,
providing this module with a channel attention
mechanism allows it to capture global channel-level

information by adaptively adjusting the response of
the feature map for each channel. To guide LF
reconstruction both effectively and efficiently, the
MDISB is designed to obtain maximum-difference
information from LF views. In MDISB, the features
of a reference view and four auxiliary views are
collected from a reservoir based on the maximum-
difference angular positions. The maximum-difference
feature is used to guide reconstruction of the reference
view. Through these designs, the complementary
information across LF views can be effectively utilized
to reconstruct SR LF images to a certain extent.

Extensive experimental results using real-world and
synthetic LF datasets demonstrate that the proposed
method achieves quantitatively and qualitatively
better results than state-of-the-art methods. Our
contributions are summarized as follows:
1. We propose an RCSCAM to better exploit

correlation cues for LF complementary-view pairs
and generate effectively fused complementary-
view features by introducing an attention
mechanism. The RCSCAM consists of two types
of attention: channel attention and spatial
attention. Channel attention enhances the global
perception of feature channels, while spatial
attention strengthens the interaction of spatial
information between complementary views.

2. We develop an MDISB to guide supple-mentation
of the most informative difference for SR views
by treating each perspective unequally. The
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Fig. 2 Network architecture of the proposed LF-CFANet, comprising four parts: feature extraction, feature fusion, feature compression, and
reconstruction. The input of our network is made up of sub-aperture images (SAIs). One view is randomly selected from the SAIs as a reference
view, and the remaining images are taken as auxiliary view images. The output is an enhanced resolution version of the reference view. C
denotes concatenation.

information is provided from a reservoir by
concatenating two feature pairs consisting of four
maximum-difference fused features based on the
angular position of LF images.

3. Our LF-CFANet can exploit the complementary
information and the local similarity information
from different auxiliary views at the pixel level
based on the geometric characteristics of LF images.
It uses attention maps to fuse these information
for enhancing the spatial resolution. Extensive
experiments demonstrate the design effectiveness
and improved results compared to state-of-the-art
methods.

The rest of this paper is organized in the following
sections. Section 2 gives a brief review of related work.

Light fields and the architecture of our LF-CFANet
are outlined in Section 3. We provide extensive
analysis and experiments in Section 4, using synthetic
and real-world datasets. Finally, Section 5 concludes
the paper.

2 Related work

In this section, we review related work on both single
image super-resolution (SISR) and LFSR.
2.1 Single image super-resolution

SISR is a reconstruction technology from fuzzy low-
resolution (LR) images. This technology plays an
important role in the field of surveillance, satellite
imaging, microscope imaging, etc. Several studies
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have reviewed SISR in detail [23, 24]. Here, we
give a review of several recent advances. Nowadays,
deep learning has gradually become a dominant
approach for SISR, and has significantly improved
the reconstruction quality over traditional methods.
Dong et al. [25, 26] proposed a milestone study with
an SR deep convolutional neural network (SRCNN),
which was a seminal method in the field of SR. This
simple and shallow model outperformed earlier work.
Kim et al. [27] proposed a very deep convolutional
network (VDSR) combined with residual learning,
which was more efficient and achieved higher quality
than Dong et al.’s work [25, 26]. Note that, VDSR
obtained a larger receptive field by stacking filters,
and the problem of slow convergence was solved by
applying global residual learning. To better exploit
intra-view information, more powerful models have
been developed based on deep networks. Lim et
al. [28] proposed an enhanced deep SR network
(EDSR), which achieved extraordinarily better results
than previous methods by revising the residual
module and multi-scale model [29]. Zhang et al. [30, 31]
proposed a residual dense network (RDN), which fully
utilized all hierarchical features in all convolutional
layers and provided better feature extraction than
EDSR. Applying an attention mechanism, Zhang et
al. [32] proposed a residual channel attention network
(RCAN), which worked by inserting a channel
attention module to consider the interdependence
of channels. Recently, Dai et al. [33] proposed a
second-order attention network (SAN) by applying a
trainable second-order attention module to capture
spatial information. Both RCAN and SAN have
achieved promising results in SISR reconstruction.

As shown in the above review, SISR methods
efficiently and effectively reconstruct the spatial
information for single images. However, these
methods cannot directly handle correlations between
multiple views, so cannot be applied to the field of
LFSR.

2.2 LF super-resolution

For LFSR, a straightforward approach is to fine-
tune the network parameters of SISR. However,
LFSR requires using complementary information from
multiple LF images of one scene to reconstruct a high-
resolution image. Existing LFSR methods can be
mainly divided into optimization-based approaches
and learning-based approaches.

