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plets, the inflaton and the goldstino superfield. Using superconformal methods for these

models, we propose to replace the unconstrained chiral goldstino multiplet by the nilpo-

tent one associated with non-linearly realized supersymmetry of the Volkov-Akulov type.

In the new cosmological models, the sgoldstino is proportional to a bilinear combination of

fermionic goldstinos. It does not acquire any vev, does nor require stabilization, and does
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class of the presently existing inflationary models based on supergravity and string theory,

including the simplest versions of chaotic inflation, the Starobinsky model, a broad class

of cosmological attractors, the Higgs inflation, and much more. In particular, this is a step
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1 Introduction

There is a large class of general inflationary models in N=1 supergravity based on two chiral

multiplets, the inflaton multiplet Φ and the goldstino multiplet S. These supergravity

models, where the chiral multiplet S plays an important role during inflation, have the

following Kähler potential and the superpotential

K = K(Φ, Φ̄;S, S̄) , W = S f(Φ) . (1.1)

Here the inflaton superfield is

Φ = φ+ i a+
√
2 θ χ+ θ2FΦ . (1.2)

The inflaton ϕ can be either the field φ or the field a, depending on which of these two

fields is light during inflation.1 The goldstino superfield is

S = s+
√
2 θ G+ θ2FS . (1.3)

1Supergravity models without the S-multiplet typically have problems stabilizing one of these fields and

keeping the other one light. This is why we have sometimes referred to the S field as a ‘stabilizer’ field.
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Here G is a goldstino fermion, its supersymmetric scalar partner s is a sgoldstino, and FS

is an auxiliary field of the goldstino multiplet. In many of these models, the sgoldstino

field vanishes during inflation, as well as after it,

s = 0 . (1.4)

For a partial list of such models see e.g. [1–14]. Note that the goldstino direction is a

direction in the moduli space where supersymmetry is broken and the corresponding auxil-

iary field does not vanish. In our models during inflation the auxiliary field in the inflaton

direction vanishes, FΦ = −eK/2KΦΦ̄W̄Φ̄|s=0 = 0. The auxiliary field in the S direction

does not vanish, FS = −eK/2KSS̄W̄S̄ |s=0 = −eK/2KSS̄ f̄(Φ̄) 6= 0. Therefore we refer to S

as a goldstino multiplet2 in models (1.1).

The first model in this class was constructed in the superconformal setting in [1]. It

was shown in [2, 3], that it leads to supergravity version of the Starobinsky inflationary

model [18–20] when supplemented by the stabilization terms in the Kähler potential of the

form (SS̄)2. A supergravity model of a quadratic chaotic inflation [21–23] was proposed

in [4], where the Kähler potential has a shift symmetry broken by the superpotential. A

large class of supergravity models with shift symmetric Kähler potential leading to generic

chaotic inflationary potentials was found in [5, 6]. Various recent examples of such models

with shift symmetry broken by superpotential as well as by Kähler potential were presented

in [7, 8]. A different variety of these models, the so called ‘cosmological attractors’ [9–14],

also belong to this class, they generalize the ones in [1]. The superpotential is linear in S,

however, the Kähler potential is not shift symmetric.

In all our supergravity models in [1–14], there is one light scalar, the inflaton. The

three other scalars are supposed to be very heavy so that they quickly vanish during

inflation. The inflationary cosmology effectively becomes the single field inflation. The

effective potential depends only on one inflaton scalar, ϕ:

Veff(ϕ) = eK(Φ)KSS̄ |f(Φ)|2 ≥ 0 . (1.5)

In many of these models, it is relatively easy to achieve vanishing of the field orthogonal

to the inflaton field ϕ [5, 6]. However, in most of these models, one should take additional

steps to stabilize the field S. Otherwise it either drifts from the minimum of the potential

due to quantum fluctuations [24], or becomes tachyonic, which leads to a major instability.

Typically this problem can be cured by adding higher order stabilization terms, such as

(SS̄)2, to the Kähler potential. While this procedure is legitimate, it makes the models

more complicated, and it forces us to verify stability of each of such models, which is not

always easy.

The purpose of this paper is to replace the unconstrained chiral goldstino superfield

S in eq. (1.3), which is a cornerstone of all inflationary models in eq. (1.1), by the

nilpotent superfield

S2(x, θ) = 0 . (1.6)

2The sgoldstino models of inflation [15–17] identify the inflaton with the scalar sgoldstino, a supersym-

metric partner of the fermion goldstino, they are different from our models.
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The coupling of the nilpotent S superfield to N=1 supergravity, in absence of other mul-

tiplets, just reproduces the result of [25]. Such a nilpotent superfield was proposed and

studied in the context of the Volkov-Akulov (VA) goldstino theory [26, 27] in [28–34]. A

replacement of this kind was already made in [35] for the supergravity inflationary model

based on [1]. It was shown there that the nilpotent superfield S leads to a VA type of an

action coupled to the inflaton multiplet reproducing the Starobinsky potential. Here we

will introduce a nilpotent goldstino multiplet for generic inflationary models in eq. (1.1)

which were studied in [1–14].

