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Abstract We present a novel approach for
automatically detecting and tracking facial landmarks
across poses and expressions from in-the-wild
monocular video data, e.g., YouTube videos and
smartphone recordings. Our method does not require
any calibration or manual adjustment for new
individual input videos or actors. Firstly, we propose a
method of robust 2D facial landmark detection across
poses, by combining shape-face canonical-correlation
analysis with a global supervised descent method.
Since 2D regression-based methods are sensitive to
unstable initialization, and the temporal and spatial
coherence of videos is ignored, we utilize a coarse-to-
dense 3D facial expression reconstruction method to
refine the 2D landmarks. On one side, we employ an
in-the-wild method to extract the coarse reconstruction
result and its corresponding texture using the detected
sparse facial landmarks, followed by robust pose,
expression, and identity estimation. On the other
side, to obtain dense reconstruction results, we give
a face tracking flow method that corrects coarse
reconstruction results and tracks weakly textured
areas; this is used to iteratively update the coarse
face model. Finally, a dense reconstruction result is
estimated after it converges. Extensive experiments
on a variety of video sequences recorded by ourselves
or downloaded from YouTube show the results of
facial landmark detection and tracking under various
lighting conditions, for various head poses and facial
expressions. The overall performance and a comparison
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with state-of-art methods demonstrate the robustness
and effectiveness of our method.
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1 Introduction

Facial landmark detection and tracking is widely
used for creating realistic face animations of virtual
actors for applications in computer animation,
film, and video games. Creation of convincing
facial animation is a challenging task due to
the highly nonrigid nature of the face and the
complexity of detecting and tracking the facial
landmarks accurately and efficiently in uncontrolled
environments. It involves facial deformation and
fine-grained details. In addition, the uncanny valley
effect [1] indicates that people are extremely
capable of identifying subtle artifacts in facial
appearance. Hence, animators need to make a
tremendous amount of effort to localize high
quality facial landmarks. To reduce the amount of
manual labor, an ideal face capture solution should
automatically provide the facial shape (landmarks)
with high performance given reasonable quality
input videos.

As a key role in facial performance capture, robust
facial landmark detection across poses is still a hard
problem. Typical generative models including active
shape models [2], active appearance models [3],
and their extensions [4–6] mitigate the influence of
illumination and pose, but tend to fail when used in
the wild. Recently, discriminative models have shown
promising performance for robust facial landmark
detection, represented by cascaded regression-based
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methods, e.g., explicit shape regression [7], and the
supervised descent method [8]. Many recent works
following the cascaded regression framework consider
how to improve efficiency [9, 10] and accuracy,
taking into account variations in pose, expression,
lighting, and partial occlusion [11, 12]. Although
previous works have produced remarkable results
on nearly frontal facial landmark detection, it is
still not easy to locate landmarks across a large
range of poses under uncontrolled conditions. A few
recent works [13–15] have started to consider multi-
pose landmark detection, and can deal with small
variations in pose. How to solve the multiple local
minima issue caused by large differences in pose is
our concern.

On the other hand, facial landmark detection and
tracking can benefit from reconstructed 3D face
geometry based on existing 3D facial expression
databases. Remarkably, Cao et al. [16] extended
the 3D dynamic expression model to work with
even monocular video, with improved performance
of facial landmark detection and tracking. Their
methods work well with indoor videos for a range
of expressions, but tend to fail for videos captured
in the wild (ITW) due to uncontrollable lighting,
varying backgrounds, and partial occlusions. Many
researchers have made great efforts on dealing
with ITW situations and have achieved many
successes [16–18]. However, the expressiveness
of captured facial landmarks from these ITW
approaches is limited since most pay little attention
to very useful details not represented by sparse

landmarks. Additionally, optical flow methods have
been applied to track facial landmarks [19]. Such a
method can take advantage of fine-grained detail,
down to pixel level. However, it is sensitive to
shadows, light variations, and occlusion, which
makes it difficult to apply in noisy uncontrolled
environments.

To this end, we have designed a new ITW
facial landmark detection and tracking method that
employs optical flow to enhance the expressiveness
of captured facial landmarks. A flowchart of our
work is shown in Fig. 1. First, we use a robust 2D
facial landmark detection method which combines
canonical correlation analysis (CCA) with a global
supervised descent method (SDM). Then we improve
the stability and accuracy of the landmarks by
reconstructing 3D face geometry in a coarse to dense
manner. We employ an ITW method to extract a
coarse reconstruction and corresponding texture via
sparse landmark detection, identity, and expression
estimation. Then, we use a face tracking flow method
that exploits the coarsely reconstructed model to
correct inaccurate tracking and recover details of the
weakly textured area, which is used to iteratively
update the face model. Finally, after convergence, a
dense reconstruction is estimated, thus boosting the
tracked landmark result. Our contributions are three
fold:
• A novel robust 2D facial landmark detection

method which works across a range of poses, based
on combining shape-face CCA with SDM.
• A novel 3D facial optical flow tracking method for

m
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Fig. 1 Flowchart of our method.
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robustly tracking expressive facial landmarks to
enhance the location result.
• Accurate and smooth landmark tracking result

sequences due to simultaneously registering the 3D
facial shape model in a coarse-to-dense manner.
The rest of the paper is structured as follows.