Optimization-based approaches reconstruct SR
images based on the estimated disparities between
different views. Bishop and Favaro [10] first used
a Bayesian framework for LFSR. Wanner and
Goldluecke [11, 12] proposed a variational method
for SR by introducing disparity maps obtained from
EPIs. Mitra and Veeraraghavan [13] proposed a
patch-based approach modeled by a Gaussian mixture
model to solve LF problems. The framework of
this method could handle many different processing
tasks. Zhang et al. [34] proposed the PlenoPatch
method based on patches to generate more realistic
results than previous methods. To better supplement
complementary information and avoid costly disparity
estimation, Rossi and Frossard [35] proposed an
LFSR framework for homogeneous reconstruction
of all views in the LF by using a graph-based
regularizer. Later, Alain and Smolic [36] proposed
a method to convert the inverse problem of LFSR
into an optimization problem based on prior sparsity.
Although these methods could well encode the
complex 4D LF, optimization-based methods are not
effective in combining the spatial information from
different views. Moreover, most of these methods are
based on handcrafted image priors, which limit the
quality of reconstruction.

Learning-based approaches show superiority
over optimization-based approaches in using
complementary information from different views.
Complementary information can improve the quality
of LFSR. Yoon et al. [15, 16] introduced CNNs to
the field of LF (LFCNN), while Yuan et al. [14]
proposed an SR method that fully exploited the
structure of the LF with an SISR module and an EPI
enhancement module. These modules captured the
structural characteristics of LF well. By extending
BRCN [37], Wang et al. [38] proposed a bidirectional
recurrent convolutional neural network, LFNet, and
stacked generalization techniques to synthesize the
final sub-aperture images. In this structure, the
recurrent neural network was improved to handle
horizontal and vertical structures. In this network,
spatial correlations between neighboring views could
be modified to be more effective and flexible. Inspired
by the residual network, Zhang et al. [18] proposed
a multi-branch residual network (resLF) to handle
image stacks with consistent sub-pixel offsets; each
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branch could extract high-frequency details from LF
images. In order to preserve the parallax structure,
Jin et al. [39] proposed a method with two-step
LF spatial resolution by introducing a perspective
feature fusion module and a structural consistency
regularization loss (LF-ATO). More recently, Wang
et al. [40] proposed an LF-InterNet to extract and
incorporate spatial and angular information. This
network could gradually combine the spatial and
angular information. Mo et al. [41] proposed a
dense dual-attention network (DDAN), with spatial
attention within LF views and channel attention
within different channels. This method achieved
high-quality LF reconstruction.

In summary, these methods implicitly learn the
internal correspondences of the LF structure, and
they are gradually improving LFSR. However,
due to the design of the network structure,
complementary information is still not fully utilized.
For example, LFNet uses a bidirectional recurrent
network to fuse angular information among SAIs.
This information only considers row and column
directions, and it cannot be efficiently used to
reconstruct LF images. Instead, we propose a
complementary-view feature attention approach
that uses the information from all auxiliary views
to reconstruct the reference view.

3 Architecture of LF-CFANet

In this section, we introduce the 4D LF representation,
and propose a many-to-one LFSR network. The
architecture of our LF-CFANet is shown in Fig. 2.
The feature fusion part is composed of two branches,
MDISB and a reservoir branch.
3.1 Problem formulation

A 4D LF can be parameterized by two parallel planes.
As shown in Fig. 1(b), the spatial plane, Π = (h,w),
and the angular plane, Ω = (u, v), are used to describe
the structure of a 4D LF. These planes can accurately
represent the light images L(Π,Ω). Following existing
LFSR methods [39], we only use Y channel images
as input, which are obtained by converting input
RGB images to YCbCr images, and retaining only
the Y channel [39]. The input can be denoted LLR ∈
RU×V×H×W , ignoring the channel dimension. The
goal of the LFSR task can be described as generating
an SR LF from the LR input LF. The reconstructed

LF images are LSR ∈ RU×V×αH×αW , where α is the
upsampling rate.
3.2 Feature extraction

The quality of discriminative features with rich
contextual information is very useful to SR
reconstruction. This information can be obtained
by using a multi-scale receptive field and feature
learning. Therefore, the feature-extraction module
of our LF-CFANet follows [21, 48] and uses atrous
spatial pyramid pooling (ASPP) module to extract
the LF image features.