We will discuss here only some basic results following [1–14]; their generalizations to

other closely related models studied in the literature is straightforward. For example, we

can build new models with a nilpotent superfield for Higgs inflation, starting with [36, 37].

Many other models studied e.g. in [38–52] can be now modified and used in the new

construction with the nilpotent superfield.

The immediate and obvious consequence of this step is that the bosonic part of the

inflationary models is simplified. Stabilization terms like (SS̄)2 vanish due to the nilpotent

nature of the S superfield. But these terms are also not required anymore in the new

models since sgoldstino vev, the scalar component of goldstino is absent, being replaced

by a bilinear of the fermions, so there is no need to stabilize it. Therefore in these models

one has to stabilize only the inflaton partner, one of the fields in the inflaton multiplet. In

many of such models, this does not require additional stabilization terms [5, 6].3

The significant consequence of involving the nilpotent goldstino chiral multiplet is a

connection of the new versions of inflationary supergravity models in eq. (1.1) supple-

mented with the S2 = 0 requirement, to string theory. Specifically, we are using the

connection between the super-Dp-branes [57–62] and the Volkov-Akulov theory [26, 27],

following [63, 64]. One of the important early papers on the relation between the 3-brane

actions, constrained superfields, and non-linear realization of supersymmetry is [65]. A

large list of references in that paper is relevant to our studies of new models of string cos-

mology based on supergravity models where the unconstrained chiral goldstino multiplet

S has to be replaced by the nilpotent one, S2 = 0.

As we are going to show in the paper, if we relate the nilpotent goldstino chiral multi-

plet to the previously studied models where we were able to stabilize the field s at s = 0, the

bosonic part of the new class of the models emerges as a trivial generalization/simplification

of the previously studied models. We take the potentials of the previously studied models

obtained by the standard rules applied to unconstrained fields, and in the end simply take

s = 0. All previously obtained results describing inflation and its observational conse-

quences in the models [1–14] remain intact.4

3There is an alternative class of models suggested by R+R2 supergravity in new minimal formulation [53]

where the problem of moduli stabilization does not arise at all since the inflaton is the only scalar (member of

a massive vector or tensor multiplet) but the Kähler manifold in which it is embedded may change [54–56].

These models, with a pure D-term potential, can interpolate between Starobinsky and chaotic inflation [14]

for example, by changing the curvature of the SU(1, 1)/U(1) symmetric space.
4The only difference appears in the models where the fluctuations of the field s are interpreted as the

curvaton perturbations [24]; these perturbations are absent in the new scenario.
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On the other hand, it is not necessary to relate the new models to the previously

studied ones with s = 0. In extended versions of the models [1–14] one may encounter

many other moduli interacting with each other, which may lead to a cosmological time-

dependent evolution of the field s. Successful chaotic inflation models of this type do exist,

see e.g. [66]. However, the necessity to follow the cosmological evolution of all moduli and

to ensure stability of an inflationary trajectory makes these models much more complicated

to study. In essence, one should study everything numerically, and repeat it many times

for different parameters to fully understand the dynamical features of the model.

In this respect, models with a nilpotent goldstino chiral multiplet (or many such mul-

tiplets) provide additional advantages. One may derive potentials of such models using the

standard rules, as if all fields there were unconstrained, and then, instead of investigation

of the evolution of some of the fields, one may simply declare that they are nilpotent and

therefore vanish. If this is a consistent approach, as we will argue in this paper, the theory

is immediately simplified. If the original theory predicted that the field s did not vanish, the

predictions of the new theory will differ from the predictions of its non-constrained coun-

terpart. However, the predictions of the new theories are much easier to study. We expect

that this may stimulate development of many new inflationary models, which previously

have been hampered by the necessity to control too many moduli simultaneously.

An interesting situation emerges in the new version of the supersymmetric Higgs infla-

tion, when we use the model constructed in [36, 37] as a starting point, where is corresponds

to the NMSSM. The gauge singlet S is an extra superfield which makes all the differ-

ence between the NMSSM and MSSM. Meanwhile, the same model which we constructed

in [36, 37] modified to involve a nilpotent superfield S, is neither NMSSM nor MSSM, since

is has a non-linearly realized supersymmetry due to the nilpotent chiral superfield. The

cosmological properties of this model are the same as in [36, 37]. However, the fermionic

part of the action is new and has a Volkov-Akulov fermion without a scalar partner. It

would be interesting to explore phenomenological implications in particle physics of this

generalization of the supersymmetric standard model.

Another problem studied in this paper is to construct, using the nilpotent chiral mul-

tiplets, a new mechanism of uplifting the vacua in the stringy landscape. We will show

that the updated O’KKLT models [67] combining KKLT-type constructions [68, 69] with

a nilpotent scalar multiplet S

W =WKKLT(ρ)− µ2S , K = −3 ln(ρ+ ρ) + SS̄ at S2 = 0 . (1.7)

provides a manifestly supersymmetric uplifting of AdS vacua to de Sitter one, the fermionic

part of the action being of a VA-type. Our notation above, where we present some S-

dependent W and K with the note ‘at’ S2 = 0 means that first the bosonic part of the

action has to be computed, treating S as a standard chiral superfield, and only at the end

of the computations of the bosonic action one has to take it at s = s̄ = 0, respecting the

fact that we have imposed the operator relation S2 = 0.

