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1 Introduction

In 1974, the first member of charmonium family, the J/ψ particle, was discovered [1, 2]. It
provided support for the existence of a fourth quark, called the charmed quark. A series
of charmonium states have been observed at e+e− colliders in the past decades. Three
conventional charmonium states, i.e., ψ(4040), ψ(4160), and ψ(4415) [3], observed in the
inclusive hadronic cross section and dominated by open-charm final states, agree well with
the predictions of the potential model [4]. Another five charmonium-like states, i.e. ψ(4230),
ψ(4260), ψ(4360), ψ(4634), and ψ(4660), were observed via the initial state radiation (ISR)
process by the Belle and BaBar experiments [5–13], and via direct production processes by
the CLEO [14] and BESIII experiments [15, 16]. The unexpected multitude of states and
mismatch of quantum numbers predicted by the potential model have given rise to a great
deal of interest. Various hypotheses have been proposed to explain their nature [17–24],
including hybrid states, multiple-quark states, and molecular structures. However, up to
now, no definitive conclusion has been drawn.

This situation indicates an incomplete understanding of the strong interaction, and to help
clarify this, more experimental information is needed. In particular, the study of two-body
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baryonic decays of charmonium(-like) states, ψ(3770), ψ(4040), ψ(4160), ψ(4230), ψ(4360),
ψ(4415) and ψ(4660), and their subsequent hadronic decays in e+e− collisions provide a new
window for understanding the nature of these states. In addition, the measurement of the
electromagnetic form factors or the effective form factor would also provide insight into the
internal structure of the charmonium(-like) states. Although many experimental studies [25–
34] of baryon anti-baryon (BB̄) pair production have been performed above open-charm
threshold by the BESIII and Belle experiments, the only evidence for BB̄ final states from
vector charmonium(-like) decay is for ψ(3770) → ΛΛ̄ and ψ(3770) → Ξ−Ξ̄+ [27, 31]. Thus,
more precise measurements of exclusive cross sections for the e+e− → BB̄ reactions are
needed to further investigate the nature of the charmonium(-like) states above open charm
threshold. Further, as proposed by ref. [35], the measured ratios of the Born cross section or
the effective form factor between the e+e− → Ξ0Ξ̄0 process and its isospin partner processes
is important to validate the prediction based on the vector meson dominance model [36–40].

In this article, we present measurements of the Born cross sections and the effective
form factors for the e+e− → Ξ0Ξ̄0 reaction, in the range of center-of-mass (CM) energy

√
s

between 3.51 and 4.95 GeV. These measurements are based on e+e− collision data with a
total integrated luminosity of 30 fb−1, collected by the BESIII detector [41] at BEPCII [42].
Measurements from the CLEO-c experiment [43] are also shown for comparison. Possible
resonances are searched for by analyzing the line shape of the dressed cross sections of the
e+e− → Ξ0Ξ̄0 reaction. The product of branching fractions and electronic partial widths
for charmonium(-like) states decaying into Ξ0Ξ̄0 as well as their upper limits at the 90%
confidence level (C.L.) are reported. In addition, the ratios of the Born cross section and
the effective form factor for the reactions of e+e− → Ξ0Ξ̄0 and e+e− → Ξ−Ξ̄+ from the
BESIII experiment [31] are presented.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [41] records symmetric e+e− collisions provided by the BEPCII storage
ring [42] in the range of

√
s from 1.85 to 4.95GeV, with a peak luminosity of 1.1×1033 cm−2 s−1

achieved at
√
s = 3.773 GeV. BESIII has collected large data samples in this energy region [44–

46]. The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists
of a helium-based multilayer drift chamber (MDC), a time-of-flight system (TOF), and a
CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting
solenoidal magnet providing a 1.0T magnetic field. The solenoid is supported by an octagonal
flux-return yoke with resistive plate counter muon identification modules interleaved with steel.
The charged-particle momentum resolution at 1GeV/c is 0.5%, and the dE/dx resolution
is 6% for electrons from Bhabha scattering. The EMC measures photon energies with a
resolution of 2.5% (5%) at 1GeV in the barrel (end cap) region. The time resolution of
the plastic-scintillator TOF system in the barrel region is 68 ps, while that in the end cap
region was 110 ps. The end cap TOF system was upgraded in 2015 using multigap resistive
plate chamber technology, providing a time resolution of 60 ps [47–49] and benefiting 82%
of the data used in this analysis.

