
Computational Visual Media
https://doi.org/10.1007/s41095-021-0204-1 Vol. 7, No. 2, June 2021, 201–215

Research Article

Temporal and spatial anti-aliasing for rendering reflections on
water waves

Namo Podee1 (�), Nelson Max2, Kei Iwasaki3, and Yoshinori Dobashi1

c© The Author(s) 2021.

Abstract The reflection of a bright light source on
a dynamic surface such as water with waves can be
difficult to render well in real time due to reflection
aliasing and flickering. In this paper, we propose a
solution to this problem by approximating the reflection
direction distribution for the water surface as an
elliptical Gaussian distribution. Then we analytically
integrate the reflection contribution throughout the
rendering interval time. Our method can render in real
time an animation of the time integrated reflection of
a spherical light source on highly dynamic waves with
reduced aliasing and flickering.

Keywords real-time rendering; anti-aliasing; reflection;
water surface; water waves; elliptical
Gaussian

1 Introduction

Ocean simulation and rendering have been studied
in the computer graphics field for 40 years. That
research can simulate an ocean under various weather
conditions [1], and interacting with solid objects in
three dimensions in real time [2]. However many
problems in real-time ocean rendering remain. One
of the problems is aliasing and flickering in rendering
reflections on the water surface.

The ocean surface is highly dynamic. It moves
rapidly and thus its shading changes rapidly as
well. Usually, this does not pose any problems

1 Hokkaido University, Sapporo, 060-0814, Japan. E-mail:
N. Podee, namo.podee@gmail.com (�); Y. Dobashi,
doba@ime.ist.hokudai.ac.jp.

2 University of California, Davis, 95616, USA. E-mail:
max@cs.ucdavis.edu.

3 Wakayama University, Wakayama, 640-8441, Japan.
E-mail: iwasaki@wakayama-u.ac.jp.

Manuscript received: 2020-11-02; accepted: 2021-01-07

if the shading is smooth. However, for a surface
that has a strong highlight or bright reflection
moving rapidly, it causes inaccurate and unnatural
flickering. In traditional rendering algorithms, each
frame is rendered independently at discrete time steps,
resulting in serious temporal aliasing artifacts. See
Fig. 1 for an illustration of the problem. This paper
focuses on this problem, assuming the light source is
a sphere such as the full moon or the Sun.

Removing aliasing in real time is an active research
area and many methods have been proposed [3–7].
They can improve the fidelity and efficiency of
the rendering method. However, their focus is on
spatial anti-aliasing and most of them do not address
the temporal aliasing problem, particularly the one
observed in rendering a reflected image of a light
source on a water surface with waves.

In this paper, we present a method that can remove
the spatial and temporal aliasing simultaneously,
assuming that the water wave is represented as a
sum of sine waves and the light source is a sphere.

Fig. 1 The problem in rendering a reflection on a dynamic surface.
Typically a single reflection ray (solid black) is generated for each
frame, but it often misses the light source, causing temporal aliasing.
We address this problem by also using the ray (dashed black) from
the previous frame. The light source is sampled by using multiple
rays (red) interpolating these two rays to reduce temporal aliasing.

201

202 N. Podee, N. Max, K. Iwasaki, et al.

The basic idea is to compute the intersection of the
light source with a plane formed by two reflection
vectors for neighboring frames. This provides us with
a fraction of time when the light source is visible
on the water surface. We combine this idea with a
traditional spatial anti-aliasing method.

Our main contributions are:
• a method that analytically integrates a light

reflection on a summed sine wave surface over
a time period;

• a method that approximates a reflection direction
distribution and then analytically integrates a
light reflection on a summed sine wave surface
over the reflection distribution and a time period;

• an improvement in accuracy for the Feline method
of Ref. [8].

2 Related work

There are three main topics related to our research:
reflection rendering, screen space anti-aliasing, and
geometric analytic anti-aliasing.

2.1 Reflection rendering

One of the most popular methods for rendering
reflections in real time is image-based rendering. A
method proposed in Ref. [9] renders realistic reflection
images at an interactive speed by precomputing
radiance maps that store the convolution of an
environment map and a BRDF to efficiently compute
the outgoing intensity of light for an arbitrary surface
orientation and viewing direction. Since this method
cannot change either surface materials or lighting
conditions at run time, McAuley et al. [10] introduced
a split–sum approach that approximately computes
the product of the environment map and the BRDF
efficiently. More recent work achieves real-time
shading for a polygonal light source [11] or a spherical
light source [12]. However, none of these methods
pay attention to temporal aliasing.

2.2 Screen space anti-aliasing

Fast approximate anti-aliasing (FXAA) [3] is one of
the most popular screen space anti-aliasing methods.
It simply detects jagged edges in an image and
smooths them. It is fast but it blurs some details in
the final image. Screen space temporal anti-aliasing
has also been studied for a long time. One of the first
methods was by Korein and Badler [4]. It determines

the area of pixels that a moving object covers and
then performs filtering on that area. This method
works for a simple moving object. A method by
Shinya [13] uses a velocity field to track surfaces
moving on a screen. Then the method reconstructs
an anti-aliased result by blending pixels with the same
surface position in multiple frames. This method can
be called a temporal reprojection method. It has a
wide variety of applications [14, 15], but suffers from
three main problems. Firstly, it cannot deal with any
surface that is hidden in previous frames. Secondly, it
has parameters that needed to be adjusted carefully.
Thirdly, it cannot track the movement of the reflection
direction, which is our main objective.