Figure 2 shows the overall network architecture
of the proposed LF-CFANet. The input LLR is
composed of SAIs. The initial features (with 64
channels) of LLR are extracted by a 3×3 convolution
shown in Fig. 2(a), and then we use the multi-
cascaded residual ASPP (MRASPP) module in
Fig. 2(b) for multi-scale feature extraction to support
downstream processing. Specifically, the initial
features of the LF views are first fed to the
ASPP blocks, which share weights for each view.
Each ASPP block consists of three different dilated
convolutions with a leaky ReLU layer. These dilated
convolutions, with dilation rates (D) 1, 2, and 4, are
used to extract LLR features with different receptive
fields. After a leaky ReLU layer, we concatenate the
three output features and compress the number of
channels through 1 × 1 convolution to make them
more compact. These ASPP blocks not only obtain
multi-receptive fields without changing the size of
the feature maps, but also enrich the diversity of the
convolutions. After three cascaded residual ASPP
blocks, the feature of each view is extracted. These
features can be expressed as{

F ieach | i = 1, . . . , n
}

= f0 (LLR) (1)
where f0 represents the MRASPPBlock and n is the
number of SAIs.

For the output of MRASPPBlock, Fneach, the
reference feature is randomly selected from the n

output features, and the auxiliary features are the
remaining features. These two types of features can
be specifically expressed as{

Fref = F ieach

F jaux = F jeach
(2)

where i, j (1 6 i, j 6 U×V, i 6= j, i+j = n) represent
the angular positions. There is one i-indexed feature,
and there are (U × V − 1) j-indexed features.
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As shown in Fig. 2(a), Fref and each F jaux are
concatenated to form a feature pair

{
Fref , F

j
aux
}
.

Selecting the complementary-view pairs makes the
model more compatible with all views and increases
the generalization performance of the networks.

3.3 RCSCAM in reservoir branch

The feature fusion part includes two branches.
The first branch is a reservoir branch, and the
second branch is MDISB. The reservoir branch is
the key to fusing auxiliary-view information with
reference-view information, using the RCSCAM
(Residual Complementary-View Spatial and Channel
Attention Module). Inspired by the stereo-attention
mechanisms [22, 49], we develop an RCSCAM to
supplement the sub-pixel information of the reference
view.

As Fig. 2(c) shows, the input pair of features{
Fref , F

j
aux
}

are separately fed to two ResBlocks, f1,
with 64 channels. These two ResBlocks share weights.
The output features of f1 are Fr, F

j
a ∈ RH×W×64.

To explore the correlation between feature channels,
we introduce SEBlocks following Ref. [20]. Pseudo-
code to capture the channel attention is provided in
Algorithm 1. This block processes the input feature
in three steps: squeeze, excite, and reweight. Fr and
F ja are respectively fed to globally adaptive pooling
(F 1

sq,F
1,j
sq ) to obtain feature channels with 1 × 64

aggregated information. To capture channel-wise

Algorithm 1 Squeeze and excite blocks

Input: Feature pair {Fr, F j
a } ∈ Rh×w×64

1: Squeeze: Feature (Fr, F j
a ) is compressed in the spatial

dimension.
For each channel, compute
F 1

sq (Fr) = (1/W H)
∑W

w=1
∑H

h=1 Fr(w, h);
For each channel, compute
F 1,j

sq
(
F j

a
)

= (1/W H)
∑W

i=w

∑H

h=1 F i
a(w, h);

Each two-dimensional (H, W ) feature channel becomes
a number, which has a global receptive field.

2: Excite and Reweight: Each feature channel generates
a weight to represent its importance. The weight of
the output of Excite is regarded as the importance of
each feature channel, and is applied to each channel by
multiplication.
Compute F 1

r
? = F 1

ex
(
F 1

sq (Fr)
)
;

Compute F 1,j
a

? = F 1,j
ex
(
F 1,j

sq (F j
a )
)
;

Output:
{F 1

r
?
, F 1,j

a
?} ∈ Rh×w×64

dependencies, two fully-connected (FC) layers are
used. The output weights of the excitation process
represent the importance of the feature channel. They
are applied to each channel by multiplication. These
processes are denoted (F 1

ex,F
1,j
ex ). Then, the outputs

are separately fed to 1× 1 convolutions to generate
the feature maps (F 1

r , F
1,j
a ). These outputs can be

specifically expressed as{
F 1

r = Hα (fSE1(Fr))

F 1,j
a = Hβ

(
fSE2(F ja )

) (3)

where fSE1 and fSE2 represent the SEBlocks, and Hα

and Hβ represent the 1× 1 convolutions.
To generate a reference-auxiliary attention map,