To determine the detection efficiency, simulated samples of 4× 105 e+e− → Ξ0Ξ̄0 events
are produced for each of the forty-five CM energy points from 3.51 to 4.95 GeV with geant4-
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based [50] Monte Carlo (MC) software, which includes the geometric description of the BESIII
detector and the detector response [51]. The simulation models the beam energy spread
and initial state radiation (ISR) in the e+e− annihilations with the generator kkmc [52].
The e+e− → Ξ0Ξ̄0 process and its subsequent decays are simulated with a uniform phase
space (PHSP) model by evtgen [53, 54].

3 Event selection

Reconstructing e+e− → Ξ0Ξ̄0 candidate events fully has low efficiency. To achieve higher
efficiency, a single baryon Ξ0 tag technique is employed, i.e., only the Ξ0 baryon is reconstructed
via its decay Ξ0 → π0Λ with the subsequent decays Λ → pπ− and π0 → γγ, and the antibaryon
Ξ̄0 is identified in the Ξ0 recoil mass distribution. The charge conjugate decays are implied
unless otherwise noted.

Charged tracks are required to be within the angular coverage of the MDC: |cosθ| < 0.93,
where θ is the polar angle with respect to the z-axis, which is the symmetry axis of the
MDC. At least one positive and one negative charged track well reconstructed in the MDC
are required.

Particle identification (PID) for charged tracks combines measurements of the specific
ionization energy loss in the MDC (dE/dx) and the flight time in the TOF to form likelihoods
L(h) (h = p,K, π) for each hadron h hypothesis. Tracks are identified as protons when
the proton hypothesis has the greatest likelihood (L(p) > L(K) and L(p) > L(π)), while
charged pions are identified when L(π) > L(K) and L(π) > L(p). Events with at least one
p and one π− are kept for further analysis.

Photons are reconstructed from isolated showers in the EMC. The energy deposited in the
nearby TOF counter is included to improve the reconstruction efficiency and energy resolution.
The energies of photons are required to be greater than 25 MeV in the EMC barrel region
(| cos θ| < 0.8), and greater than 50 MeV in the EMC end-cap region (0.86 < | cos θ| < 0.92).
Furthermore, to suppress electronic noise and showers unrelated to the event, the difference
between the EMC time and the event start time is required to be within [0, 700] ns. Events
with at least two photons are kept for further analysis.

To reconstruct the π0 meson from the Ξ0 → π0Λ decay, a one-constraint (1C) kinematic
fit is applied to all γγ combinations under the hypothesis of π0 → γγ, constraining the
invariant mass of two photons to the π0 mass, and χ2

1C ≤ 20 is required to suppress the
non-π0 background [55–57].

To reconstruct the Λ candidate, a secondary vertex fit looping over all pπ− combinations
is employed, and the corresponding χ2 value is required to be less than 500 by default. The
distance between the interaction point and the decay vertex of the Λ candidate must be
greater than zero. Further, a requirement of |Mpπ−−mΛ| ≤ 5 MeV/c2 is imposed, where Mpπ−

is the invariant mass of the pπ− combination and mΛ is the Λ mass [58]. The requirement is
determined by the figure-of-merit (FOM = S ′/

√
S ′ +B), where S ′ is the number of signal

MC events and B is the number of the estimated background events.
The Ξ0 candidate with the minimum value of |Mπ0Λ −mΞ0 | of all π0Λ combinations is

selected, where Mπ0Λ is the invariant mass of the π0Λ system, and mΞ0 is the Ξ0 mass [58].
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Figure 1. The distribution of M recoil
π0Λ versus Mπ0Λ of the accepted candidates of data summed

over CM energy points. The red box represents the signal region, and the green boxes represent
sideband regions.