2.3 Analytic anti-aliasing

Our method belongs to this group. Such methods
analyze the cause of the aliasing and find a
mathematical solution for each target aliasing
situation. A clamping method [5] removes aliasing on
a textured surface by using the Nyquist theorem [16];
we use it in our method. The method proposed in
Ref. [17] analyzes the movement of a polygon in image
space and generates a space–time representation of
the object for spatial and temporal anti-aliasing.
EWA volume splatting [18] is an anti-aliasing method
for volume rendering. It uses an elliptical Gaussian
function as a reconstruction kernel for the volume
to avoid aliasing. We are inspired by this work
and borrow the idea of its Gaussian kernel’s affine
mapping. Our method also builds on LEAN mapping
[19] that approximates the distribution of surface
normal vectors with a Gaussian function to eliminate
aliasing that comes from using a bump map. LEADR
mapping [6] is another method that extends LEAN
mapping to cover physically based rendering. Becker
and Max [20] combined three rendering algorithms,
based on BRDF, bump mapping, and displacement
mapping, and transition between them in an aliasing-
optimal way. Bruneton et al. [7] also used these
rendering algorithms as three levels of detail to
eliminate aliasing on a dynamic water surface in real
time. Wu et al. [21] accurately rendered anti-aliased
materials across multiple levels of detail by generating
an SVBRDF from a displacement map and a BRDF.
The method considers occlusion, shadow-masking,
and inter-reflection effects of the displacement map
as well. However, these methods do not take into
account temporal aliasing, which we address in this

Temporal and spatial anti-aliasing for rendering reflections on water waves 203

paper. Feline mapping [8] also helps us improve the
efficiency and quality of our work. It is a texture
filtering method that approximates an anisotropic
filter as the sum of multiple isotropic filters.

Less related to our work is Monte Carlo distributed
ray tracing [22], which combines spatial and temporal
aliasing by tracing many rays from random points in
the finite pixel area, and at random time in the frame
interval. It produces noisy images unless very many
rays are used, but modern noise removal algorithms
can decrease this noise fairly effectively.

3 Proposed method

3.1 Overview

Our goal is to compute the contribution of a
spherical light source over the period of time between
frames. As mentioned earlier, we assume that the
water wave is represented as a sum of sine waves
with different frequencies and directions. For each
pixel, our method first decomposes the water wave
into two spatial frequency bands of low- and high-
frequency, respectively temporal-aliasing waves and
spatio-temporal-aliasing waves. The high-spatial-
frequency component causes spatial aliasing due to
under-sampling and may also cause temporal aliasing
due to its movement. We give two methods, temporal-
aliasing wave rendering and spatio-temporal-aliasing
wave rendering, for these two frequency bands,
respectively, and make a smooth transition between
them. The fundamental idea of both methods is the
same for each sine wave, but in the second method,
the spherical light source is blurred to account for the
effects of the BRDF caused by the aliasing waves. We
also using a height field of the wave as a displacement
map of our water surface geometry. Figure 2 outlines
our method.

3.2 Spatial-aliasing detection

We use the clamping anti-aliasing method [5] to
decompose the water wave into the spatio-temporal-
aliasing and temporal-aliasing waves. According to
the Nyquist theorem from sampling theory, to avoid
aliasing, the spatial sampling frequency must be
higher than twice the highest frequency of the water
wave. In our case, this means that the pixel resolution
should be twice as fine as the wavelength of the water
wave projected onto the screen. Thus, when a wave is
projected onto the screen, the wave must cover at least

Fig. 2 Outline of our methodology.

two pixels within one wavelength. This maximum
frequency of the projected wave is called the Nyquist
limit. If a wave does not meet this criterion, then
it will cause aliasing. The maximum frequency, or
the minimum wavelength, happens when the wave
is aligned horizontally or vertically with our screen
space as can be seen in Fig. 3. Thus, our Nyquist
limit is 1/2, which is the spatial frequency of a wave
with a wavelength equal to the size of two pixels.

For each pixel, we calculate the projected
wavelength of each sine wave on the screen. Each
sine wave is then classified per pixel as either
temporal-aliasing (called simply “non-aliasing” below)
or spatio-temporal-aliasing (called “aliasing” below)
according to the Nyquist frequency, which detects
spatial aliasing. Pixels that only contain non-aliasing
waves and pixels that contain aliasing waves will be
processed by two different rendering methods, which
produce slightly different results.

A sudden transition between the two types of waves

Fig. 3 A projected wave aligned to a 2 × 2 screen. Any wave in any
projected direction with higher spatial frequency or lower wavelength
than this wave will cause aliasing.

204 N. Podee, N. Max, K. Iwasaki, et al.

will create arcs of sudden appearance change on the
boundary between pixels with and without aliasing
waves. To prevent this, we use soft classification
to smoothly blend the results from both methods.
Section 3.7 explains the blending method in detail.

3.3 Temporal-aliasing wave rendering

For a pixel that only contains non-aliasing waves,
we sample a single point on the water surface
corresponding to the pixel center and compute the
contribution of the reflected light over the time
interval between the current frame and previous
frame. We assume that the spherical light source
is distant from the sample point so that it subtends
the same solid angle from every sample point, and is
represented by a disk facing the sample point. This
disk is the projection of the light sphere onto a light
plane perpendicular to the line from the sample point
to the center of the light sphere. Two reflection
vectors are computed by using the normal vectors
at the previous and the current frames. We then
calculate the intersection points between the light
disk and a plane formed by the two reflection vectors,
as shown in Fig. 4. The light disk contribution
between these two reflection vectors can be calculated
as follows. First, we calculate two intersection points
pc and pp between the two reflection vectors and
the plane. Next, we calculate the overlapping line
segment between pcpp and the light disk. Then the arc
subtended by pcpp (the whole arc) and that subtended
by the overlapping line segment (the light arc) is
calculated. The light source’s fractional contribution
between the successive frames is obtained as the ratio
of the angle of the light arc to that of the whole arc,
as shown in Fig. 4.

Fig. 4 Our method uses simple geometric analysis to find the
contribution of light between the current reflection and the previous
reflection.