F 1,j
a is first transposed to (F 1,j

a )T, and then the
geometry-aware matrix is multiplied by matrix F 1

r .
The multiplying output of these two matrices is
processed by softmax to produce the final attention
maps, Mj

aux→ref ∈ RH×W×W . Similarly, Mj
ref→aux

is generated. This process can be expressed as Eq. (4):
Mj

aux→ref = Softmax
(
F 1

r ⊗ (F 1,j
a )T

)
Mj

ref→aux = Softmax
(
F 1,j

a ⊗ (F 1
r )T

) (4)

where ⊗ represents batch-wise matrix multiplication.
To achieve feature information combination

between the reference view and auxiliary view,
Wj

ref→aux andWj
aux→ref are generated by multiplying

the input pair of features (Fref , F
j
aux) and the

attention maps (Mj
ref→aux,M

j
aux→ref), respectively.

Both Wj
ref→aux and Wj

aux→ref contain the reference-
view and auxiliary-view information. They can be
computed usingW

j
ref→aux =Mj

ref→aux ⊗ Fref

Wj
aux→ref =Mj

aux→ref ⊗ F
j
aux

(5)

As Fig. 2 shows, these two features (Wj
ref→aux,

Wj
aux→ref) are fed into two new SEBlocks to generate

new features (W ′jref→aux,W
′j
aux→ref), respectively.

To retain the original features of the reference and
auxiliary views, the input pair of features (Fref , F

j
aux)

is concatenated with (W ′jref→aux,W
′j
aux→ref), and fed

into another 1× 1 convolution. This process can be
expressed as

F 2,j
r = Hγ

(
Cat(Fref ,W ′jref→aux)

)
F 2,j

a = Hδ

(
Cat(F jaux,W

′j
aux→ref)

) (6)

where Cat is the concatenation operator, and Hγ and
Hδ represent the 1× 1 convolutions to fuse these two
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types of features. F 2,j
r and F 2,j

a represent the fully
RCSCAM fused features of each pair.

The combined features of complementary views are
generated in this process. These four SEBlocks can
express valid information for reconstruction. The
result F out,j

ref , fully integrating the complementary
information, can be expressed as

F out,j
ref = Cat

(
F 2,j

a , F 2,j
r
)

(7)
In the training process, the reference view feature

Fref is generated by randomly selecting from the
initial features. Due to the complex geometric
structure of LF images, the fusion features F out,j

ref
obtained by RCSCAMs contain complementary
information and local similarity information from
different auxiliary views. The principle of RCSCAM
is to obtain the feature similarities for all possible
disparities between each pixel in the reference
view and auxiliary view to generate an attention
map. By introducing the attention mechanism,
we can fully fuse the complementary information
through feature-level information for reconstructing
SR. The effectiveness of RCSCAM is demonstrated
in Section 4.3.

3.4 MDISB

As the second branch of our feature fusion, MDISB
(Maximum-Difference Information Supplementary
Branch) is used to select four maximum-difference
fusion features to guide reference view reconstruction.
This branch chooses the four fusion features with
maximum-difference information relative to the
reference view from the reservoir. After RCSCAM,
each pair of the reference view and an auxiliary view
generates one fusion feature. The total number of
fusion features is n1 = U×V −1. Due to the parallax
structure of LF, the difference information in each
auxiliary view varies, and supplements the reference-
view information. The four angular-position initial
features [F 1

each, F
U
each, F

U×(V−1)
each , FU×Veach ] generated

by the MRASPP block have maximum-difference
information compared to the reference view. These
four features are concatenated with the reference-
view feature and fed into RCSCAM. The output
of these four features through RCSCAM is[
F out,1

ref′ , F out,U
ref′ , F

out,U×(V−1)
ref′ , F out,U×V

ref′
]
. We then

use the concatenation operator Cat to combine the
output from RCSCAM. This MDISB process can be
expressed as

F out,i
ref′ = Cat

 F out,1
ref′ F out,U

ref′

F
out,U×(V−1)
ref′ F out,U×V

ref′

 (8)

where F out,i
ref′ represents the output of our

MDISB for the reference-view position, while
the input [F out,1

ref′ , F out,U
ref′ , F

out,U×(V−1)
ref′ , F out,U×V

ref′ ]
represents the fusion features that supplement the
complementary-view information to Fref by using
RCSCAM. As Fig. 2(a) shows, we concatenate
these four features and compress them using a 3× 3
convolution. The depth of the final feature is 64.