The mass recoiling against the selected π0Λ system is given by

M recoil
π0Λ =

√(√
s− Eπ0Λ

)2 − |p⃗π0Λ|2, (3.1)

where Eπ0Λ and p⃗π0Λ are the energy and momentum, respectively, of the selected π0Λ
candidate in the CM system. The anti-baryon Ξ̄0 candidate is required to be in the signal
mass window |Mπ0Λ −mΞ0 | ≤ 10 MeV/c2 and |M recoil

π0Λ −mΞ0 | ≤ 60 MeV/c2, marked by S
as shown in figure 1. A clear accumulation around the Ξ0 mass can be seen in figure 1.
The M recoil

π0Λ tail from the γΞ0Ξ̄0, γγΞ0Ξ̄0, and γγγΞ0Ξ̄0 processes contribute negligibly to
the signal yields.

4 Born cross section measurement

4.1 Determination of signal yields

After applying the above requirements, the remaining background events mainly come from
the e+e− → π0π0ΛΛ process with the same final state as the signal channel. The background
yields in the signal region are evaluated using four sideband regions Bi, where i runs over 1
to 4, each with the same area as the signal regions. The sideband regions are defined in the
mass windows of Mπ0Λ and M recoil

π0Λ as shown in figure 1, i.e., B1: [1.275, 1.295] and [1.435,
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1.555] GeV/c2, B2: [1.335, 1.355] and [1.435, 1.555] GeV/c2, B3: [1.335, 1.355] and [1.075,
1.195] GeV/c2, B4: [1.275, 1.295] and [1.075, 1.195] GeV/c2. The signal yield Nobs for the
e+e− → Ξ0Ξ̄0 process at each CM energy point is then determined by Nobs = NS − Nbkg,
where NS represents the number of events in the signal region and Nbkg is the number of
background events, i.e., Nbkg = 1

4
∑4
i=1NBi . The uncertainty of Nobs and its upper limit are

computed by the TRolke method [59]. The numerical results are summarized in table 1.

4.2 Determination of Born cross section and effective form factor

The Born cross section of the e+e− → Ξ0Ξ̄0 process is given by

σB = Nobs

2L(1 + δ) 1
|1−Π|2 ϵB

, (4.1)

where the factor of 2 accounts for the charge conjugate mode being included, L is the integrated
luminosity, (1 + δ) is the ISR correction factor, 1

|1−Π|2 is the vacuum polarization (VP)
correction factor, ϵ is the detection efficiency, and B represents the products of the branching
fractions of Ξ0 → π0Λ, Λ → pπ− and π0 → γγ [58]. The VP correction factor is calculated
according to ref. [60]. The results of the measured Born cross section for each CM energy
point are listed in table 1. Note that the single-baryon tag method causes double counting
of the Ξ0Ξ̄0 final state. To correct for this effect, a factor of 1.08 is taken into account
when calculating the statistical uncertainties based on the study of MC simulation [57]. The
efficiency and ISR correction factor are obtained through an iterative process [66]. The
measured Born cross section at each CM energy point is shown in figure 2 together with the
results from the charged mode e+e− → Ξ−Ξ̄+ from the BESIII [31] and Ξ0Ξ̄0 results from
CLEO-c [43] measurements. Our results are roughly consistent with those of CLEO-c at√
s = 3.770 and 4.160 GeV. Figure 2 also shows the energy dependence of the Ξ0 effective

form factor Geff(s) compared with the CLEO-c results at
√
s = 3.770 and 4.160 GeV [43].

|Geff(s)| is defined as [26]

|Geff(s)| =
√√√√ 3sσB

4πα2β
(

1
2τ + 1

) , (4.2)

where α = 1
137 is the fine structure constant, β =

√
1− 1

τ is the velocity of Ξ0 in CM system,
τ = s

4m2
Ξ0

, and mΞ0 is the Ξ0 mass [58]. Also shown in figure 2 are the ratios of Born cross

sections and the effective form factors for the reactions of e+e− → Ξ0Ξ̄0 and e+e− → Ξ−Ξ̄+

from the BESIII experiment [31].

5 Systematic uncertainty

Systematic uncertainties on the Born cross section measurements mainly originate from the
integrated luminosity, the Ξ0 reconstruction, background, angular distribution, branching
fractions, and input line shape.