3.4 Spatio-temporal-aliasing wave rendering

For a pixel that contains any aliasing waves, a single
sample point per pixel is insufficient. We have
to compute the average intensity of the reflected
light over the pixel area taking into account the
distribution of surface normals. A straightforward
solution is to generate multiple rays for each pixel
as in Ref. [22], which significantly increases the
computation time. Instead, we borrow the idea
of the LEAN mapping technique [19] for efficient
computation, which approximates the distribution by
a Gaussian distribution. However, this approximation
removes details from the surface and blurs the
reflection result, which makes temporal reflection
changes less noticeable. Thus, our method assumes
that aliasing waves are unchanging in time and only
non-aliasing waves contribute temporal changes to
the pixel’s reflection result. For a pixel that contains
both types of waves, we need to address spatial
aliasing from aliasing waves and temporal aliasing
from non-aliasing waves. To eliminate spatial aliasing,
our method approximates an aliasing wave as a
distribution function of its surface normal. This
distribution itself does not change over time, but it
is translated by the normal of the non-aliased waves,
according to our assumptions. Our method then
removes temporal aliasing by computing the time-
integrated reflection of the distribution and the light
source. Figure 5 shows the outline of our spatio-
temporal-aliasing wave rendering method.

We first calculate the normal distribution function
(NDF) of the aliasing waves. The NDF is defined
as a distribution of normal vector on a horizontal
x–z plane, assuming the y axis points in the upward

Fig. 5 Outline of our spatio-temporal wave rendering method.

Temporal and spatial anti-aliasing for rendering reflections on water waves 205

direction (see Fig. 6). We call this the NDF plane.
The NDF for the sum of the sine waves is obtained by
accumulating the NDF for each sine wave. So, let us
consider the NDF for the following single sine wave:

y(x, z, t) = A sin(ax + bz + ct) (1)
where A is the amplitude and t is the time. The wave
vector (a, b) determines the wavelength and direction
of the wave, and c together with the wave vector
determines the velocity. We approximate the NDF
by a two-dimensional elliptical Gaussian function of
a point n on the NDF plane:

GΣ,nc(n) =
1

2π|Σ| 1
2

e− 1
2 (n−nc)TΣ−1(n−nc) (2)

where nc is the point corresponding to the normal
vector without aliasing waves (i.e., the low frequency
components) and is the center of the Gaussian on
the NDF plane. Σ is the covariance matrix of the
elliptical Gaussian and can be expressed differently by
our two approximation methods, the uniform method
and the per-pixel method.

Our uniform method assumes that each aliasing
wave has its whole wave cycle inside each pixel, so its
Σ can be expressed as

Σ = lim
T →∞

1
T

⎡
⎢⎢⎢⎣

∫ T

0

(∂y

∂x

)2
dt

∫ T

0

∂y

∂x

∂y

∂z
dt

∫ T

0

∂y

∂x

∂y

∂z
dt

∫ T

0

(∂y

∂z

)2
dt

⎤
⎥⎥⎥⎦

=
1
2

[
A2a2 A2ab

A2ab A2b2

]
=

[
σ2

x σxσz

σxσz σ2
z

]
(3)

where σx = Aa/
√

2 and σz = Ab/
√

2, and the
temporal average over t is the same as the spatial

Fig. 6 Our NDF is a normal distribution function of spatial aliasing
waves. Our RDF is a reflection distribution function of the NDF. It is
defined on a light plane perpendicular to the direction to the center
of the light source.

average over x and z because of the form of Eq. (1).
Our per-pixel method finds the start and end of the

sine wave within the pixel, where Σ can be defined
more accurately at the cost of increased computation.
The covariance matrix Σ can be instead expressed by

Σ =
[
M.xx − B.x × B.x M.xz − B.x × B.z

M.xz − B.x × B.z M.zz − B.z × B.z

]

(4)

B = (B.x, B.z) =
1

p2 − p1

(∫ p2

p1

∂y

∂x
dp,

∫ p2

p1

∂y

∂z
dp

)

(5)

M = (M.xx, M.xz, M.zz) =
1

p2 − p1

·
(∫ p2

p1

(∂y

∂x

)2
dp,

∫ p2

p1

∂y

∂x

∂y

∂z
dp,

∫ p2

p1

(∂y

∂z

)2
dp

)

(6)

p(x, z) = ax + bz (7)
where p1 and p2 are the start and end of the wave
within the pixel respectively. However, p1 and p2 of
each wave within the pixel vary with position. To
simplify the problem, we only consider the position at
the pixel center. Equations (5) and (6) can be solved
analytically, but we omit the detail here to save space.
Appendix A gives the solution to the equations and
explains how we find p1 and p2 in more detail. The
NDF for the sum of the waves is approximated as the
sum of the individual wave NDFs.

The NDF computed above is then transformed into
reflection space to obtain the reflection distribution
function (RDF), which represents the distribution of
the reflection directions. The RDF is defined on a
light plane perpendicular to the unit direction vector
to the center of the light source and is located at the
endpoint of this unit vector, as shown in Fig. 6. We
explain the derivation of our transformation function
below (see also Fig. 7).

Fig. 7 Transformation from NDF to RDF.

206 N. Podee, N. Max, K. Iwasaki, et al.

Let us consider a function Φ that maps point n

on the NDF plane to point r on the light plane,
i.e., r = Φ(n). Φ(n) can be derived by geometrical
analysis of Fig. 7, as follows:

Φ(n) =
r(n)

r(n) · L
(8)

r(n) = 2(n̂ · v)n̂ − v (9)

n̂ =
n

|n| (10)

where v is the eye direction and L is the light
direction. As Eqs. (8)–(10) show, Φ is a complicated
nonlinear function, so we employ a first order
approximation. Let nc be the center of the NDF,
rc = r(nc) be the center of the RDF, and gn = n−nc.
Then the approximation is

Φ(n) ≈ Φ(nc) + Jcgn = rc + Jcgn (11)

Jc =
∂ϕ

∂gn
(0) (12)

ϕ(gn) = gr = r−rc = r(gn+nc)−[2(nc · v)nc−v]
(13)

where Jc is the Jacobian matrix of ϕ(gn) computed
at gn = 0. ϕ(gn) is a function that maps point gn

on the NDF plane to point gr = r − rc on the light
plane. Then, Φ−1 may be approximated by

Φ−1(r) ≈ nc + J−1
c gr (14)

With this linear approximation, the RDF can also be
expressed by another elliptical Gaussian function with
covariance matrix Σr. That is, the RDF is expressed as

RDF(r) = NDF(Φ−1(r))

≈ 1
|J−1

c |GΣr,rc(r) (15)

Σr = JcΣJT
c (16)

Note that rc is the center of the above Gaussian
function on the light plane. The accuracy of our
RDF approximation is considered in Appendix B.