In essence, previously, in [67], we were adding the Polonyi field [70] with the superpo-

tential µ2S, which provided the F-term uplifting of the KKLT models. Investigation of the

original versions of these models and their various generalizations often was complicated
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and required numerical analysis, in part because the value of the field s after the uplifting

no longer vanished. Meanwhile, in the new class of models, everything becomes nearly triv-

ial: the term −µ2S provides a positive term in the potential, which no longer depends on s,

as if the field s in the original versions of these models were infinitely strongly stabilized at

s = 0. This leads to enormous simplification of the F-term uplifting in string theory, and

provides its string theory interpretation by using the relation between the super-Dp-branes

and the Volkov-Akulov theory.

To develop a fully consistent theory based on this mechanism, we would also need to

analyze the fermionic part of the action. In this paper, we considered only its bosonic part

which is necessary for investigation of inflation and vacuum stabilization.

In this paper we will discuss only the F-term cosmological models in supergravities

supplemented by the nilpotent chiral multiplet. Meanwhile there are well-known infla-

tionary models in supergravity associated with the D-term potential [71–74]. Also D-term

uplifting models [75] may be studied in the new constructions. For all these D-term models

the update towards using the nilpotent superfields has to be studied separately.

The paper is organized as follows. In section 2 we use the superconformal version of

supergravity and present a manifestly supersymmetric model with chiral superfields. Some

of these superfields are satisfying algebraic constraints when equation of motion for the

superfield Lagrange multipliers is satisfied. In particular, these are models with nilpotent

chiral superfields. In section 23 we review the known facts about the relation between

Dp-branes and VA goldstino action, and we explain that the fields of d=10 supergravity

interact with VA goldstinos, which are fermions living on the world-volume of the Dp-

brane. In section 4 we discuss new cosmological models with a nilpotent chiral multiplet

and their generic relation to string theory. In section 5 we study the manifestly supersym-

metric KKLT type uplifting with a non-linearly realized supersymmetry and with VA type

fermions. We summarize the results in section 6 and point our that more investigations

will be necessary to relate specific string theory models to d=4 N=1 supergravity with the

nilpotent superfields.

2 Superconformal models underlying supergravity with nilpotent chiral

multiplets

We start with superconformal model underlying N=1 supergravity interacting with some

number of chiral multiplets XI , I = 0, . . . , n, in the form used for cosmological applications

in [76], based on [77]. These models were further developed in [36, 37] with the emphasis

on the Jordan frame and transition to Einstein frame supergravity, while building Higgs

inflation and NMSSM inflationary models.

These theories are described in details in [78] starting with the action in eq. (17.15)

there. Here we will consider models without vector multiples in which case the supercon-

formal action in eq. (17.15) has two terms

[N (X, X̄)]D + [W(X)]F , (2.1)
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where N (X, X̄) is a generic Kähler manifold potential of the embedding space, including

the compensator superfield, it has a Weyl weight 2. W(X) is the superpotential of the

Weyl weight 3. The subscripts D and F refer the extraction of the D and F terms in

the corresponding superfield actions. The F-term potential in the superconformal model

originate from the auxiliary fields of the chiral multiplets

V = −F I NIJ̄ F̄
J̄ − (WIF

I + hc) , ⇒ V = WIN IJ̄W̄J̄ , (2.2)

since on-shell the value of the auxiliary fields of the chiral multiplets is defined by the

derivatives of the superpotential.

F I = −N IJ̄W̄J̄ . (2.3)

If we want to modify the theory (2.1) by making some of the chiral superfields to satisfy

algebraic constraints of the form Ak(X) = 0, we can do it by adding a term with the chiral

Lagrange multiplier5 superfields Λk of Weyl weight 1

[N (X, X̄)]D + [W(X)]F + [Λk Ak(X)]F , (2.4)

where the functions Ak(X) has to have a Weyl weight 2. The equation of motion over each

superfield Λk leads to our set of algebraic superfield constraints

Ak(X) = 0 , (2.5)

since the Lagrange multipliers Λk are present only in the F -terms. In particular, it is easy

to add a constraint that one of the superfields, for example Xn, is nilpotent, by adding the

term [Λ (Xn)2]F to the superconformal action. A detailed form of the supergravity action

for chiral multiplets in presence of one or more nilpotent ones will be presented in details

in the future work, including the fermion part. Here we would like to stress that the action

(2.4) before the constraints (2.5) are solved, is manifestly supersymmetric.