The following section reviews related work. In
Section 3, we introduce how we detect 2D landmarks
from monocular video and create the coarsely
reconstructed landmarks. Section 4 describes how
we refine landmarks by use of optical flow to achieve
a dense reconstruction result.

2 Literature review

To reconstruct the 3D geometry of the face, facial
landmarks first have to be detected. Most facial
landmark detection methods can be categorized into
three groups: constrained local methods [20, 21],
active appearance models (AAM) [3, 22, 23], and
regressors [24–26]. The performance of constrained
local methods is limited in the wild because of the
limited discriminative power of their local experts.
Since the input is uncontrolled in ITW videos, person
specific facial landmark detection methods such as
AAM are inappropriate. AAM methods explicitly
minimize the difference between the synthesized
face image and the real image, and are able to
produce stable landmark detection results for videos
in controlled environments. However, conventional
wisdom states that their inherent facial texture
appearance models are not powerful enough for
ITW problems. Although in recent literature [18]
efforts have been made to address this problem,
superior results to other ITW methods have not been
achieved. Regressor-based methods, on the other
hand, work well in the face of ITW problems and
are robust [27], efficient [28], and accurate [24, 29].

Most ITW landmark detection methods were
originally designed for processing single images
instead of videos [8, 24, 30]. On image facial
landmark detection datasets such as 300-W [31],
Helen [32], and LFW [33], existing ITW methods
have achieved varying levels of success. Although
they provide accurate landmarks for individual
images, they do not produce temporally or spatially
coherent results because they are sensitive to the
bounding box provided by face detector. ITW

methods can only produce semantically correct
but inconsistent landmarks, and while these facial
landmarks might seem accurate when examined
individually, they are poor in weakly textured areas
such as around the face contour or where a higher
level of detail is required to generate convincing
animation. One could use sequence smoothing
techniques as post processing [16, 17], but this can
lead to an oversmoothed sequence with a loss of facial
performance expressiveness and detail.

It is only recently that an ITW video dataset [34]
was introduced to benchmark landmark detection in
continuous ITW videos. Nevertheless, the number of
facial landmarks defined in Ref. [34] is limited and
does not allow us to reconstruct the person’s nose
and eyebrow shape. Since we aim to robustly locate
facial landmarks from ITW videos, we collected a
new dataset by downloading YouTube videos and
recording video with smartphones, as a basis for
comparing our method to other existing methods.

In terms of 3D facial geometry reconstruction
for the refinement of landmarks, recently there has
been an increasing amount of research based on 2D
images and videos [19, 35–41]. In order to accurately
track facial landmarks, it is important to first
reconstruct face geometry. Due to the lack of depth
information in images and videos, most methods rely
on blendshape priors to model nonrigid deformation
while structure-from-motion, photometric stereo, or
other methods [42] are used to account for unseen
variation [36, 38] or details [19, 37].

Due to the nonrigidness of the face and depth
ambiguity in 2D images, 3D facial priors are often
needed for initializing 3D poses and to provide
regularization. Nowadays consumer grade depth
sensors such as Kinect have been proven successful,
and many methods [43–45] have been introduced
to refine its noisy output and generate high quality
facial scans of the kind which used to require high
end devices such as laser scanners [46]. In this
paper we use the FaceWarehouse [43] as our 3D
facial prior. Existing methods can be grouped into
two categories. One group aims to robustly deliver
coarse results, while the other one aims to recover
fine-grained details. For example, methods such as
those in Refs. [19, 37, 40] can reconstruct details
such as wrinkles, and track subtle facial movements,
but are affected by shadows and occlusions. Robust
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methods such as Refs. [35, 36, 39] can track facial
performance in the presence of noise but often
miss subtle details such as small eyelid and mouth
movements, which are important in conveying
the target’s emotion and to generate convincing
animation. Although we use a 3D optical flow
approach similar to that in Ref. [19] to track facial
performance, we also deliver stable results even
in noisy situations or when the quality of the
automatically reconstructed coarse model is poor.

3 Coarse landmark detection and
reconstruction

An example of coarse landmark detection and
reconstruction is shown in Fig. 2. To initialize our
method, we build an average shape model from the
input video. First, we run a face detector [47] on the
input video to be tracked. Due to the uncontrolled
nature of the input video, it might fail in challenging
frames. In addition to filtering out failed frames,
we also detect the blurriness of remaining ones
by thresholding the standard deviation of their
Laplacian filtered results. Failed and blurry frames
are not used in coarse reconstruction as they can
contaminate the reconstructed average shape.