We can now compute the intensity of the reflected
light using the convolution of the RDF and the light
disk which is the projection of the spherical light
source onto the light plane. However, to remove
temporal aliasing, we need to compute the average
intensity over the time interval between the frames.
Thus, the intensity I is given by

I =
Ll

T

∫ t

t−T

∫
r∈D

RDF(r, t∗) dr dt∗ (17)

where Ll is the radiance of the light source and T is
the time interval between the frames. D represents

the circular region within the light disk. Note that
we include the time parameter t∗ for the RDF to
explicitly indicate its time-variance.

The above equation is too expensive to compute
in real time. We therefore precompute the integral
under some simplifying assumptions. We assume
that the path of the reflection direction on the light
plane during the frame is a straight line segment.
The accuracy of this approximation can be improved
by dividing the frame time into subintervals, each
with its own straight segment. We also approximate
the elliptical Gaussian RDF by a circular Gaussian,
with variance σ2

r = σsσt, where σs and σt are the
eigenvalues of the covariance matrix Σr in Eq. (15).
Later we approximate the elliptical Gaussian more
accurately as a weighted sum of circular Gaussians.
Finally, we assume that temporal changes in the
Jacobian Jc and covariance matrix Σr are small. Thus,
Jc and Σr are also assumed to be constant between
neighboring frames. We only consider the change in
the primary normal direction nc (and therefore the
primary reflection direction rc, i.e., the center of the
Gaussian RDF).

3.5 Circular Gaussian approximation

For the circular Gaussian, we need to precompute
Eq. (17), which is an integral, over the reflection
vector segment for the frame time, of the RDF
convolved with the light disk. Because this
convolution is circularly symmetric, the integral can
be precomputed using three parameters: the closest
distance of the line containing the segment to the
center of the convolution, the start position of the
segment on that line, and the end position. See Fig. 8.
Considering also the variance σ2

r for the RDF, this
gives four parameters.

Fortunately, we can reduce these to three
parameters. The straight segment integration can be
separated into four cases: a segment that starts and
ends at the outside but cuts through the convolution,
a segment that starts at the outside but ends inside
the convolution, which, by reflection symmetry across
the V axis in Fig. 8, also includes the segment which
starts inside and ends outside, a segment that starts
and ends inside the convolution, and a segment
that starts and ends outside the convolution without
cutting through it, which has integral zero. The first
case has one parameter, which is the closest distance
of the segment to the center of the convolution.

Temporal and spatial anti-aliasing for rendering reflections on water waves 207

Fig. 8 Precomputation of the line integral, which is a convolution
of the light disk and the circular Gaussian that is moving on the line
segment.

The second case has two parameters, which are the
closest distance of the segment to the center of the
convolution and the end position of the segment. The
third case has the three parameters noted before.
However, we can calculate the third case integral by
first finding the integral over a segment that starts
from an infinite distance and goes to the end position
while passing through the start position of the integral
segment. Then, we subtract another integral on the
same line that starts from an infinite distance and
goes to the start position of the segment. In other
words, an integral of the third case can be calculated
as the difference of two second case integrals. Thus,
we only need to precompute the first and second
cases, and the first is a special case of the second.
The second case needs two parameters, which are the
closest distance and the end position of the segment.
Thus, when including the variance too, we can store
the line integral in a 3D texture, as described below.

Let us consider local coordinates UV on the light
plane with origin at the center of the light disk (see
Fig. 8). Because of circular symmetry, we can assume
that the line segment for the line integral is parallel
to the U axis and intersects the V axis at V = v,
shown as a thick black line segment in the figure. The
center of the circular Gaussian RDF moves along the
integral line. Our method precomputes the following
table for various variances.
S(u, v, σr) =

∫ u

−R
F (u′, v, σr)du′, −R < u, v < R

(18)
where F (u, v, σr) corresponds to the inner integral of
Eq. (17), i.e., the convolution of the light disk with

the circular Gaussian whose center is at (u, v). R is a
large value chosen such that F (R, 0, σr) is sufficiently
small. With this table, the intensity expressed by
Eq. (17) is obtained by

I = S(u1, v, σr) − S(u0, v, σr) (19)
where (u0, v) and (u1, v) correspond to the two
primary reflection directions for the previous and
current frames, exchanged if necessary to make u1 �
u0. Our method stores S in a 3D texture on the GPU.
The precomputation only considers a constant light
disk radius, but we can linearly transform the light
disk radius and the RDF variance together. Thus,
we can transform various input parameters to fit
our precomputed data before using it. Our method
supports changing both light and wave parameters
in real time.

3.6 Elliptical Gaussian approximation

We needed to approximate an elliptical Gaussian
RDF as a circular Gaussian to keep the precomputed
table to 3 dimensions, to be able to use hardware
support on a GPU. However, this approximation
loses accuracy when an RDF has a very elongated
distribution along one of its axes, which happens
when the viewing direction is close to the horizon. So
we approximate an elliptical Gaussian RDF more
closely with a method similar to Feline mapping
[8], which uses multiple circular Gaussian kernels
to approximate a single elliptical Gaussian kernel.
However, we improve the method in Ref. [8] by
non-linearly optimizing the circular Gaussian kernel
weights, center positions, and variances so that their
combination matches the elliptical Gaussian RDF
kernel as closely as possible. Figure 9 illustrates
the idea. Details of this fit are given in Appendix
C, and produce curve fits for the circular Gaussian
parameters.