Consider, for example, a class of superconformal models useful for cosmology, as de-

scribed in [79]. The chiral multiplets in this case XI , include the compensator field X(0),

the inflaton X(1)/X(0) = Φ and a goldstino superfield X(2)/X(0) = S

X(0), X(1) = ΦX(0), X(2) = SX(0) . (2.6)

If we would like to replace the superfield X(2) by a nilpotent one in our general class of

models, we have to start with the following superconformal action

[N (X, X̄)]D + [W(X)]F + [Λ(X(2))2]F . (2.7)

This action, before the constraint is solved, is manifestly supersymmetric. All superfields

including X(0), X(1), X(2),Λ are standard unconstrained chiral multiplets of the confor-

mal weight 1. The equation of motion over Λ leads to algebraic superfield constraint

(X(2))2(x, θ) = 0. The components of the unconstrained superconformal superfield

X(2)(x, θ) = x(2) +
√
2θΨ(2) + θ2F (2) (2.8)

5This technics of using superfield Lagrange multipliers to algebraic constraints in the superconformal

action was used from the early days of supergravity, for example in [1]. More recently it was used extensively

in [2, 3] and in [13].
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have to satisfy certain conditions [28–31] and if F (2) 6= 0 the constrained superfield becomes

equal to

X(2)|(X(2))2=0 =
Ψ(2)Ψ(2)

2F (2)
+

√
2 θΨ(2) + θ2F (2) . (2.9)

It means that the first component is a bilinear of the fermions.

Now we would like to proceed from the superconformal theory (2.4) or (2.7) to super-

gravity. In the superconformal gauge where the compensator is fixed to be X0 = X̄0 =√
3MP the supergravity model in the Jordan frame is recovered so that the first term in

the action in (2.1) has a term
1

2
Ω(z, z̄)R , (2.10)

where N (X, X̄)|X0=X̄0=
√
3MP

= −3Ω(z, z̄) where zI = XI/X0 = (1, zi) which defines

the superfields zi. The superpotential and a potential of the Einstein frame supergravity

for each model are deduced from N (X, X̄) and W(X) of the superconformal model. In

particular, the frame function defines the Kähler potential

K(z, z̄) = −3 log Ω(z, z̄) = −3 log

(

− 1

3
N (X, X̄)|X0=X̄0=

√
3MP

)

. (2.11)

It also means that after gauge-fixing S = X(2)/
√
3MP . The nilpotent constraint on X(2)

transfers on a nilpotent constraint on S, i.e. we have the condition S2(x, θ) = 0. This

eliminates the sgoldstino s in favor of a goldstino bilinear in (1.3), so that

S =
GG

2FS
+

√
2 θ G + θ2FS . (2.12)

For example, the θ2 component of S2(x, θ) following from (1.3) is 2sFS − 4GG, and it

must vanish. It follows that s = GG
2FS as we show in (2.12). If the auxiliary field FS is not

vanishing one finds that sgoldstino is replaced by a fermion bilinear

s =

∑α=2
α=1G

αGα

2FS
=
ψ1ψ2

FS
, (2.13)

where we used notation G1 = ψ1 and G2 = G1 = ψ2. The vev of s must vanish since its

square is given by an expression

s2 =
(ψ1ψ2)2

(FS)2
= 0 . (2.14)

It vanishes since each of the Grassmann variable products vanishes, (ψ1)2 = (ψ2)2 = 0.

Therefore the fermion bilinear replacing sgoldstino in our class of models cannot acquire

a non-trivial vev, as different from examples in superconductivity or technicolor models

where the fermion bilinears form condensates and effectively replace scalars.

In the supergravity version of the superconformal theory FS = −eK
2 KSS̄∂S̄W̄ which

also is required to be not vanishing for the operator constraint S2 = 0 to be valid, so that

s ⇒ GG

2FS
. (2.15)
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The new superconformal action (2.7) means that the bosonic terms in the supergravity

action with the nilpotent goldstino are the same as in models with unconstrained S but

taken directly at s = 0. One has to keep the S contribution in the Kähler potential and

in the superpotential W till the complete action is computed, according to standard rules.

At the end of the computation, in the action one should set s = 0 , to get the complete

bosonic action in the model with the nilpotent multiplet S.

In other words, one can take all previously studied models of the type discussed above,

including the models where the field S was not stabilized, or where it was non-zero, or

even time-dependent during the cosmological evolution. Then one should simply declare

that s = 0 in these models. If the field s vanished in the original models, then the results

obtained in the original models will coincide with the corresponding results in the new

models with the nilpotent multiplet S. But if the field s did not vanish in the original

models, such as [66], we should simply declare that s = 0 in those models, and repeat the

rest of the investigation, which becomes a much simpler task.

The previous comments are valid for the investigation of the bosonic part of the models,

which is typically sufficient to study inflation, or to investigate stability of the string theory

vacua. Meanwhile the fermionic part is significantly different from the standard action

with unconstrained multiplets. The reason for such complications is due to complicated

equations of motion for auxiliary fields. In models without nilpotent superfields the action

has quadratic and linear terms only, as shown in eq. (2.2). Now some of the dependence in

the fermionic part has terms GG
2FS , the procedure of solving for FS in fermionic part of the

action becomes very complicated. For example the former kinetic term for s is replaced by

a complicated function of fermions

s ∂2s̄ ⇒ GG

2FS
∂2

ḠḠ

2 F̄S
(2.16)

and these and other terms contribute to equations of motion for auxiliary fields.