3.1 Robust 2D facial landmark detection

Next, inspired by Refs. [28, 48], we use our
robust 2D facial landmark detector which combines
shape-face CCA and global SDM. It is trained on
a large multi-pose, multi-expression face dataset,
FaceWarehouse [16], to locate the position of 74
fiducial points. Note that our detector is robust in
the wild because the input videos for shape model
reconstruction are from uncontrolled environments.

Using SDM, for one image d, the locations of
p landmarks ~x = [x1, y1, . . . , xp, yp] are given by

Fig. 2 Example of detected coarse landmarks and reconstructed
facial mesh for a single frame.

a feature mapping function ~h(d(~x)), where d(~x)
indexes landmarks in the image d. The facial
landmark detection problem can be regarded as an
optimization problem:

f(~x0 + ∆~x) = ‖~h(d(~x0 + ∆~x))− φ∗‖22 (1)
where φ∗ = ~h(d(~x∗)) represents the feature
extracted according to correct landmarks ~x∗,
which is known in the training images, but unknown
in the test images. A general descent mapping can
be learned from training dataset. The supervised
descent method form is

~xk = ~xk−1 −Rk−1(φk−1 − φ∗) (2)
Since φ∗ for a test image is unknown but constant,
SDM modifies the objective to align with respect
to the average of φ∗ over the training set, and the
update rule is then modified:

∆~x = Rk(φ∗ − φk) (3)
Instead of learning only one Rk over all samples

during one updating step, the global SDM learns a
series of Rt, each for a subset of samples St, where
the whole set of samples is divided into T subsets
S = {St}T

1 .
A generic descent method exists under these two

conditions: (i) R~h(~x) is a strictly locally monotone
operator anchored at the optimal solution, and
(ii) ~h(~x) is locally Lipschitz continuous anchored
at ~x∗. For a function with only one minimum,
these normally hold. But a complicated function
may have several local minima in a relatively small
neighborhood, so the original SDM tends to average
conflicting gradient directions. Instead, the global
SDM ensures that if the samples are properly
partitioned into subsets, there is a descent method
in each of the subsets. Rt for subset St can be solved
as a constrained optimization problem:

min
S,R

T∑
t=1

∑
i∈St

‖∆~x∗ −Rt∆φi,t‖2 (4)

such that ∆~xi
∗Rt∆φi,t > 0, ∀ t, i ∈ St (5)

where ∆~xi
∗ = ~xi

∗ − ~xi
k, ∆φi,t = φ

t

∗ − φi, and where
φ

t

∗ averages all φ∗ over the subset St. Equation (5)
guarantees that the solution satisfies descent method
condition (i). It is NP-hard to solve Eq. (4), so we use
a deterministic scheme to approximate the solution.
A set of sufficient conditions for Eq. (5) is given:

∆~xiT
∗ ∆Xt

∗ > ~0, ∀ t, i ∈ St (6)
∆ΦtT∆φi,t > ~0, ∀ t, i ∈ St (7)
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where ∆Xt
∗ = [∆~x1,t

∗ , . . . ,∆~xi,t
∗ , . . . ], each column

is ∆~xi,t
∗ from the subset St; ∆Φt = [∆φ1,t, . . . ,

∆φi,t, . . . ], and each column is ∆φi,t from the subset
St.

It is known that ∆~x and ∆φ are embedded in
a lower dimensional manifold for human faces, so
dimension reduction methods (e.g., PCA) on the
whole training set ∆~x and ∆φ can be used for
approximation. The global SDM authors project
∆~x onto the subspace spanned by the first two
components of the ∆~x space, and project ∆φ onto
the subspace spanned by the first component of the
∆φ space. Thus, there are 22+1 subsets in their
work. This is a very naive scheme and unsuitable
for face alignment. Correlation-based dimension
reduction theory can be introduced to develop a more
practical and efficient strategy for low dimensional
approximation of the high dimensional partition
problem.

Considering the low dimensional manifold, the
∆~x space and ∆φ space can be projected onto
a medium-low dimensional space with projection
matrices Q and P, respectively, which keeps the
projected vectors ~v = Q∆~x, ~u = P∆φ sufficiently
correlated: (i) ~v, ~u lie in the same low dimensional
space, and (ii) for each jth dimension, sign(vj , uj) =
1. If the projection satisfies these two conditions,
the projected samples {~ui, ~vi} can be partitioned into
different hyperoctants in this space simply according
to the signs of ~ui, due to condition (ii). Since samples
in a hyperoctant are sufficiently close to each other,
this partition can carry small neighborhoods better.
It is also a compact low dimensional approximation
of the high dimensional hyperoctant-based partition
strategy in both ∆~x space and ∆φ space, which is
a sufficient condition for the existence of a generic
descent method, as mentioned above.