3.5 Feature compression

Feature compression can compress the feature depth
to adapt to the part of the reconstruction. We
use ResBlocks to process each feature, which are
F out,1

ref , . . . , F out,j
ref , F out,i

ref′ , F
out,j+1
ref , . . . , F out,end

ref from
two branches. All ResBlocks share the same
parameters. We stack these features from all auxiliary
views and train them to integrate the complementary
information from RCSCAM, and the maximum-
difference information from MDISB. The output of
feature compression can be written as

F out,ref
all = Stack


F out,1

ref . . . F out,j
ref

F out,i
ref′

F out,j+1
ref . . . F out,end

ref

 (9)

where Stack represents feature stacking.

3.6 Reconstruction

Inspired by the architecture of Ref. [50] for SISR,
we use a similar structure to reconstruct the SR
images. Following the method of Ref. [19], the feature
F out,ref

all from the compression module is first reshaped
and processed by a SASBlock. The SASBlock is
repeated 3 times to integrate angular and spatial
domain information. The output feature is fed into
two ResBlocks with 64 channels. One ResBlock
(with two residual blocks) provides channel-wise view
fusion. The other ResBlock (with three residual
blocks) provides channel fusion to generate the final
reference-view feature F out,ref

ref .
To save memory and computation, we utilize an

up-sampling block Up(·) to increase the resolution of
the reference-view image Lref

SR. This block, inspired
by Ref. [18], is composed of a convolution layer, a
shuffle layer, and a convolution layer in order. Finally,
Lref

SR is generated by adding the residual map to the
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up-sampled image. The reconstruction image for one
angular position can be expressed as

Lref
SR = Up

(
F out,ref

ref

)
(10)

where Up represents the process of reconstruction.
To simplify our LFSR network, we follow the

approach in Fig. 3. We randomly choose a view as
the reference view and feed all views into our network.
Through feature extraction, feature fusion, feature
compression, and reconstruction, our network can
fully learn the differential sub-pixel information from
the auxiliary views. The information can be added
to the reference view for reconstruction.

4 Experiments

In this section, we first introduce the datasets used
and implementation details. Then, we compare our
LF-CFANet with several state-of-the-art SISR and
LFSR methods. Finally, we conduct ablation studies
to evaluate the contribution of individual component
modules in our network.

4.1 Experimental setup

4.1.1 Datasets
Our LF images come from both synthetic datasets
and real-world datasets. The real-world datasets were
captured by various devices with different baseline
lengths. Therefore, LF algorithms should be able to
adapt to different datasets. As listed in Table 1, 6
public LF datasets (EPFL [42], HCInew [43], HCIold
[44], INRIA [45], STFgantry [46], and STFlytro [47])
were used for training and testing in our experiments,
which include a total of 394 LF scenes for training

Table 1 Public LF datasets used in our experiments. R = real-world
scene, S = synthetic scene

Dataset Training Test Disparity Kind
EPFL [42] 70 10 [−1, 1] R
HCInew [43] 20 4 [−4, 4] S
HCIold [44] 10 2 [−3, 3] S
INRIA [45] 35 5 [−1, 1] R
STFgantry [46] 9 2 [−7, 7] R
STFlytro [47] 250 50 — R
Total 394 73

Fig. 3 Supplementing sub-pixel information. Here, an LLR (R3×3×w×h) is used as an example. We randomly choose a reference view
(U = 2, V = 1), and the remaining views are used as auxiliary views. Sub-pixel information from different auxiliary views is visually represented
as stars with different colors for clarity. The information is added to the blue dot in the LFSR image.
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and 73 LF scenes for testing. The EPFL, INRIA, and
STFlytro data contain rich outdoor-scenes captured
with a Lytro Illum camera, while the HCInew, HCIold,
and STFgantry data contain indoor LF images. The
LF disparity of these datasets varies and the angular
resolution is 9×9 for all LF datasets. We generate LR
LF images by bicubic interpolation for both training
and testing.
4.1.2 Implementation details
Our network has two types of convolutional layers,
which are 3 × 3 and 1 × 1. All the 3 × 3
convolutional layers were zero-padded to retain the
spatial resolution, and we set the number of Resblocks
to 2, 2, and 3 residual blocks in order. The feature
depths of residual blocks were all 64.

In the training stage, we randomly cropped the
input LF images to a spatial size of 64 × 64
and randomly processed by flipping the images
horizontally or vertically and rotating them by 90◦.
The upscaling factor r was 2 or 4, and we respectively
trained the network with different factors. We train
our network with the Adam optimizer (β1 = 0.9,
β2 = 0.999). The initial learning rate was set to 10−4

and decreased by a factor of 0.5 every 250 epochs.