The simplest S superfield supergravity model [35] in absence of all other chiral fields

is based on

K = − log

(

1 +
1

2
(S − S)2

)

≡ S S , W = f S , at S2 = 0 , (2.17)

and leads to a potential

V = f2 . (2.18)

A non-gravitational part of this action, in the form given in [32] is

LV A = −f2 + i∂µḠσ̄
µG+

1

4f2
Ḡ2∂2G2 − 1

16f6
G2Ḡ2∂2G2∂2Ḡ2 , (2.19)

corresponding to a superfield action

LV A =
[

S S
]

D
+

[

fS + ΛS2 + h.c.
]

F
. (2.20)

where Λ is a Lagrange multiplier chiral superfield. It agrees with the original VA action [26,

27], according to [34] after a spinorial field redefinition.
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3 Review of the super-D-branes and Dirac-Born-Infeld-Volkov-Akulov

actions

Our review of the super-Dp-branes and derivation of the DBI-VA actions from D-branes

is based on [63] and mostly on the recent detailed studies in [64] and references therein.

Other aspects of relation of branes to supersymmetry breaking at the string scale were

studied in [80–82].

Classical D-brane actions [57–61] in supersymmetric string theory have a fermionic

local symmetry, κ-symmetry. This local symmetry of the classical D-brane actions has been

gauge-fixed in the flat background in [60, 61]. In the bosonic d=10 on-shell supergravity

background the gauge-fixing of a local κ-symmetry was performed in [62]. The bosonic

supergravity background, G,B and φ includes the spacetime metric, the NS/NS 2-form

gauge potential and the dilaton, respectively, as well as RR forms C(r) where r = 0, . . . , 10.

The bosonic Dp-brane is described by a map X from the worldvolume Σ(p+1) into the

d = 10 spacetime M and by a 2-form Born-Infeld field strength F on Σ(p+1); dF = 0 so

F = dV where V is the one-form Born Infeld gauge potential. The bosonic part of the

effective action of a Dp-brane using notation of [62] is

Ip = −
∫

dp+1σ

[

e−φ
√

|det(gij + Fij)|+ CeF +mICS

]

, (3.1)

where gij = ∂iX
µ∂jX

νGµν is the metric on Σ(p+1) induced by the map X, (µ, ν = 0, . . . 9)

are the spacetime indices and Fij (i = 1, · · · (p+ 1)) is the modified 2-form field strength

F = F −B , (3.2)

where Fij is the Born-Infeld 2-form field strength and Bij in Fij is the pull-back Bij =

∂iX
µ∂jX

νBµν of the NS-NS 2-form gauge potential Bµν with X. The second term in (3.1)

is a Wess-Zumino-Chern-Simons term, where

C =
10
∑

r=0

C(r) (3.3)

is a formal sum of the RR gauge potentials C(r). It is understood that after expanding the

potential only the (p+1)-form is retained. The last term in (3.1) is only present for even p

(the IIA case). Its coefficient m is the cosmological constant of massive IIA supergravity

and ICS.

For the supersymmetric Dp-brane actions, the maps X ({Xµ}) are replaced with su-

permaps Z = (X, θ) ({ZM}) and the various bosonic supergravity fields with the corre-

sponding superfields of which they are the leading component in a θ-expansion.

At this point things become rather technical in [62], however, there is one nice and

simple feature in this construction: it is ‘democratic’ in the sense that both type IIA as

well as type IIB Dp-branes are described, with even and odd p, in the same construction.

This is close in spirit to a ‘democratic’ version of d=10 supergravity in [83]. The specific
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notation allows to treat the IIA and IIB theories in a unified way. The induced metric for

both IIA and IIB D-branes is given by the super-vielbeins

gij = Ei
aEj

bηab , Ei
A = ∂iZ

MEM
A . (3.4)

We will now only explain the steps in deriving the Dirac-Born-Infeld-Volkov-Akulov

actions from the generic super-Dp-branes which are relevant for our purpose here. Our

purpose is to explain the relation between inflationary models of N=1 supergravity d=4

with the inflaton and a nilpotent goldstino multiplet and super-Dp-branes.

1. We will explain, following [63, 64] why the goldstino action of the Volkov-Akulov

type is part of the gauge-fixed supersymmetric Dp-brane actions. We will use the case of

type IIB models for simplicity.

2. We will show that the fermionic goldstino interacts with the NS-NS 2-form Bµν of

the supergravity in d=10 as well as with other fields of the d=10 supergravity, including

RR forms.