For convenience, we re-denote ∆~x as ~y ∈ <n, re-
denote ∆φ as ~x ∈ <m, Y s×n = [~y1, . . . , ~yi, . . . , ~ys]
collects all ~yi from the training set, and Xs×m =
[~x1, . . . , ~xi, . . . , ~xs] collects all ~xi from the training
set. The projection matrices are:

Qr×n = [~q1, . . . , ~qj , . . . , ~qr]T, ~qj ∈ <n

Pr×m = [~p1, . . . , ~pj , . . . , ~pr]T, ~pj ∈ <m

The projection vectors are ~v = Q~y and ~u = P~x.
We denote the projection vectors along the sample
space by ~wj = Y~qj = [v1

j , . . . , v
i
j , . . . , v

s
j ]T, and ~zj =

X~pj = [u1
j , . . . , u

i
j , . . . , u

s
j ]T. This problem can be

formulated as a constrained optimization problem:

min
P,Q

r∑
j=1
‖Y~qj −X~pj‖2 = min

P,Q

r∑
j=1

s∑
i=1

(vi
j − ui

j)2 (8)

such that
r∑

j=1

s∑
i=1

sign(vi
j , u

i
j) = sr (9)

After normalizing the samples {~yi}i=1:s and
{~xi}i=1:s (removing means and dividing by the
standard deviation), the sign-correlation constrained
optimization problem can be solved by standard
canonical correlation analysis (CCA). The CCA
problem for the normalized {~yi}i=1:s and {~xi}i=1:s
is:

max
~pj ,~qj

~qT
j cov(Y , X )~pj (10)

such that
~qT

j var(Y , Y )~qj = 1, ~pT
j var(X , X)~pj = 1 (11)

Following the CCA algorithm, the max sign-
correlation pair ~p1 and ~q1 are solved first. Then
one seeks ~p2 and ~q2 by maximizing the same
correlation subject to the constraint that they are
to be uncorrelated with the first pair of canonical
variables ~w1, ~z1. This procedure is continued until
~pr and ~qr are found.

After all ~pj and ~qj have been computed, we only
need the projection matrix P in ∆~x space. We then
project each ∆~xi into the sign-correlation subspace
to get the reduced feature ~ui = P∆~xi. Then we
partition the whole sample space into independent
descent domains by considering the sign of each
dimension of ~ui and group it into the corresponding
hyperoctant. Finally, in order to solve Eq. (4) at each
iterative step, we learn a descent mapping for every
subset at each iterative step with the ridge regression
algorithm. When testing a face image, we also use
the projection matrix P to find its corresponding
descent domain and predict its shape increment at
each iterative step.

Regressor-based methods are sensitive to
initialization, and sometimes require multiple
initializations to produce a stable result [24].
Generally, the obtained results of the landmark
positions are accurate and visually plausible
when inspected individually, but they may vary
drastically on weakly textured areas when the
face initialization changes slightly, since in these
methods the temporally and spatially coherent
nature of videos is not considered. Since we are
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reconstructing faces from input videos recorded in
an uncontrolled environment, the bounding box
generated by the face detector can be unstable. The
unstable initialization and the sensitive nature of
the landmark detector on missing and blurry frames
lead to jittery and unconvincing results.

Nevertheless, the set of unstable landmarks is
enough to reconstruct a rough facial geometry and
texture model of the target person. As in Ref. [17],
we first align a generic 3D face mesh to the 2D
landmarks. The corresponding indices of the facial
landmarks of the nose, eye boundaries, lips, and
eyebrow contours are fixed, whereas the vertex
indices of the face contour are recomputed with
respect to frame specific poses and expressions. To
generate uniformly distributed contour points we
selectively project possible contour vertices onto the
image and sample its convex hull with uniform 2D
spacing.

The facial reconstruction problem can be
formulated as an optimization problem in which
the pose, expression, and identity of the person are
determined in a coordinate descent manner.

3.2 Pose estimation

Following Ref. [49] we use a pinhole camera model
with radial distortion. Assuming the pixels are
square and that the center of projection is coincident
with the image center, the projection operation

∏
depends on 10 parameters: the 3D orientation R

(3 × 1 vector), the translation t (3 × 1 vector), the
focal length f (scalar), and the distortion parameter
k (3×1 vector). We assume the same distortion and
focal length for the entire video, and initialize the
focal length to be the pixel width of the video and
distortion to zero. First, we apply a direct linear
transform [50] to estimate the initial rotation and
translation then optimize them via the Levenberg–
Marquardt method with a robust loss function [51].

The 3D rotation matrix is constructed from the
orientation vector R using:

ω ← R/σ, σ ← ||R|| (12)

cos(σ)I+(1−cos(σ))1+sin(σ)

∣∣∣∣∣∣∣
0 −R0 R1

R2 0 −R0

−R1 R0 0

∣∣∣∣∣∣∣
(13)

whose derivative is computed via forward
accumulation automatic differentiation [52].