Training of the full LF-CFANet was stopped after
600 epochs.

4.2 Comparison to state-of-the-art

4.2.1 Setting
We compared our LF-CFANet with recent state-of-
the-art SISR and LFSR methods: VDSR [50], EDSR
[28], GB [35], RCAN [32], SAN [33], LFBMD5D
[36], resLF [18], LFSSR [19], LF-ATO [39], and LF-
InterNet [40]. For a fair comparison, these methods
were re-trained on the same training dataset as our
method. We chose bicubic interpolation as a baseline
for comparison. For evaluation, peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) were
used as quantitative quality metrics, with higher
values indicating better LF reconstruction results.
4.2.2 Quantitative comparison results
A quantitative evaluation of PSNR and SSIM at 5×5
angular resolution for the 6 test datasets is given in
Table 2. Our method achieved higher PSNR and
SSIM than the RCAN [32] SISR method. Specifically,
our method had an average PSNR increase of 1.7 dB
(×2) and 1.2 dB (×4) in the test. That is because
complementary information can be used effectively in

Table 2 PSNR and SSIM values achieved by different methods for 2× and 4× SR. Red: best results. Blue: second best results

Method Scale EPFL HCInew HCIold INRIA STFgantry STFlytro
Bicubic ×2 29.50/0.935 31.69/0.934 37.46/0.978 31.10/0.956 30.82/0.947 33.02/0.950
VDSR [50] ×2 32.01/0.959 34.37/0.956 40.34/0.985 33.80/0.972 35.80/0.980 35.91/0.970
EDSR [28] ×2 32.86/0.965 35.02/0961 41.11/0.988 34.61/0.977 37.08/0.985 36.84/0.975
GB [35] ×2 31.22/0.959 35.25/0969 40.21/0.988 32.76/0.972 35.44/0.983 35.04/0.956
RCAN [32] ×2 33.46/0.967 35.56/0.963 41.59/0.989 35.18/0.978 38.18/0.988 37.32/0.977
SAN [33] ×2 33.36/0.967 35.51/0.963 41.47/0.989 35.15/0.978 37.98/0.987 37.26/0.976
LFBMD5D [36] ×2 31.15/0.955 33.72/0.955 39.62/0.985 32.85/0.969 33.55/0.972 35.01/0.966
resLF [18] ×2 33.22/0.969 35.79/0.969 42.30/0.991 34.86/0.979 36.28/0.985 35.80/0.970
LFSSR [19] ×2 34.15/0.973 36.98/0.974 43.29/0.993 35.76/0.982 37.67/0.989 37.57/0.978
LF-ATO [39] ×2 34.49/0.976 37.28/0.977 43.76/0.994 36.21/0.984 39.06/0.992 38.27/0.982
LF-InterNet [40] ×2 34.76/0.976 37.20/0.976 44.65/0.995 36.64/0.984 38.48/0.991 38.81/0.983
Ours ×2 34.92/0.976 37.46/0.977 44.16/0.994 36.81/0.985 39.48/0.992 38.91/0.983
Bicubic ×4 25.14/0.831 27.61/0.851 32.42/0.934 2682/0.886 25.93/0.843 27.84/0.855
VDSR [50] ×4 26.82/0.869 29.12/0.876 34.01/0.943 28.87/0.914 28.31/0.893 29.17/0.880
EDSR [28] ×4 27.82/0.892 29.94/0.893 35.53/0.957 29.86/0.931 29.43/0.921 30.29/0.903
GB [35] ×4 26.02/0.863 28.92/0.884 33.74/0.950 27.73/0.909 28.11/0.901 28.37/0.873
RCAN [32] ×4 28.31/0.899 30.25/0.896 35.89/0.959 30.36/0.936 30.25/0.934 30.66/0.909
SAN [33] ×4 28.30/0.899 30.25/0.898 35.88/0.960 30.29/0.936 30.25/0.934 30.66/0.909
LFBMD5D [36] ×4 26.61/0.869 29.13/0.882 34.23/0.951 28.49/0.914 28.30/0.900 29.07/0.881
resLF [18] ×4 27.86/0.899 30.37/0.907 36.12/0.966 29.72/0.936 29.64/0.927 28.94/0.891
LFSSR [19] ×4 29.16/0.915 30.88/0.913 36.90/0.970 31.03/0.944 30.14/0.937 31.21/0.919
LF-ATO [39] ×4 29.16/0.917 31.08/0.917 37.23/0.971 31.21/0.950 30.78/0.944 30.98/0.918
LF-InterNet [40] ×4 29.52/0.917 31.01/0.917 37.23/0.972 31.65/0.950 30.44/0.941 31.84/0.927
Ours ×4 29.58/0.917 31.24/0.918 37.24/0.972 31.89/0.951 31.05/0.948 31.99/0.928
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the context of LFs. Moreover, our method achieved
the best results on both real-world datasets (EPFL,
INRIA, STFgantry) and synthetic datasets (HCInew,
HCIold). That is because our LF-CFANet is based
on feature fusion driven by the attention mechanism,
which is sensitive to the disparity.