5.1 Luminosity

The luminosity at each CM energy point is measured using Bhabha events, with an uncertainty
of 1.0% [63], which is taken as the systematic uncertainty due to the luminosity measurement.
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Figure 2. Comparisons of the Born cross section (σB) and the effective form factor (Geff(s)) for
e+e− → Ξ0Ξ̄0 from this work and CLEO-c [43] with e+e− → Ξ−Ξ̄+ from BESIII [31] as a function
of CM energy. The bottom one shows the ratios of the Born cross sections and the effective form
factors for the reactions of e+e− → Ξ0Ξ̄0 and e+e− → Ξ−Ξ̄+, the red dashed line represents the
theoretically predicted cross section ratio [40]. Here the uncertainties include both systematic and
statistical uncertainties.
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√
s (GeV) L (pb−1) 1

|1−Π|2 ϵ(1 + δ) NS Nbkg Nobs σB (fb) |Geff(s)| (×10−3) S(σ)
3.51000 405.7 1.04 12.8 212 83.8 128.3+12.6

−10.6 1871+199
−167 ±120 17.7+0.9

−0.8 ±0.6 11.7
3.58100 85.7 1.04 13.0 39 17.3 21.8+4.9

−4.4 1490+363
−326 ±96 16.0+1.9

−1.7 ±0.5 4.6
3.65000 410.0 1.02 12.7 126 44.8 81.3+9.8

−8.3 1212+158
−134 ±78 14.6+0.9

−0.8 ±0.5 9.9
3.67000 84.7 0.99 12.5 26 7.8 18.3+5.8

−5.2 1387+476
−427 ±89 15.6+2.7

−2.4 ±0.5 5.1
3.77300 7926.8 1.06 12.2 2162 1004 1158.0+35.0

−34.0 896+29
−28 ±56 12.8+0.2

−0.2 ±0.4 8.1
3.80765 50.5 1.06 12.2 8 5.3 2.8+3.3

−2.1 (< 9.5) 334+433
−276 ±22 (< 1159)7.9+5.1

−3.3 ±0.2 (< 14.7) 1.4
3.86741 108.9 1.05 11.8 29 7.8 21.3+5.8

−5.2 1249+368
−331 ±80 15.4+2.3

−2.0 ±0.5 5.9
3.87131 110.3 1.05 11.7 25 5.8 19.3+5.8

−4.7 1131+368
−298 ±73 14.7+2.4

−1.9 ±0.5 5.9
3.89624 52.6 1.05 11.7 7 4.0 3.0+3.3

−2.7 (< 9.1) 368+437
−357 ±24 (< 1119)8.4+5.0

−4.1 ±0.3 (< 14.7) 1.6
4.00762 482.0 1.04 10.8 30 20.0 10.0+6.3

−5.2 (< 22.3) 146+99
−82 ±9 (< 326) 5.4+1.8

−1.5 ±0.2 (< 8.1) 2.3
4.08545 52.9 1.05 10.4 2 1.8 0.3+1.6

−0.1 (< 4.6) 34+237
−15 ±2 (< 632) 2.7+9.2

−0.6 ±0.1 (< 11.5) 0.6
4.12848 401.5 1.05 9.4 26 11.3 14.8+5.8

−5.2 295+125
−112 ±19 7.9+1.7

−1.5 ±0.3 3.8
4.15744 408.7 1.05 9.4 22 9.5 12.5+5.3

−4.7 244+112
−99 ±16 7.2+1.7

−1.5 ±0.2 3.6
4.17800 3189 1.05 9.7 154 72.3 81.8+9.8

−8.3 200+26
−22 ±13 6.6+0.4

−0.4 ±0.2 8.2
4.18800 526.7 1.05 9.5 27 12.5 14.5+5.8

−5.2 217+94
−84 ±14 6.9+1.5

−1.3 ±0.2 3.7
4.19915 526.0 1.06 9.5 17 8.5 8.5+4.8

−4.2 (< 18.0) 127+78
−68 ±8 (< 271) 5.3+1.6

−1.4 ±0.2 (< 7.7) 2.7
4.20939 517.1 1.06 9.3 15 9.8 5.3+4.3