3.3 Expression estimation

In the pose estimation stage, we used a generic face
model for initialization, but to get more accurate
results we need to adjust the model according to the
expression and identity. We use the FaceWarehouse
dataset [43], which contains the performances of 150
people with 47 different expressions. Since we are
only tracking facial expressions, we select only the
frontal facial vertices because the nose and head
shape are not included in the detected landmarks.
We flatten the 3D vertices and arrange them into
a 3 mode data tensor. We compress the original
tensor representing 30k vertices × 150 identities ×
47 expressions into a 4k vertices × 50 identities ×
25 expression coefficients core using higher order
singular value decomposition [53]. Any facial mesh
in the dataset can be approximated by the product
of its core Bexp = C × Uid or Bid = C × Uexp,
where Uid and Uexp are the identity and expression
orthonormal matrices respectively; Bexp is a person
with different facial expressions, Bid is the same
expression performed by different individuals.

For efficiency we first determine the identity with
the compressed core and prevent over-fitting with an
early stopping strategy. To generate plausible results
we need to solve for the uncompressed expression
coefficients with early stopping and box constrain
them to lie within a valid range, which in the
case of FaceWarehouse is between 0 and 1. We do
not optimize identity and camera coefficients for
individual frames. They are only optimized jointly
after expression coefficients have been estimated.

We group the camera parameters into a vector
θ = [R, t, f ]. We generate a person specific facial
mesh Bid with this person’s identity coefficient I,
which results in the same individual performing the
47 defined expressions. The projection operator is
defined as

∏
([x, y, z]T) = r[x, y, z]T + t, where r is

the 3× 3 rotation matrix constructed from Eq. (13)
and the radial distortion function D is defined as

D(X ′, k) = f ×X ′(1 + k1r
2 + k2r

4) (14)
D(Y ′, k) = f × Y ′(1 + k1r

2 + k2r
4) (15)

r2 = X ′2 + Y ′2, X ′ = X/Z, Y ′ = Y/Z (16)

[X,Y, Z]T =
∏

([x, y, z]T) (17)

We minimize the squared distance between the 2D
landmarks L after applying radial distortion while
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fixing the identity coefficient and pose parameters
D:

min
E

1
2 |L− D(

∏
(Bid · E, θ), k)|2 (18)

To solve this problem efficiently, we apply the
reverse distortion to L, then rotate and translate the
vertices. By denoting the projected coordinates by
p, the derivative of E can be expressed efficiently as

(L− f · p)

f · B(i)
id(0,1) +B

(i)
id(2) · p

Z

 (19)

We use the Levenberg–Marquardt method for
initialization and perform line search [54] to
constrain E to lie within the valid range.

3.4 Identity adaption

Since we cannot apply a generic Bid to different
individuals with differing facial geometry, we solve
for the subject’s identity in a similar fashion
to the expression coefficient. With the estimated
expression coefficients from the last step, we generate
facial meshes of different individuals performing the
estimated expressions. Unlike expression coefficient
estimation, we need to solve identity coefficient
jointly across I frames with different poses and
expressions. We denote the nth facial mesh by Bn

exp
and minimize the distance:

min
I

∑
n

1
2 |L

n − D(
∏

(Bn
exp · I, θ), k)|2 (20)

while fixing all other parameters. Here it is important
to exclude inaccurate single frames from being
considered otherwise they lead to erroneous identity.

3.5 Camera estimation

Some videos may be captured with camera
distortions. In order to reconstruct the 3D facial
geometry as accurately as possible, we undistort the
video by estimating its focal length and distortion
parameters. All of the following dense tracking is
performed in undistorted camera space. To avoid
local minima caused by over-fitting the distortion
parameters, we solve for focal length analytically
using:

f =
∑

n L
n∑

n D(
∏

(Bn
exp · I, θ), k) (21)

then use nonlinear optimization to solve for radial
distortion. We find the camera parameters by jointly
minimizing the difference between the selected 2D
landmarks L and their corresponding projected

vertices:

min
k

∑
n

1
2 |L

n − D(
∏

(Bn
exp · I, θ), k)|2 (22)

3.6 Average texture estimation

In order to estimate an average texture, we
extract per pixel color information from the video
frames. We use the texture coordinates provided in
FaceWarehouse to normalize the facial texture onto a
flattened 2D map. By performing visibility tests we
filter out invisible pixels. Since the eyeball and inside
of the mouth are not modeled by facial landmarks or
FaceWarehouse, we consider their texture separately.
Although varying expressions, pose, and lighting
conditions lead to texture variation across different
frames, we use their summed average as a low rank
approximation. Alternatively, we could use the
median pixel values as it leads to sharper texture,
but at the coarse reconstruction we choose not
to because computing the median requires all the
images to be available whereas the average can
be computed on-the-fly without additional memory
costs. Moreover, while the detected landmarks are
not entirely accurate, robustness is more important
than accuracy. Instead, we selectively compute
the median of high quality frames from dense
reconstruction to generate better texture in the next
stage.