Due to different angular resolutions, the PSNR
of each view in SAIs is not identical. Figures 5
and 6 compare the PSNR of individual SAIs
for LFSSR, ATO, LF-InterNet, and our method.
Compared with the same many-to-one approach (LF-
ATO), our approach shows significant performance
improvements, as shown by Fig. 6. Although LFSSR,
LF-ATO, and LF-InterNet can use the angular
information from all input views to super-resolve each
view, the gap among maximum-difference views of our
method is much smaller than for other methods. That
is because our method introduces MDISB to reduce
the information degradation of maximum-difference
views. The reconstruction quality of LF-CFANet is
slightly higher than those of other LFSR methods.
The computational load of some state-of-the-art

methods (EDSR, resLF, LF-ATO, LF-InterNet) is
presented in Table 4. Note that, our method
consumes less computational resources but achieves
the best results compared with SISR and LFSR
methods, especially for the reference view. Our LF-
CFANet has higher computational efficiency than
LF-InterNet, because the structure of LF-InterNet
processes with all LR LF simultaneously. However,
our method reconstructs the reference view by
supplementing the complementary information from
auxiliary views. Note that the PSNR for our reference
view is much higher than the average PSNR for LF-
InterNet: see Fig. 5.
4.2.3 Qualitative comparison
We provide a visual comparison of results of different
methods in Fig. 4 for ×2 and ×4 LFSR. Our
LF-CFANet can recover fine details and textures,
such as the letters in STFgantry cards. However,
the other methods lose most high-frequency details
in the reconstructed results. Compared with our
method, VDSR and SAN, state-of-the-art SISR
methods, produce poor details, because they lack

Fig. 4 Results of different methods for 2× and 4× reconstruction.
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Fig. 5 PSNR comparison for individual SAIs. Here, 7 × 7 input views are used to perform 2× LFSR. We use standard deviation (Std) to
assess their uniformity.

Fig. 6 Comparison of PSNR of individual SAIs.

the complementary information to supplement image
reconstruction. Although resLF, LF-SAS, LF-ATO,
and LF-InterNet methods generate better results
than SISR methods, they do not effectively make use
of complementary information in the LFSR process.
Our method can effectively and efficiently reconstruct
LF images by using a channel and spatial attention
mechanism. Figures 7 and 8 further demonstrate
the visual comparisons of LF parallax structure of
LFSR methods: our method produces clearer and
straighter lines than the other LFSR methods. Our
method can preserve the structural characteristics
of LFs.

4.3 Ablation study

We conducted several experiments to evaluate the
results using different architectures.
4.3.1 Effectiveness of MRASPP
The MRASPP is used to extract discriminative
features. We used variants of LF-CFANet
(onlyMRASPP and rmMRASPP) to show the

effectiveness of the MRASPP. The results are
given in Table 3. As expected, removing MRASPP
caused rmMRASPP to suffer a decrease (of
0.06 dB) in PSNR. That is because MRASPP
extracts feature at different scales, which can
make the feature representations more robust.
Moreover, discriminative features with rich
context information can be extracted by using the
multiple receptive fields of atrous convolutions.
Therefore, our model can obtain accurate features
to reconstruct LF.