−3.4 (< 14.7) 82+73
−57 ±5 (< 231) 4.2+1.9

−1.5 ±0.1 (< 7.1) 1.8
4.21893 514.6 1.06 9.0 15 7.8 7.3+4.3

−3.7 (< 16.5) 117+75
−65 ±8 (< 267) 5.1+1.6

−1.4 ±0.2 (< 7.7) 2.5
4.22626 1100.9 1.06 9.4 40 22.5 17.5+4.9

−3.5 127+39
−28 ±8 5.3+0.8

−0.6 ±0.2 3.5
4.23570 530.3 1.06 9.4 18 11.3 6.8+4.8

−4.1 (< 16.5) 101+78
−67 ±7 (< 249) 4.7+1.8

−1.6 ±0.2 (< 7.4) 2.1
4.24397 538.1 1.06 9.2 19 9.0 10.0+4.8

−4.2 153+79
−69 ±10 5.8+1.5

−1.3 ±0.2 3.0
4.25797 828.4 1.05 9.2 20 14.0 6.0+4.3

−3.3 (< 16.1) 59 +46
−35 ±4 (< 160) 3.6+1.4

−1.1 ±0.1 (< 6.0) 1.8
4.26681 531.1 1.05 9.1 21 8.0 13.0+5.3

−4.7 202+89
−79 ±13 6.7+1.5

−1.3 ±0.2 3.9
4.28788 502.4 1.05 8.2 11 6.8 4.3+4.1

−3.1 (< 12.4) 78+76
−58 ±5 (< 229) 4.2+2.0

−1.5 ±0.1 (< 7.2) 1.7
4.30789 45.1 1.05 8.9 2 1.0 1.0+2.3

−0.9 (< 4.6) 187+465
−162 ±12 (< 864) 6.5+8.1

−2.8 ±0.2 (< 14.0) 1.1
4.31205 501.2 1.05 8.1 13 8.3 4.8+4.3

−3.3 (< 13.1) 88+86
−66 ±6 (< 244) 4.5+2.2

−1.7 ±0.1 (< 7.5) 1.8
4.33739 505.0 1.05 8.2 14 8.0 6.0+4.6

−3.6 (< 14.3) 109+85
−71 ±7 (< 261) 5.0+1.9

−1.6 ±0.2 (< 7.8) 2.1
4.35826 543.9 1.05 8.7 12 5.3 6.8+4.3

−2.2 (< 14.5) 108+74
−38 ±7 (< 232) 5.0+1.7

−0.9 ±0.2 (< 7.4) 2.7
4.37737 522.7 1.05 7.9 11 9.8 1.3+3.8

−1.2 (< 9.8) 23+75
−24 ±1 (< 181) 2.3+3.8

−1.2 ±0.1 (< 7.8) 0.9
4.39645 507.8 1.05 7.8 12 6.0 6.0+4.3

−3.2 (< 13.7) 115+89
−66 ±7 (< 262) 5.2+2.0

−1.5 ±0.2 (< 7.9) 2.3
4.41558 1090.7 1.05 8.2 29 14.3 14.8+5.8

−4.7 125+53
−43 ±8 5.4+1.2

−0.9 ±0.2 3.5
4.43624 569.9 1.05 7.7 15 10.5 4.5+4.3

−3.1 (< 13.7) 77+80
−58 ±5 (< 238) 4.3+2.2

−1.6 ±0.2 (< 7.5) 1.6
4.46706 111.1 1.05 7.8 2 0.8 1.3+2.1

−0.5 (< 5.4) 108+197
−47 ±7 (< 470) 5.1+4.6

−1.1 ±0.2 (< 18.0) 1.4
4.57450 48.9 1.05 7.1 1 0.8 0.3+1.5

−0.1 (< 3.7) 54+351
−23 ±3 (< 803) 3.7+12.0

−0.8 ±0.1 (< 14.2) 0.6
4.59953 586.9 1.06 7.0 8 5.8 2.3+3.3

−1.9 (< 9.5) 41+65
−38 ±3 (< 174) 3.2+2.6

−1.5 ±0.1 (< 6.7) 1.2
4.61186 103.7 1.05 6.3 4 1.8 2.3+2.8

−1.3 (< 7.5) 258+347
−162 ±17 (< 863) 8.1+5.5

−2.5 ±0.3 (< 15.0) 1.6
4.62800 521.5 1.05 6.2 11 6.8 4.3+3.8

−2.9 (< 12.4) 98+95
−72 ±6 (< 287) 5.0+2.4

−1.9 ±0.2 (< 8.6) 1.7
4.64091 551.7 1.05 6.1 8 4.5 3.5+3.3

−2.4 (< 10.4) 78+79
−58 ±5 (< 233) 4.5+2.3

−1.7 ±0.1 (< 7.8) 1.7
4.66124 529.4 1.05 6.0 4 2.5 1.5+2.8

−1.2 (< 6.7) 36+72
−31 ±2 (< 159) 3.0+3.1

−1.3 ±0.1 (< 6.4) 1.2
4.68192 1667.4 1.05 5.9 25 6.3 18.3+4.8

−4.2 139+39
−34 ±9 6.0+0.9

−0.8 ±0.2 5.7
4.69822 535.5 1.06 5.9 6 1.0 5.0+3.3

−2.1 120+86