The idea of tracking the facial landmarks by
minimizing the difference between synthesized view
and the real image is similar to that used in
active appearance models (AAM) [3]. The texture
variance can be modeled and approximated by
principle component analysis, and expression–
pose specific texture can be used for better
performance. Experimental results show that high
rank approximation leads to unstable results
because of the landmark detection in-the-wild issues.
Moreover, AAM typically has to be trained on
manually labeled images that are very accurate.
Although it is able to fit the test image with
better texture similarity, it is not suitable for robust
automated landmark detection. A comparison of our
method with traditional AAM method is shown later
and examples of failed detections are shown in Fig. 3.

Up to this point, we have been optimizing the
3D coordinates of the facial mesh and the camera
parameters. Due to the limited expressiveness of the
facial dataset, which only contains 150 persons, the
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Fig. 3 Landmark tracking comparison. From left to right: ours,
in-the-wild, AAM.

fitted facial mesh might not exactly fit the detected
landmarks. To increase the expressiveness of the
reconstructed model and add more person specific
details, we use the method in Ref. [55] to deform
the facial mesh reconstructed for each frame. We
first assign the depth of the 2D landmarks to that
of their corresponding 3D vertices, then unproject
them into 3D space. Finally, we use the unprojected
3D coordinates as anchor points to deform the facial
mesh of every frame.

Since the deformed facial mesh may not be
represented by the original data, we need to add
them into the person specific facial meshes Bexp
and keep the original expression coefficients. Given
an expression coefficient E we could reconstruct its
corresponding facial mesh F = BexpE. Thus the new
deformed mesh base should be computed via Fd =
BdEd. We flatten the deformed and original facial
meshes using Bexp, then concatenate them together
as Bc = [B;Bd]T. We concatenate coefficients of the
47 expressions in FaceWarehouse and the recovered
expressions from the video frames as Ec = [E;Ed]T.
The new deformed facial mesh base is computed from
Bd = E−1

c Bc.
We simply compute for each pixel the average

color value and run the k-means algorithm [56] on
the extracted eyeball and mouth interior textures,

saving a few representative k-means centers for
fitting different expressions and eye movements. An
example of the reconstructed average face texture is
shown in Fig. 4(a).

4 Dense reconstruction to refine
landmarks

4.1 Face tracking flow

In the previous step we reconstructed an average
face model with a set of coarse facial landmarks.
To deliver convincing results we need to track
and reconstruct all of the vertices even in weakly
textured areas. To robustly capture the 3D facial
performance in each frame, we formulate the problem
in terms of 3D optical flow and solve for dense
correspondence between the 3D model and each
video frame, optimally deforming the reference mesh
to fit the seen image. We use the rendered average
shape as initialization and treat it as the previous
frame; we use the real image as the current frame
to densely compute the displacement of all vertices.
Assuming the pixel intensity does not change by the
displacement, we may write:

I(x, y) = C(x+ u, y + v) (23)
where I denotes the intensity value of the rendered
image, C the real image, and x and y denote pixel
coordinates. In addition, the gradient value of each
pixel should also not change due to displacement
because not only the pixel intensity but also the
texture stay the same, which can be expressed as

∇I(x, y) = ∇C(x+ u, y + v) (24)
Finally, the smoothness constraint dictates that
pixels should stay in the same spatial arrangement

(a) Coarse average texture

(b) Dense average texture

Fig. 4 Refined texture after robust dense tracking.
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to their original neighbors to avoid the aperture
problem, especially since many facial areas are
weakly textured, i.e., have no strong gradient.
We search for f = (u, v)T that satisfies the pixel
intensity, gradient, and smoothness constraints.

By denoting each projected vertex of the face mesh
by p = D(

∏
(Bn

id · E, θ), k), we formulate the energy
as
Eflow(f) =

∑
v

|I(p+f)−C(p)|2+α(|∇f |2)+β(|∂f |2)

(25)
Here |∇f |2 is a smoothness term and β(|∂f |2) is a
piecewise smooth term. As this is a highly nonlinear
problem we adopt the numerical approximation in
Ref. [57] and take a multi-scale approach to achieve
robustness. We do not use the additional match term
Eq. (26) in Ref. [58], where γ(p) is the match weight:
although we have the match from the landmarks to
the vertices, we cannot measure the quality of the
landmarks, as well as the matches, so:

Ematch(f) =
∑

p

µ(p)|pI + f − pC |2dp (26)

4.2 Robust tracking

Standard optical flow suffers from drift, occlusion,
and varying visibility because of lack of explicit
modeling. Since we already have a rough prior of the
face from the coarse reconstruction step, we use it to
correct and regularize the estimated optical flow.

We test the visibility of each vertex by comparing
its transformed value to its rendered depth value.
If it is larger than a threshold then it is considered
to be invisible and not used to solve for pose and
expression coefficient. To detect partially occluded
areas we compute both the forward flow (rendered
to real image ff) and backward flow (real image to
rendered fb), and compute the difference for each of
the vertices’ projections:∑

p

|ff(p) + fb(p+ ff(p))|2 (27)

We use the GPU to compute the flow field whereas
the expression coefficient and pose are computed
on the CPU. Solving them for all vertices can
be expensive when there is expression and pose
variation, so to reduce the computational cost, we
also check the norm of ff(p) to filter out pixels with
negligible displacement.