3.1 Dp-superbrane with local κ-symmetry in the flat supergravity background

The κ-symmetric Dp-brane action in type IIB (with p = 2n+1 odd), in a flat background

geometry with coordinates Xm, m = 0, . . . , 9, consists of the Dirac-Born-Infeld-Nambu-

Goto term SDBI and Wess-Zumino term SWZ in the world-volume coordinates σµ (µ =

0, . . . , p):

SDBI + SWZ = − 1

α2

∫

dp+1σ
√

− det(Gµν + αFµν) +
1

α2

∫

Ωp+1 . (3.5)

Here Gµν is the manifestly supersymmetric induced world-volume metric

Gµν = ηmnΠ
m
µ Πn

ν , Πm
µ = ∂µX

m − θ̄Γm∂µθ , (3.6)

and the Born-Infeld field strength Fµν is given by

Fµν ≡ Fµν − bµν , bµν = α−1θ̄σ3Γm∂µθ

(

∂νX
m − 1

2
θ̄Γm∂νθ

)

− (µ↔ ν) , (3.7)

where Ωp+1 is a particular p + 1-form. Note that the superspace coordinates Z(σ) =
(

X(σ), θ(σ)
)

depend on the world volume coordinates σ. We use here notation of [64].

The action has the global (σ-independent) supersymmetry on the world-volume of

the brane

δǫθ = ǫ , δǫX
m = ǭΓmθ ,

δǫAµ = α−1ǭσ3Γmθ∂µX
m − α−1

6

(

ǭσ3Γmθθ̄Γ
m∂µθ + ǭΓmθθ̄σ3Γ

m∂µθ
)

. (3.8)

Besides the global supersymmetry the action is also invariant under a local (σ-dependent)

κ-symmetry. One can gauge fix κ-symmetry and general coordinate transformations in a

covariant gauge discovered in [60, 61]. The fermionic gauge in IIB models is of the form

θ1(σ) = 0 , θ2(σ) ≡ αλ(σ) , (3.9)
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where θ1(σ), θ2(σ) are two positive chirality spinors of type IIB theory, which are both

functions of the world volume coordinates σ. The basic role of the gauge-fixing κ-symmetry

is to control the correct number of degrees of freedom on the brane. The quantization allows

to remove the half of fermionic fields θ1(σ) from the brane action, the remaining half of

the fermion fields on the brane θ2(σ) become the Volkov-Akulov type goldstino’s λ(σ). In

both type IIA and type IIB models the WZ term vanishes in the flat background. The

gauge-fixed action of the Dp-brane at α = 1 has the form [60, 61]

S(p) = −
∫

dp+1σ
√

− detM (p) , (3.10)

as shown in eq. (85) in [60, 61], where the details can be found. For general α the derivation

was given in [64].6 For example for the D-9-brane, the gauge-fixed action is given by the

Dirac-Born-Infeld-Volkov-Akulov action

SDBI−V A = − 1

α2

∫

d10σ

{

√

− det(Gµν + αFµν)

}

, (3.11)

where

Gµν = ηmnΠ
m
µ Πn

ν Πm
µ = δmµ − α2λ̄Γm∂µλ , (3.12)

Fµν ≡ Fµν − 2αλ̄Γ[ν∂µ]λ . (3.13)

The d=4 counterpart of (3.11) for N=2 supersymmetry spontaneously broken down to

N=1 is the N=1 manifestly supersymmetric Born-Infeld action [84]. It was shown to have

a second nonlinearly realized supersymmetry acting on the N=1 field strength superfield

in [85]. A detailed study of related issues of partial breaking of global d = 4 supersymmetry,

constrained superfields, and 3-brane actions was performed in [65].

The formula in (3.11) at α = 1 was first derived and presented in eq. (1) in [60, 61].

Meanwhile in [63] it was observed that in absence of fermions λ(σ) we recover the classical

supersymmetric DBI models, for example in d = 10 we find

SDBI = − 1

α2

∫

d10x

{

√

− det(ηµν + αFµν)

}

. (3.14)

On the other hand, when the covariant 2-form Fµν is absent, the same action is a d = 10

analog of the d = 4 VA action [26, 27], as explained in [63]

SVA = − 1

α2

∫

d10x
√

− detGµν =
1

α2

∫

Em0 ∧ . . . ∧ Em9 , (3.15)

Em = dxm + α2λ̄Γmdλ . (3.16)

6In [64] the Wess-Zumino term Ωp+1 was taken to be constant since we were only interested in the

actions for spinors and vectors. However, now we are paying attention to the fact that the DBI part of the

classical action survives the gauge-fixing whereas the WZ term vanishes in the gauge (3.9) in absence of

the bosonic d=10 background, which results in the action given in (3.11) in agreement with [60, 61].
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Note that our parameter α in [64] is inversely proportional to the parameter f in the VA

action in (2.19). In this truncated model the exact hidden non-linear supersymmetry trans-

formation of fermions consists of two terms, one is a shift, and the other one is an expression

which is quadratic in fermions. This is literally the original Volkov-Akulov formula

δζλ = α−1ζ + αλ̄Γµζ∂µλ . (3.17)

It signals the spontaneous breaking of a non-linearly realized supersymmetry on the brane

due to the presence of the constant term α−1ζ in the transformation rules, α being some

finite constant.