−57 ±8 5.6+2.0

−1.3 ±0.2 3.4
4.73970 163.9 1.06 5.9 3 1.5 1.5+2.3

−1.2 (< 6.1) 115+191
−100 ±7 (< 470) 5.6+4.6

−2.4 ±0.2 (< 11.2) 1.3
4.78054 511.5 1.06 5.7 5 3.8 1.3+2.3

−1.2 (< 7.2) 32+77
−33 ±2 (< 184) 2.9+3.6

−1.5 ±0.1 (< 7.1) 1.0
4.84307 525.2 1.06 5.4 5 2.5 2.5+2.8

−1.8 (< 8.1) 66+80
−51 ±4 (< 215) 4.3+2.6

−1.7 ±0.1 (< 7.7) 1.6
4.91802 207.8 1.06 5.0 3 2.3 0.8+2.3

−0.8 (< 5.3) 54+180
−62 ±3 (< 384) 3.9+6.5

−2.3 ±0.1 (< 10.5) 0.8

Table 1. The Born cross section σB and the effective form factor |Geff(s)| for e+e− → Ξ0Ξ̄0 at
forty-five energy points between 3.51 and 4.95 GeV. The values in the brackets are the corresponding
upper limits at the 90% C.L.. The first uncertainties are statistical, and the second are systematic.√
s is the e+e− CM energy [61, 62], L is the integrated luminosity of each data set [63–65], 1

|1−Π|2 is
the vacuum polarization correction factor, and ϵ(1 + δ) is the product of the ISR correction factor
and the detection efficiency. NS is the number of events in the signal region, Nbkg is the number of
background events scaled from the sideband region, and Nobs is the number of observed events after
subtracting Nbkg from NS with the uncertainty calculated by the TRolke method [59] (the number of
signal events for the upper limit with the consideration of systematic uncertainty estimated based on
the TRolke method [59]). σB is the Born cross section, |Geff(s)| is the effective form factor, and S is
the statistical significance.
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5.2 Ξ0 reconstruction

The systematic uncertainty due to the Ξ0 reconstruction efficiency, incorporating the tracking
and PID efficiencies, the photon selection efficiency, the reconstruction efficiencies of Λ and
π0, the Λ decay lengths, and the mass windows of Λ and Ξ0, is evaluated by a control sample
of ψ(3686) → Ξ0Ξ̄0 with the same method as used in refs. [67–76]. The efficiency difference
between data and MC simulation is found to be 4.5%, which is taken as the systematic
uncertainty of the Ξ0 reconstruction.

5.3 Background

The systematic uncertainty due to the background is estimated by shifting the sideband
regions inward and outward by 10 MeV for Mπ0Λ and 60 MeV for M recoil

π0Λ from the signal region
with a standard of 3σ mass resolution, using the sum of all energy points. The resulting
largest difference of 1.2% is taken as the systematic uncertainty due to the background.