Because of the piecewise smoothness constraint,
we consider vertices with large forward and backward
flow differences to be occluded and exclude them

from the solution process. We first find the rotation
and translation, then the expression coefficients
after putative flow fields have been identified. The
solution process is similar to that used in the
previous section with the exception that we update
each individual vertex at the end of the iterations
to fit the real image as closely as possible. To
exploit temporal and spatial coherence, we use the
average of a frame’s neighboring frames to initialize
its pose and expression, then update them using
coordinate descent. If desired, we reconstruct the
average face model and texture from the densely
tracked results and use the new model and texture
to perform robust tracking again. An example of
updated reconstructed average texture is shown in
Fig. 4, which is sharper and more accurate than the
coarsely reconstructed texture. Filtered vertices and
the tracked mesh are shown in Fig. 5, where putative
vertices are color coded and filtered out vertices are
hidden. Note that the color of the actress’ hand
is very close to that of her face, so it is hard to
mask out by color difference thresholding without
piecewise smoothness regularization.
4.3 Texture update

Finally, after robust dense tracking results and
the validity of each vertex have been determined,
each valid vertex can be optionally optimized
individually to recover further details. This is done
in a coordinate descent manner with respect to
the pose parameters. Updating all vertices with

Fig. 5 Example of reconstruction with occlusion.



42 S. Liu, Y. Zhang, X. Yang, et al.

a standard nonlinear optimization routine might
be inefficient because of the computational cost of
inverting or approximating a large second order
Hessian matrix, which is sparse in this case because
the points do not have influence on each other. Thus,
instead, we use the Schur complement trick [59]
to reduce the computational cost. The whole
pipeline of our method is summarized in Algorithm
1. Convergence is determined by the norm of the
optical flow displacement. This criterion indicates
whether further vertex adjustment is possible or
necessary to minimize the difference between the
observed image and synthesized result.

Compared to the method in Ref. [19], which
also formulates the face tracking problem in an
optical flow context, our method is more robust.
In videos with large pose and expression variation,
inaccurate coarse facial landmark initialization
and partial occlusion caused by texturally similar
objects, our method is more accurate and expressive
and generates smoother results than the coarse
reconstruction computed with landmarks from in-
the-wild methods in Ref. [30].

Algorithm 1: Automatic dense facial capture
Input: Video
CCA-GSDM landmark detection
Solve Pose on landmarks
Solve Expression using Eq. (18) on landmarks
Solve Identity using Eq. (20) on landmarks
Solve Focal using Eq. (21) on landmarks
Solve Distortion using Eq. (22) on landmarks
while not converged do

while norm(flow) > threshold do
Determine vertex validity using depth check
Determine vertex validity using Eq. (27)
Determine vertex validity using norm of flow
displacement
Solve Pose on optical flow
Solve Expression using Eq. (18) on optical flow
if Inner max iteration reached then

break
end if

end while
Update camera
Update vertex
Update texture
if Outer max iteration reached then

break
end if

end while
Output: Facial meshes, poses, expressions

5 Experiments

Our proposed method aims to deliver smooth facial
performances and landmark tracking in uncontrolled
in-the-wild videos. Although recently a new dataset
has been introduced designed for facial landmark
tracking in the wild [34], it is not adequate for this
work since we aim to deliver smooth tracking results
rather than just locating landmark positions. In
addition, we also concentrate on capturing detail to
reconstruct realistic expressions. Comparison of the
expression norm between the coarse landmarks and
dense tracking is shown in Fig. 6.

In order to evaluate the performance of our robust
method, AAM [3, 22], and an in-the-wild regressor-
based method [28, 30] working as fully automated
methods, we collected 50 online videos with frame
counts ranging from 150 to 897 and manually labeled
them. Their resolution is 640 × 360. There are
a wide range of different poses and expressions in
these videos, and heavy partial occlusion as well.
Being fully automated means that given any in-the-
wild video no more additional effort is required to
tune the model. We manually label landmarks for a
quarter of the frames sampled uniformly throughout
the entire video to train a person specific AAM model
then use the trained model to track the landmarks.
Note that doing so disqualifies the AAM approach
as a fully automated method. Next we manually
correct the tracked result to generate a smooth and
visually plausible landmark sequence. We treat such
sequences as ground truth and test each method’s
accuracy against it. We also use these manually
labeled landmarks to build corresponding coarse
facial models and texture in a similar way to the
approach used in Section 3. The result is shown
in Table 1. Each numeric column represents the
error between the ground truth and the method’s
output. Following standard practice [24, 28, 60], we
use the inter-pupillary distance normalized landmark
error. Mesh reconstruction error is measured by
the average L2 distance between the reconstructed
meshes. Texture error is measured by the average of
per-pixel color difference between the reconstructed
textures.