When we are rendering the scene, after we obtain
the RDF, we scale the whole RDF so that its minor
axis variance is equal to 1. Then we find the optimal
circular Gaussian kernel parameters by inserting the
scaled major axis variance of the RDF into each curve-
fitted equation of each parameter as a function of
the major axis variance. Next, we scale the optimal
parameters back to the original scale. Then we find
the line segment of each circular Gaussian kernel by
offsetting the segment from the original segment by
a vector from the center of the RDF to the center of
each circular Gaussian kernel. Figure 10 shows an

208 N. Podee, N. Max, K. Iwasaki, et al.

Fig. 9 We further approximate our RDF, which is defined as an
elliptical Gaussian distribution, as a combination of multiple weighted
circular Gaussian distributions. In this example, we approximate the
RDF with 3-weighted circular Gaussian distributions.

Fig. 10 Three circular Gaussian kernels are used to approximate
the RDF. Each circular Gaussian kernel has its own integral segment,
which can be calculated by offsetting the original integral segment by
the vector from the center of the RDF to the circular Gaussian kernel.

example of line segment offsetting for a case with three
circular Gaussian kernels. Finally, we use our circular
approximation method to find the result with the
adjusted segment for each circular Gaussian kernel,
and combine them according to the unscaled optimal
weight parameters.

However, there is a limitation to this method. An
elliptical Gaussian kernel with a more elongated
shape will require more circular Gaussian kernels,
which increases computational time. To have stable
performance, we use a fixed number of circular
Gaussian kernels (nine in our implementation.) Then
if the elongation (ratio of major to minor axis) is
more than a threshold, we use our fallback method
instead. The threshold value we use is the standard
deviation of the minor axis of the RDF multiplied by
the number of circular Gaussian kernels.

Our fallback method is computing a convolution

of the RDF and the light source by the Riemann
sum method. We ignore the temporal integration in
our fallback method because the reflection from a
high variance RDF is blurry, so is less likely to be
improved by temporal integration.

3.7 Aliasing wave transition

Our method treats non-aliasing waves and aliasing
waves differently. The non-aliasing waves are used
to determine temporal changes of the surface, while
aliasing waves are approximated by a Gaussian RDF.
However, this approximation, which is in our spatio-
temporal-aliasing wave rendering method, causes
visual artifacts in our result. When we use the
Nyquist limit to classify the type of each wave within
each pixel, it causes a differently rendered result
for the two types of waves. This switch is too
sudden. Any wave with a projected frequency lower
than the Nyquist limit is considered a non-aliasing
wave, while the same wave in a neighbor pixel might
have projected frequency equal or slightly above the
Nyquist limit and be suddenly considered an aliasing
wave. The difference between the two pixels will be
apparent as seen in Fig. 11(b).

To prevent this, instead of using the Nyquist limit,
we use soft classification to smoothly go from non-
aliasing to aliasing waves. We create a transition
region, with a fractional aliasing value α between 0
and 1. The transition region is in frequency space
and stops before reaching the Nyquist limit. Any
wave within the region is considered to contain both
aliased and non-aliased waves with weights of α and
1 − α, respectively. If the transition region has a
width of δ in frequency space and the Nyquist limit is
fn, the transition region starts at fn − δ and ends at
fn. A wave with a frequency of f within the region
has a transition value α given by

α =

⎧⎪⎪⎨
⎪⎪⎩

0, f < fn − δ

[f − (fn − δ)]/δ, fn − δ � f � fn

1, fn < f

(20)

For α between 0 and 1, we transform the sine
wave into two waves, an aliased wave with amplitude
weighted by α, and a non-aliased wave weighted by
1 − α. We do this for every sine wave, and combine
waves of the same type. If there are no aliased waves,
the combined non-aliased waves will be rendered
with our temporal-aliasing wave rendering method.
However, if there are aliased waves, the combined

Temporal and spatial anti-aliasing for rendering reflections on water waves 209

aliased waves will be represented as an NDF and
the combined non-aliased waves will determine a
reflection path in our spatio-temporal-aliasing wave
rendering method. Figure 11 shows an example
transition.

Fig. 11 With and without transition regions.

4 Implementation

We implemented our method with OpenGL. The size
of the transition region between aliasing and non-
aliasing waves can be adjusted to achieve a smooth
transition between them. Our temporal-aliasing
rendering method is faster than our spatio-temporal-
aliasing wave rendering method. Thus, we need to
adjust the transition region to use the temporal-
aliasing wave rendering method as much as possible.
We experimentally determined the transition region
to start at 0.2 cycles per pixel and finish at 0.5 cycles
per pixel.

In our implementation of spatio-temporal-
antialiasing, the size of the precomputed 3D
texture for the circular Gaussian approximation is
512 × 512 × 64; the dimensions correspond to the
closest distance, line segment endpoint, and variance
of the circular Gaussian kernel, respectively. For the
elliptical Gaussian approximation, we use 1, 3, 5,
or 9 circular Gaussian kernels. We provide curve
fitting results for each of these in Tables S1–S3
in the Electronic Supplementary Material (ESM).
However, we cannot use this 3D texture when there
are no non-aliased waves that vary in time because
we cannot find the point integral of a still reflection
vector with our method (there is no reflection path).
Thus, we need to precompute another 2D texture
that just stores a convolution result of a circular
Gaussian kernel with a light disk with a resolution
of 512 × 64; each dimension corresponds to the
distance between the center of the light disk and the

kernel, and variance of the circular Gaussian kernel,
respectively.