We have used here an example of D9 super-brane, as the simplest case of appearance of

the VA goldstino’s action, [63]. Meanwhile, as shown in [64] this is a generic phenomenon

for all super-Dp-branes as well as more exotic V-branes, discussed there. Note that when all

fields, spinors and vectors, are absent, all these gauge-fixed Dp-brane actions are equal to

Svac = − 1

α2

∫

dp+1σ
{

√

− det ηµν

}

, (3.18)

and have positive energy density f2 in agreement with the VA action (2.19) since f2 = α−2.

In our effective supergravity actions in (1.1) and (2.18) we see an analogous contributions

to the potential energy.

3.2 Goldstino’s interaction with NS-NS 2-form B and RR forms C
(r) and the

axion potential

We now return to the super-Dp-brane action (3.1) in the supergravity background. It

means that in the DBI-VA action there are terms like

√

− det(Gµν + αFµν) ,
r=10
∑

r=0

C(r) eF . (3.19)

Upon gauge-fixing κ-symmetry these terms depend on the following combination

Fµν ≡ Fµν − 2αλ̄Γ[ν∂µ]λ−Bµν + . . . (3.20)

Since there are terms in the action with the non-linear dependence on Fµν , there is an

interaction between the bilinears of goldstino and the NS-NS 2-form field Bµν of d=10

supergravity/string theory.

When the d=10 string theory with super-Dp-branes is compactified and studied in the

form of N=1 supergravity, one may associate the models with the superpotential

W = S f(Φ) , S2 = 0 , (3.21)

with string theory super-Dp-branes interacting with the supergravity background. The

condition for this association is that the chiral superfield S is nilpotent, S2 = 0, and

corresponds to a Volkov-Akulov goldstino model, whereas Φ̄−Φ describes the axion
∫

Σ2
B

interacting with goldstinos in a supersymmetric way. This same axion was used in axion

monodromy models [86].
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Another source of interaction between the goldstino multiplet and a d=10 supergravity

background fields might show up via the Kähler potential where the following interaction

becomes possible

K = SS̄ ± 1

2
(Φ± Φ̄)2(1 + γSS̄) . (3.22)

These kind of models were used in [5, 6] and it was shown there that the non-vanishing

γ-terms help to stabilize the partner of the inflaton.

Note also that in various super-Dp-branes interacting with the background supergrav-

ity the WZ term in (3.19) suggest that the RR forms C(r) also interact with goldstino’s

and therefore an inflationary multiplet Φ does not have to be related to the NS-NS 2-form,

but might also originate from some RR fields. The dependence of the function f(Φ) in

the superpotential on their holomorphic argument Φ, polynomial or exponential, is model

dependent. It may depend on the particular string theory setting, which has to be studied

in the context of specific string theory models.

4 New cosmological models with the nilpotent superfield S

Here we give an upshot of cosmological applications of new inflationary models with

K = K(Φ, Φ̄;SS̄) , W = S f(Φ) , S2 = 0 , V (Φ) = eK(Φ)KSS̄ |f(Φ)|2 ≥ 0 ,

(4.1)

where S is a nilpotent superfield. The total bosonic action for all of these models is the one

we would have in case of the unconstrained S but taken at the value of s = 0. Therefore

the new bosonic action does not have a kinetic term for s scalars and all s terms in the

potential should be put to zero. This step is not for free in the complete supergravity

action. The fermionic part of the total supersymmetric action differs significantly from the

standard N=1 supergravity interacting with unconstrained chiral multiplets. This feature

of new models takes off the burden of stabilizing the complex scalar s from the S multiplet,

which was not easy in the same models where S was an unconstrained superfield. The only

remaining concern is the stabilization of the inflaton partner in Φ|θ=0 = φ + ia. One of

these scalars must be heavy, the other is light. This is not easy to achieve in models with

a single superfield, see for example [87] for a recent discussion. However, in our case, both

with an unconstrained goldstino as well as a nilpotent goldstino, this problem has an easy

solution in many inflationary models.

4.1 Chaotic inflation in supergravity

We will begin with the generic chaotic inflation models in supergravity with

K = −(Φ− Φ̄)2

2
+ SS̄ , W = mSΦ , (4.2)

[4–6]. Representing the scalar component of the superfield Φ as a sum of canonically

normalized fields (φ+ i a)/
√
2, one finds that the field φ plays the role of the inflaton field

with the simplest quadratic potential

V (φ) =
m2

2
φ2 (4.3)
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and the mass squared of the fields φ, a and s near the inflationary trajectory a = s = 0

during inflation is given by

m2
φ = m2, m2

s = m2, m2
a = 6H2 +m2 . (4.4)

The field a is strongly stabilized at a = 0, but the field s has the same mass as the inflaton

field, so its quantum fluctuations are generated during inflation. Depending on the details

of the theory, these perturbations later may either become irrelevant, or lead to abundant

isocurvature perturbations, or to adiabatic perturbations via the curvaton mechanism [24].