Table 3 Results for different LF-CFANet architectures on the
STFlytro data for 2× upscaling. The bicubic result provides a
baseline. onlyMRASPP, onlyMDISB, and onlyRCSCAM denote that
only MRASPP, MDISB, and RCSCAM blocks are used in our LF-
CFANet, while rmMRASPP, rmMDISB, and rmRCSCAM mean that
only MRASPP, MDISB, and RCSCAM blocks are removed from
LF-CFANet

Architecture PSNR SSIM Parameters

Bicubic 33.02 0.950 —
onlyMRASPP 38.62 0.980 2.32M
rmMRASPP 38.85 0.982 2.63M
onlyMDISB 38.71 0.982 2.54M
rmMDISB 38.87 0.983 2.41M
onlyRCSCAM 38.71 0.982 2.05M
rmRCSCAM 38.78 0.983 2.91M
LF-CFANet 38.91 0.983 3.00M

Table 4 Number of parameters and FLOPs are provided for 2× SR.
Note that, FLOPs is computed with an input LF of size 5×5×32×32
for an LF dataset

Network MParams GFLOPs PSNR

EDSR 38.62 39.56×25 37.08 dB
resLF 6.35 37.06 37.6 dB
LF-ATO 1.22 28.24×25 39.06 dB
LF-InterNet 4.80 47.46 38.48 dB
LF-CFANet 3.00 47.68×25 39.48 dB
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Fig. 7 Results of different methods for 2× reconstruction for both synthetic and real-world scenes, showing predicted central SAIs, close-ups
of the framed patches, and EPIs at the colored lines.

Fig. 8 Results of different methods for 4× reconstruction for both synthetic and real-world scenes, showing predicted central SAIs, close-ups
of the framed patches, and EPIs at the colored lines.

4.3.2 Effectiveness of MDISB
MDISB is used to guide reference view reconstruction.
To validate the effectiveness of the MDISB, we
removed this block, and again show the results in
Table 3. rmMDISB suffered a 0.04 dB PSNR decrease
compared to LF-CFANet. That is because this
block can enahnce the influence of angular-position
features in the process of reconstructing the reference-
view image. Recall that in Eq. (8), we select four
angular-position features with maximum-difference
information according to the structure of the LF to
boost the impact of maximum-difference views.

We also evaluated the performance of MDISB with
different angular positions for auxiliary views; see
Table 5 and Fig. 9. The reconstruction accuracy
consistently improved as the degree of differentiation
of the information increased. Table 5 shows that
MDISB (maximum) had the best result: MDISB

Table 5 Different supplementary information is used in MDISB with
the STFlytro dataset and 2× upscaling

Architecture PSNR SSIM
MDISB (0◦) 38.83 0.983
MDISB (45◦) 38.84 0.983
MDISB (90◦) 38.81 0.983
MDISB (135◦) 38.89 0.983
MDISB (minimum) 38.87 0.964
MDISB (maximum) 38.91 0.983

(0◦), MDISB (45◦), MDISB (90◦), and MDISB
(135◦) only provide differentiated information in the
same direction, while the difference information for
MDISB (minimum) and MDISB (maximum) has
four directions. Moreover, the four views in MDISB
(maximum) are the furthest from the angular position
of the reference view, and the maximum degree of
differentiation can be provided for reconstructing the
reference view.
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Fig. 9 Different supplementary information is used in MDISB. For a
fair test, we fix the angular position of the reference view (yellow). Blue
blocks represent different auxiliary views in different angular positions,
which are used to supplement different information in MDISB.

4.3.3 Effectiveness of RCSCAM
The RCSCAM plays a key role in our LF-CFANet.
This model can enhance the complementary infor-
mation exploitation capability between the reference
view and complementary view by introducing an
attention mechanism. For comparison, we replaced
our RCSCAM with simple feature concatenation. As
shown in Table 5, this block had a significant influence
on the result, and the PSNR suffered a 0.13 dB
decrease. Without a spatial and channel attention
mechanism, complementary information from cross-
parallax images cannot be effectively learned to
supplement the reference view.

5 Conclusions

In this paper, we propose the complementary-view
feature attention network (LF-CFANet) for LFSR.
The main contribution of our method is the fusion of
complementary-view information, by using RCSCAM
and MDISB. For RCSCAM, we use spatial and
channel attention to effectively extract complementary-
view feature information to supplement the reference
view. To guide reference view reconstruction, MDISB is
proposed to supplement the most differentiated feature-
level information. Our experiments show that MDISB
works well in the reconstruction process, allowing the
reference view image to be effectively and efficiently
reconstructed. Our method achieves state-of-the-art
LFSR results in both quantitative and qualitative
evaluations, and it is more robust for real-world scenes.

It is worth noting that the quality of the
supplementary information from MDISB is crucial

and improves the reconstruction accuracy. Therefore,
a further study of the maximum-difference views is
needed, and we could possibly use fewer views to
reconstruct the whole set of LF views. In future work,
we aim to use an encoder and decoder framework
to improve the quality of feature fusion with fewer
LF views, providing a further step toward consumer
applications.
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