5 Results

We investigated the abilities of our method by using
four scenes with a simple wave, a smooth detail wave,
a medium detail wave, and a high detail wave (see
Fig. 12). For each scene, we created multiple images
using six different rendering methods: without anti-
aliasing, spatial-only 32 multisample anti-aliasing
(32x MSAA), LEAN mapping, our method with
uniform NDF, our method with per-pixel NDF, and a
reference image. We generated a 4K normal map from
sine wave data for LEAN mapping for each frame.
Our method uses nine circular Gaussian kernels
for the temporal-aliasing-wave rendering method.
The reference image was created offline by simply
generating a supersampled image with 2 × 2, 4 × 4,
or 8 × 8 higher resolution and then downsampling
it. We also included temporal integration in the
offline rendering by generating 4 or 8 supersampled
images between neighboring frames. Glare and
tone mapping post-processing were applied to all
images, to show the Sun’s high brightness reflection.
The rendering time is shown in the captions of the
figures; our precomputation time is 4.24 ms. The
rendering time is measured on a PC with Intel Core
i9-9900KF 3.6 GHz CPU, 16 GB RAM, and NVIDIA
TITAN RTX GPU with 24 GB RAM (also see the
accompanying video animations in the ESM).

Figure 13 shows a comparison using a simple wave
consisting of five sine waves with similar directions.
This scene shows a simple and predictable reflection
movement. Our method produces almost the same

Fig. 12 Our four experimental scenes.

210 N. Podee, N. Max, K. Iwasaki, et al.

Fig. 13 Reflection result for the simple wave scene. The reference uses 8 spatial samples and 4 temporal samples.

result as the reference image for regions near the
camera. In the far region, our elliptical Gaussian
approximation removes the spatial aliasing. However,
the other two methods produce severe spatial aliasing
in both near and far regions.

Figures 14 and 15 use smooth and medium detail
waves, consisting of 64 and 48 sine waves, respectively.
These waves exhibit sparse reflections that are difficult
for previous methods to capture. Our method
successfully renders an accurate image.

Figure 16 shows images rendered with a high detail
wave consisting of 32 sine waves of shorter wavelength.
Again, our method can render an accurate reflection
image near the camera while spatial aliasing is
removed in the far region. The other two methods
suffer from severe aliasing.

Fig. 14 Reflection result for the smooth detail wave scene. The
reference uses 4 spatial samples and 8 temporal samples.

Fig. 15 Reflection result for the medium detail wave scene. The reference uses 8 spatial samples and 8 temporal samples.

Temporal and spatial anti-aliasing for rendering reflections on water waves 211

Fig. 16 Reflection result for the high detail wave scene. The reference
uses 8 spatial samples and 8 temporal samples.

Table 1 and Fig. 18 show that our method produces
results closer to the references than other methods.

Table 1 RMSE of the result of each method compared to the
reference

Scene
Method Simple Smooth Medium High
No AA 0.0797 0.0299 0.0315 0.0778
32x MSAA 0.0795 0.0287 0.0282 0.0676
LEAN 0.0675 0.0329 0.0298 0.0633
Ours (uniform) 0.0384 0.0200 0.0278 0.0611
Ours (per-pixel) 0.0384 0.0192 0.0229 0.0610

6 Discussion

Our method particularly improves rendering of
reflections near the camera as shown in the examples
in the previous section. However, images of the
reflection in regions far from the camera are blurred
due to our elliptical Gaussian approximation. This
problem is reduced by using per-pixel NDF at the
cost of more computational time. Per-pixel NDF does
not reduce the error as much as we expected, but it
produces a sharp reflection result, which is visually
similar to the reference.

Our elliptical Gaussian approximation increases
the accuracy of the elongated reflection shape as
we increase the number of circular Gaussian kernel.
According to our experiments, three circular Gaussian

kernels are enough, as shown in Fig. 17 but increasing
the number of kernels can improve the quality
of reflection at the horizon with little increased
computational effort. In Fig. 17, we also include
an accurate convolution result of the Gaussian-
approximated RDF with a light source, which is
computed by using the Riemann sum method, for
easier comparison.

This paper does not consider the effects of occlusion
(from the viewpoint) or shadowing (from the light
source) of one wave by another. Smith [23] developed
equations for these, which were correctly normalized
by Ross [24], under the assumption that the waves

Fig. 17 Comparison of our approximation using different numbers
of circular Gaussian kernels (without a fallback method), the Feline
method, and convolution. The reference uses 8 spatial samples. The
RMSEs of (b)–(f) are 0.0209, 0.0195, 0.0181, 0.0191, and 0.0183
respectively. (d) has the best performance for capturing and ability
to compute time integral but (f) is better at capturing the reflection
near the horizon. Thus, our method uses both (d) and (f).

212 N. Podee, N. Max, K. Iwasaki, et al.

Fig. 18 RMSE comparison.

were random and that the normals were uncorrelated
with the wave height. These ideas were applied to
rendering sea waves by Bruneton and Neyret [7], and
to general surfaces by Dupuy et al. [6], enhancing
LEAN mapping to LEADR mapping. They could be
combined with our temporal anti-aliasing. However,
when summing only a few sine waves, the heights
and normals are in fact correlated. Becker and
Max [20] handled visibility at the mesoscale where
normal perturbation replaces displacement mapping,
by precomputing a redistributed normal map which
accounted for occlusion, but not shadowing; this
method can apply to any height field. However, it
requires precomputation of visibility from any viewing
angle, which can not currently be done in real time
for a time-varying height field.

7 Conclusions and future work

Our method reduces aliasing and increases the
fluidity of light disk reflection animation on a water
surface by using spatio-temporal anti-aliasing. Our
method analytically solves the aliasing problem and
thus it does not have limitations like the temporal
reprojection method [14, 15] that suffers from hidden-
surface and reflection tracking problems.