5.4 Angular distribution

The uncertainty due to the angular distribution is estimated to be 3.5% by comparing the
efficiency of the angular distribution from the phase space simulation with that incorporating
the Ξ0 transverse polarization and the spin correlation.

5.5 Branching fractions

The uncertainty for the product of the branching fractions of Λ → pπ− and π0 → γγ is
0.8% taken from the Particle Data Group (PDG) [58].

5.6 Input line shape

The uncertainty due to the input line shape of the cross section for determining the product
of the ISR correction and the detection efficiency (1 + δ) · ϵ is from two parts. One part is
due to the statistical uncertainty of the input cross section line shape, which is estimated
by varying the central value of the nominal input line shape within ± 1σ of the statistical
uncertainty. The (1 + δ) · ϵ values for each CM energy point are then recalculated. This
process is repeated 100 times, and a Gaussian function is used to fit the (1+ δ) · ϵ distribution.
The width of the Gaussian function is taken as the corresponding systematic uncertainty.
The other uncertainty arises from the resonance parameters which are fixed in the fit to the
input cross section. The uncertainty from the line-shape description is estimated with an
alternative input cross section line shape based on one resonance plus a power-law function.
The (1 + δ) · ϵ value for each of CM energy points is then recalculated, and the largest change
is taken as the systematic uncertainty. The total systematic uncertainty for the input line
shape is 2.4% by adding both contributions in quadrature.

5.7 Total systematic uncertainty

Assuming all sources are independent, the total systematic uncertainty on the cross section
measurement of 6.4% is determined by adding these sources in quadrature.
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6 Fit to the dressed cross section

The potential resonances are searched for by analyzing the dressed cross section (σdressed =
σB

|1−Π|2 ) of the e+e− → Ξ0Ξ̄0 reaction using the least χ2 method χ2 = ∆XTV −1∆X. Here V is
the covariance matrix incorporating both the correlated and uncorrelated uncertainties among
different CM energy points, and ∆X is the vector of residuals between the measured and the
fitted cross sections. The diagonal elements of V are the sum of the statistical uncertainties
and uncorrelated systematic uncertainties, added in quadrature. The off-diagonal elements of
V are correlated systematic uncertainties including the luminosity, Ξ0 reconstruction and
branching fraction by assuming them to be fully correlated for each CM energy.

Assuming the line shape of the dressed cross section of the e+e− → Ξ0Ξ̄0 reaction
includes a charmonium(-like) amplitude, i.e., ψ(3770), ψ(4040), ψ(4160), ψ(4230), ψ(4360),
ψ(4415) or ψ(4660), plus a continuum contribution, a fit with the coherent sum of a power
law(PL) function plus a Breit-Wigner (BW) function

σdressed (√
s
)
=

∣∣∣∣∣∣c0

√
P (

√
s)

(
√
s)n

+ eiϕBW
(√
s
)√P (

√
s)

P (M)

∣∣∣∣∣∣
2

, (6.1)

is used. Here ϕ is the interference angle between the BW function

BW
(√
s
)
=

√
12πΓeeBΓ

s−M2 + iMΓ , (6.2)

and the PL function, c0 and n are free parameters, P (
√
s) is the two-body PHSP factor

(P (
√
s) =

√
(s−(mΞ0 +mΞ̄0 )2)(s−(mΞ0−mΞ̄0 )2)

2
√
s

), M and Γ are the resonance mass and total width,
respectively, fixed according to the PDG values [58]. ΓeeB is the product of the electronic
partial width and the branching fraction for each assumed charmonium(-like) state decaying
into the Ξ0Ξ̄0 final state. Figure 3 shows fits to the dressed cross section by eq. (6.1) with a
PL function only and with a single charmonium(-like) amplitude, fitted one at a time. The
parameters with the PL function only are fitted to be c0 = 1.1 ± 0.3, n = 7.7 ± 0.2. The
parameters with the assumed charmonium(-like) amplitude combined with their multiple
solutions are summarized in table 2, where the possible multiple solutions are evaluated based
on a two-dimensional scan method which scans all the pairs of ΓeeB and ϕ in parameter
space as shown in figure 4. The significance for each resonance considering the systematic
uncertainty is calculated by comparing the change of χ2/n.d.f with and without including
the resonance in the fit, where n.d.f represents the number of degrees of freedom, and no
significant resonance is found. Consequently, ΓeeB and its upper limit at the 90% C.L.
using a Bayesian approach [77] and including the systematic uncertainty for each assumed
charmonium(-like) state decaying into the Ξ0Ξ̄0 final state are listed in table 2.