We mainly compare our method to appearance-
based methods [3, 22] and in-the-wild methods [28,
30] because they are appropriate for in-the-wild
video and have similar aims to minimize texture
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(a) Smoothness evaluation of in-the-wild

(b) Smoothness evaluation of AAM

(c) Smoothness evaluation of our method
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Fig. 6 Example tracking results.

Table 1 Whole set error comparison

Method Mesh Texture Landmark
Ours 1 iteration 13.3 29.2 4.4
Ours 2 iteration 10.3 25.4 3.2
Kazemi and Sullivan [30] 33.2 95.4 9.7
Ren et al. [28] 37.8 114.3 7.4
Donner et al. [22] 23.3 67.7 15.2
Cootes et al. [3] 24.3 86.5 24.4
Low 41.3 136.8 35.4
High 54.3 186.5 32.2

discrepancy between synthetic views and real images.
We have also built a CUDA-based face tracking
application using our method; it can achieve real-
time tracking. The tested video resolution is 640 ×
360, for which ir achieves more than 30 fps,
benefiting from CUDA speed up. The dense points
(there are 5760 of them) are from the frontal face of
a standard blendshape mesh.

For completeness we also used the detected
landmarks obtained from in-the-wild methods to
train the AAM models, then used these to detect
landmarks in videos. Doing so qualifies them
as fully automated methods again. Due to the
somewhat inconsistent results produced by in-the-
wild landmark detectors, we use both high and

low rank texture approximation thresholds when
training the AAM. Note that although Donner et
al. [22] propose use of regression relevant information
which may be discarded by purely generative PCA-
based models, they also use an approximate texture
variance model. Models trained with low rank
variance are essentially the same as our approach of
just taking the average of all images. While low rank
AAM can accurately track the pose of the face most
of the time when there is no large rotation, it fails
to track facial point movements such as closing and
opening of eyes, and talking, because the low rank
model limits its expressiveness. High rank AAM, on
the other hand, can track facial point movements
but produces unstable results due to the instability
of the training data provided by the in-the-wild
method. Experimental results of training AAM with
landmarks detected by the method in Ref. [30] are
shown in the Low and High columns of Table 1

We also considered spearately a challenging subset
of the videos, in which there is more partial
occlusion, large head rotation or exaggerated facial
expression. The performance of each method is given
in Table 2. A comparison of our method to AAM and
the in-the-wild method is shown in Fig. 6, where
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Table 2 Challenging subset error comparison

Method Mesh Texture Landmark
Ours 1 iteration 41.7 59.1 7.2
Ours 2 iteration 15.1 35.2 4.1
Kazemi and Sullivan [30] 92.3 95.4 19.2
Ren et al. [28] 88.1 114.3 11.4
Donner et al. [22] 97.3 142.7 21.9
Cootes et al. [3] 87.9 136.2 21.3
Low 114.3 146.5 25.3
High 134.7 186.2 33.4

the x axis is the frame count and the y axis is
the norm of the expression coefficient. Compared
to facial performance tracking with only coarse and
inaccurate landmarks, our method is very stable and
has a lower error rate than the other two methods.
Further landmark tracking results are shown in
Fig. 7. Additional results and potential applications
are shown in the Electronic Supplementary Material.

6 Conclusions

We have proposed a novel fully automated
method for robust facial landmark detection and
tracking across poses and expressions for in-the-
wild monocular videos. In our work, shape-face
canonical correlation analysis is combined with
a global supervised descent method to achieve
robust coarse 2D facial landmark detection across
poses. We perform coarse-to-dense 3D facial
expression reconstruction with a 3D facial prior

to boost tracked landmarks. We have evaluated
its performance with respect to state-of-the-
art landmark detection methods and empirically
compared the tracked results to those of conventional
approaches. Compared to conventional tracking
methods that are able to capture subtle facial
movement details, our method is fully automated,
just as expressive and robust in noisy situations.
Compared to other robust in-the-wild methods, our
method delivers smooth tracking results and is able
to capture small facial movements even for weakly
textured areas. Moreover, we can accurately compute
the possibility of a facial area being occluded in
a particular frame, allowing us to avoid erroneous
results. The 3D facial geometry and performance
reconstructed and captured by our method are not
only accurate and visually convincing, but we can
also extract 2D landmarks from the mesh and use
them in other methods that depend on 2D facial
landmarks, such as facial editing, registration, and
recognition.

Currently we are only using the average texture
model for all poses and expressions. To further
improve the expressiveness, we could adopt a similar
approach to that taken for active appearance models,
where after we have robustly built an average
face model, texture variance caused by different
lighting conditions, pose and expression variation
could also be modeled to improve the expressiveness
and accuracy of the tracking results.

Fig. 7 Landmark tracking results.
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