Our main current limitation is that our method
cannot replicate small details of distant reflections.
This is because we approximate the NDF and the RDF
by Gaussian distributions. The problem becomes more
apparent when we use a uniform NDF, which calculates
a single average NDF for the entire ocean wave. The
problem is reduced when we use per-pixel NDF.

In future, we plan to improve our method to
consider multiple frame temporal anti-aliasing, and
other types of light sources and waves. Multiple
frame temporal anti-aliasing will simulate the effect
of longer persistence of vision in a low light situation
and help capture more reflections. Other types of
waves and light sources are needed to broaden the
applicability of our method.

Appendix A Per-pixel NDF

The integrals in Eqs. (5) and (6) for the single sine
wave in Eq. (7) are

B = (B.x, B.z) = (a, b)K (21)

M = (M.xx, M.xz, M.zz) = (a2, ab, b2)J (22)
where

K =
A(sin(2(p2 + ct)) − sin(2(p1 + ct))

p2 − p1
(23)

J =
A2(sin(2(p2 + ct))−sin(2(p1 + ct))+2(p2−p1)

4(p2 − p1)
(24)

To find p1 and p2 of each wave within the pixel, we
project the pixel onto the wave plane, and then find
the intersections of a line which is at the center of the
projected square and in the direction of each wave,
and the boundary of the projected square. p(x, z)
at the two intersections give p1 and p2 of the wave.
Figure 19 illustrates our method.

Fig. 19 Wave start and end in the image gives positions of p1 and
p2 respectively.

Appendix B RDF approximation accuracy

We assume that the transformation from NDF to
RDF is linear, which is incorrect and causes an error.
We analyze this error by comparing our approximate
RDF with the accurate RDF computed by sampling
NDF. Figure 20 shows the relative error between them.

Temporal and spatial anti-aliasing for rendering reflections on water waves 213

Fig. 20 Relative error of NDF to RDF transformation. Height and
color show relative error while the other axis represents NDF variance
in x and z axes. Blue to green to yellow represent the relative errors
from low to high.

For each combination of x and z variances of the NDF,
we average the error over multiple view directions,
while aligning the view direction to the middle of the
x and y axes. The relative error becomes larger when
the x variance is low and z variance is high. The
error also increases when both variances increase.

Appendix C Elliptical Gaussian appro-
ximation

As in Fig. 9, we place one circular kernel at the center
of the elliptical Gaussian kernel while the others are
placed in pairs along the major axis symmetrically.
Thus the number of circular Gaussian kernels is
2N + 1, where N is an integer. We then have
3N + 2 parameters: weight wa and variance σ2

a of the
central kernel, N weights wi and variances σ2

i of the
symmetrical kernel pairs, and the distances di from
the center to each symmetrical kernel pair.

Unlike Ref. [8], which used somewhat arbitrary
simple formulae, we determine the parameters by
minimizing the integral of the squared difference
between the elliptical Gaussian kernel and our appro-
ximate multiple circular Gaussian kernels. Without
loss of generality, we assume that the elliptical
Gaussian’s minor and major axes are on the x and y

axis respectively. Then the error function ε is

ε =
∫∫ (

GΣ(σx,σy),(0,0)(x, y) − C(x, y)
)2

dx dy

(25)

C(x, y) = waGΣ(σa,σa),(0,0)(x, y)

+
N∑

i=1

(
wi(GΣ(σi,σi),(0,di)(x, y)+GΣ(σi,σi),(0,−di)(x, y))

)
(26)

Σ(σx, σy) =
[
σ2

x 0
0 σ2

y

]
(27)

where G is a 2D Gaussian distribution function as in
Eq. (2).

We can determine the optimal parameters by fixing
σx to 1 since all other parameters can be scaled
relative to σx. We used Mathematica to obtain an
analytic formula for the double integral in Eq. (25) as
a function of σy and the 3N + 2 parameters, for each
of N = 1, 2, and 4. Here is an example for N = 1,
with three circular Gaussian kernels:

ε =

w2
a

σ2
a

+
8waw1e

− d2
1

2(σ2
a+σ2

1)

σ2
a + σ2

1
− 4wa√

(σ2
a + 1)

(
σ2

a + σ2
y

)
4π

+

2b2

(
e

− d2
1

σ2
1 + 1

)

σ2
1

− 8w1e
− d2

1
2(σ2

1+σ2
y)√

(σ2
1 + 1)

(
σ2

1 + σ2
y

) +
1
σy

4π
(28)

We have similar but more complex formulae for five
and nine circular Gaussian kernels. Figure 21 shows
the optimization error.

Next, we sampled σy at regular intervals and
computed the optimal parameters for each of the
sampled values using Mathematica’s NMinimize
function. The parameters for an arbitrary value of σy

are obtained by interpolation using the curve fitting
function of Mathematica. Results of the curve fitting
are given in Tables S1–S3 in the ESM.

Fig. 21 Error ε (Eq. (25)) for three circular Gaussian kernels. The
horizontal axis is the major axis standard deviation σy .

214 N. Podee, N. Max, K. Iwasaki, et al.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Nos. JP15H05924, JP18H03348, and JP20H05954.

Electronic Supplementary Material The animation
result video and fitting parameter data are available in the
online version of this article at https://doi.org/10.1007/
s41095-021-0204-1.

References

[1] Gonzalez-Ochoa, C.; Holder, D.; Cook, E. Froma
calm puddle to a stormy ocean: Rendering water in
Uncharted. In: Proceedings of the ACM SIGGRAPH
2012 Talks, Article No. 3, 2012.

[2] Hopper, R.; Wolter, K. The water effects of pirates of
the Caribbean: Dead men tell no tales. In: Proceedings
of the ACM SIGGRAPH 2017 Talks, Article No. 31,
2017.

[3] Lottes, T. Fxaa. 2009. Available at http://developer.
download.nvidia.com/assets/gamedev/files/sdk/
11/FXAA\backslash{_}WhitePaper.pdf.