7 Summary

In summary, using a total integrated luminosity of 30 fb−1 of e+e− collision data collected
by the BESIII detector at BEPCII for CM energies between 3.51 and 4.95 GeV, we measure
the Born cross sections and the effective form factors at forty-five CM energy points for
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Figure 3. Fits to the dressed cross sections at CM energies from 3.51 to 4.95GeV under the assumption
of a PL function only (top left), or a PL function plus a resonance [i.e. ψ(3770), ψ(4040), ψ(4160),
ψ(4230), ψ(4360), ψ(4415), or ψ(4660)]. Dots with error bars are the dressed cross sections, and the
solid lines shows the fit results. The error bars include the statistical and systematic uncertainties
summed in quadrature.
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Figure 4. Contour distributions of χ2 values in the ΓeeB − Φ plane for (a) ψ(3770), (b) ψ(4040), (c)
ψ(4160), (d) Y (4230), (e) Y (4360), (f) ψ(4415), and (g) Y (4660) decaying into the Ξ0Ξ̄0 final states.
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Parameter Solution I Solution II χ2/n.d.f
ϕψ(3770) −1.7 ± 0.2 2.9 ± 0.8
ΓeeBψ(3770) 79.1 ± 6.5 (< 89.0) 1.1 ± 3.3 37/(45− 4)
ϕψ(4040) −1.9 ± 0.1 −
ΓeeBψ(4040) 34.2 ± 19.0 (< 83.4) − 34/(45− 4)
ϕψ(4160) −1.8 ± 0.1 −2.3 ± 0.1
ΓeeBψ(4160) 59.2 ± 3.8 (< 69.0) 3.0 ± 1.1 34/(45− 4)
ϕY (4230) −1.6 ± 0.1 −1.6 ± 0.2
ΓeeBY (4230) 34.0 ± 2.7 (< 40.4) 1.0 ± 0.5 37/(45− 4)
ϕY (4360) −1.4 ± 0.1 −0.7 ± 0.2
ΓeeBY (4360) 66.5 ± 8.1 (< 84.5) 7.9 ± 3.4 34/(45− 4)
ϕψ(4415) −1.2 ± 0.1 −0.2 ± 0.2
ΓeeBψ(4415) 36.3 ± 5.0 (< 48.0) 5.6 ± 3.0 39/(45− 4)
ϕY (4660) −1.3 ± 0.1 0.3 ± 0.3
ΓeeBY (4660) 32.8 ± 5.4 (< 45.0) 4.5 ± 1.9 38/(45− 4)

Table 2. The fitted resonance parameters for ΓeeB (10−3 eV) and ϕ (rad) with two solutions. The
fit procedure includes both statistical and systematic uncertainties. Here χ2/n.d.f indicates the fit
quality for each assumed resonance.

the e+e− → Ξ0Ξ̄0 reaction. The dressed cross section of this reaction is fitted under the
assumption of a single charmonium(-like) amplitude plus a continuum contribution. No
obvious signal for any assumed charmonium(-like) state [i.e., ψ(3770), ψ(4040), ψ(4160),
ψ(4230), ψ(4360), ψ(4415), or ψ(4660)] is found. The products of the branching fraction and
electronic partial width for each assumed charmonium(-like) state decaying into the Ξ0Ξ̄0

final state as well as the upper limits at the 90% C.L. are provided, which can be used to
further constrain theoretical models [18, 23]. In addition, the ratios of the Born cross section
and the effective form factor between this work and e+e− → Ξ+Ξ̄−, as shown in figure 2,
can be used to test isospin symmetry and the vector meson dominance model [35–40]. The
results of this study provide important experimental information on the correlation between
vector charmonium(-like) states and the e+e− → Ξ0Ξ̄0 production.
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