[4] Korein, J.; Badler, N. Temporal anti-aliasing in
computer generated animation. ACM SIGGRAPH
Computer Graphics Vol. 17, No. 3, 377–388, 1983.

[5] Norton, A.; Rockwood, A. P.; Skolmoski, P. T.
Clamping: A method of antialiasing textured surfaces
by bandwidth limiting in object space. In: Proceedings
of the 9th Annual Conference on Computer Graphics
and Interactive Techniques, 1–8, 1982.

[6] Dupuy, J.; Heitz, E.; Iehl, J. C.; Poulin, P.;
Neyret, F.; Ostromoukhov, V. Linear efficient
antialiased displacement and reflectance mapping. ACM
Transactions on Graphics Vol. 32, No. 6, Article No.
211, 2013.

[7] Bruneton, E.; Neyret, F.; Holzschuch, N. Real-time
realistic ocean lighting using seamless transitions from
geometry to BRDF. Computer Graphics Forum Vol. 29,
No. 2, 487–496, 2010.

[8] McCormack, J.; Perry, R.; Farkas, K. I.; Jouppi,
N. P. Feline: Fast elliptical lines for anisotropic
texture mapping. In: Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive
Techniques, 243–250, 1999.

[9] Cabral, B.; Olano, M.; Nemec, P. Reectionspace image
based rendering. In: Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive
Techniques, 165–170, 1999.

[10] McAuley, S.; Hill, S.; Martinez, A.; Villemin, R.;
Pettineo, M.; Lazarov, D.; Neubelt, D.; Karis, B.; Hery,
C.; Hoffman, N. et al. Physically based shading in theory

and practice. In: Proceedings of the ACM SIGGRAPH
2013 Courses, Article No. 22, 2013.

[11] Heitz, E.; Dupuy, J.; Hill, S.; Neubelt, D. Real-
time polygonal-light shading with linearly transformed
cosines. ACM Transactions on Graphics Vol. 35, No. 4,
Article No. 41, 2016.

[12] Dupuy, J.; Heitz, E.; Belcour, L. A spherical cap
preserving parameterization for spherical distributions.
ACM Transactions on Graphics Vol. 36, No. 4, Article
No. 139, 2017.

[13] Shinya, M. Spatial anti-aliasing for animation sequences
with spatio-temporal filtering. In: Proceedings of the
20th Annual Conference on Computer Graphics and
Interactive Techniques, 289–296, 1993.

[14] Nehab, D.; Sander, P. V.; Isidoro, J. R. The real-
time reprojection cache. In: Proceedings of the ACM
SIGGRAPH 2006 Sketches, 185, 2006.

[15] Scherzer, D.; Jeschke, S.; Wimmer, M. Pixel-
correct shadow maps with temporal reprojection and
shadow test confidence. In: Proceedings of the 18th
Eurographics Conference on Rendering Techniques, 45–
50, 2007.

[16] Shannon, C. E. Communication in the presence of noise.
Proceedings of the IRE Vol. 37, No. 1, 10–21, 1949.

[17] Grant, C. W. Integrated analytic spatial and
temporal anti-aliasing for polyhedra in 4-space. ACM
SIGGRAPH Computer Graphics Vol. 19, No. 3, 79–84,
1985.

[18] Zwicker, M.; Pfister, H.; van Baar, J.; Gross, M. EWA
volume splatting. In: Proceedings of the Conference on
Visualization, 29–36, 2001.

[19] Olano, M.; Baker, D. LEAN mapping. In: Proceedings
of the ACM SIGGRAPH Symposiumon Interactive 3D
Graphics and Games, 181–188, 2010.

[20] Becker, B. G.; Max, N. L. Smooth transitions between
bump rendering algorithms. In: Proceedings of the
20th Annual Conference on Computer Graphics and
Interactive Techniques, 183–190, 1993.

[21] Wu, L. F.; Zhao, S.; Yan, L. Q.; Ramamoorthi,
R. Accurate appearance preserving prefiltering for
rendering displacement-mapped surfaces. ACM
Transactions on Graphics Vol. 38, No. 4, Article No.
137, 2019.

[22] Cook, R. L.; Porter, T.; Carpenter, L. Distributed ray
tracing. In: Proceedings of the 11th Annual Conference
on Computer Graphics and Interactive Techniques, 137–
145, 1984.

[23] Smith, B. Geometrical shadowing of a random
rough surface. IEEE Transactions on Antennas and
Propagation Vol. 15, No. 5, 668–671, 1967.

Temporal and spatial anti-aliasing for rendering reflections on water waves 215

[24] Ross, V.; Dion, D.; Potvin, G. Detailed analytical
approach to the Gaussian surface bidirectional reectance
distribution function specular component applied to the
sea surface. Journal of the Optical Society of America
A Vol. 22, No. 11, 2442–2453, 2005.

Namo Podee is currently a Ph.D.
student at Hokkaido University. He
received his B.S. and M.S. degrees
from Chulalongkorn University and
Hokkaido University, in 2013 and 2017,
respectively.

Nelson Max is an emeritus
Distinguished Professor at the University
of California, Davis. He received his
Ph.D. degree in mathematics from
Harvard University in 1967. His research
interests are in the areas of scientific
visualization, computer animation,
realistic computer graphics rendering,

multi-view stereo reconstruction, and augmented reality.

Kei Iwasaki received his B.S., M.S.,
and Ph.D. degrees from the University
of Tokyo, in 1999, 2001, and 2004,
respectively. He is currently an associate
professor at Wakayama University.

Yoshinori Dobashi is a professor
at Hokkaido University, Japan. His
research interests center on computer
graphics, including realistic image
synthesis, efficient rendering, and sound
modeling for virtual reality applications.
He received his B.E., M.E., and Ph.D.
degrees in engineering in 1992, 1994, and

1997, respectively, from Hiroshima University. He worked at
Hiroshima City University from 1997 to 2000 as a research
associate.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