One may consider a different version of this scenario [5, 6], with

K = −3 log

[

1 +
(Φ− Φ̄)2

6
− SS̄

3

]

, W = mSΦ (4.5)

The potential of the field φ will remain the same and before, V (φ) = m2

2 φ
2, but the masses

of the fields a and s will be different. Most importantly, the field s during inflation will

become tachyonic, which destroys the inflationary regime. Fortunately, one can stabilize

the field s and get rid of its fluctuations by adding a sufficiently large term ∼ (SS̄)2 to the

Kähler potential. However, this makes the model more complicated and less predictive.

In the new version of these models, with the nilpotent superfield S, this problem

disappears. One just takes s = 0; the field a is stable in both versions of the model, and

the potential remains equal to V (φ) = m2

2 φ
2, as in the simplest version of the chaotic

inflation scenario [21–23].

Similar result is true for a more general scenario with

K = K((Φ− Φ̄)2, SS̄) , W = Sf(Φ) at S2 = 0 . (4.6)

where f(Φ) is a real holomorphic function. If S is nilpotent, no stabilization of the field s is

required, the field a typically does not need stabilization, though it can be provided [5, 6],

and the inflationary potential is given by

V (φ) = |f(φ/
√
2)|2 . (4.7)

Since the restriction that f(Φ) is a real holomorphic function is very mild (it is satisfied

by any function which can be represented as a series with real coefficients), this class of

theories can describe any desirable set of the observable parameters ns and r [5, 6], without

any need to add extra terms higher order in S to the Kähler potential.

4.2 Inflationary models with the nilpotent superfields related to string theory

Inflationary supergravity models in [1–14] do not seem to have any obvious relation to

string theory. However, once the goldstino chiral superfield in all these models is replaced

by the nilpotent multiplet, all these models have a simple relation to super-Dp-branes,

interacting with the d=10 supergravity background. In both theories we encounter the

non-linear interacting goldstino fermion representing fermionic degrees of freedom on the

world-volume of the super-Dp-branes interacting with NS-NS 2-forms as well as with all

RR form fields.
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Particularly interesting examples of such models presented in [7], which suggest the

supersymmetric versions of the axion monodromy [86], may be given as

W = S
[

f(Φ) +A sin(αΦ)
]

, K = −(Φ− Φ̄)2

2
+ SS̄ − g(SS̄)2 . (4.8)

Here Φ = a+ iφ. For S = φ = 0, one finds the inflaton potential

V =
[

f(a) +A sin(αa)
]2
. (4.9)

The term g(SS̄)2 was introduced in [7] for stabilization of the field S at S = 0, and the

inflaton a is the combination Φ + Φ̄ not appearing in the Kähler potential.

To have a stringy interpretation of these models requires to take the superfield S to be

a nilpotent one, which is a valid step for these models. This removes the term g(SS̄)2 from

the Kähler potential. In new models with S2 = 0 the term g(SS̄)2 is no longer required,

and it also vanishes.

The Kähler potential for the inflaton multiplet in these models

K = −(Φ− Φ̄)2

2
(4.10)

still requires a string theory interpretation. In case of Calabi-Yau type compactification,

which leads to N=2 special geometry, one would expect Kähler potentials of the logarithmic

form with shift symmetry

K = c ln[(z0 − z̄0)
2 − (zi − z̄i)

2] . (4.11)

It was suggested in [88, 89] that in such case, if the modulus z0 is stabilized, one might

expand such a logarithm. If we keep just one of the field zi, we find the expression

K = c′ ln[1− (z′1 − z̄′1)
2] ≈ −c′[(z′1 − z̄′1)

2] (4.12)

for the inflaton Kähler potential (4.10) of the desired type.

The remaining steps require to find specific string theory models and a choice of the

form-field and a super-Dp-brane which would lead to a more specific choices of the su-

perpotentials. But here, again, we remind that once the interaction between the fermion

goldstino and any d=10 supergravity field related to Φ is established, in d=4 supergravity

we can only use the superpotential W = Sf(Φ) since there is nothing else available due to

S2 = 0 condition. Terms independent on S do not have this interaction whereas all higher

powers of S starting with S2, vanish.

To summarize, the new model, a candidate for an axion monodromy in string theory,

has a d=4 bosonic supergravity action with one nilpotent superfield

W = S
[

f(Φ) +A sin(αΦ)
]

, K = −(Φ− Φ̄)2

2
+ SS̄ at S2 = 0 . (4.13)

Another example is given by the α-attractor model [13, 14]. Here we just present a

new construction with a nilpotent multiplet C

K = −3α log
(

T + T̄ − CC̄
)

, W = CF (T ) at C2 = 0 . (4.14)
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In the special case of this model at α = 1 and F (T ) = a+ bT , which leads to Starobinsky

model of inflation, it was was shown in [35] how to switch from the unconstrained C to a

nilpotent one. Here we explain it for generic α and generic functions F (T ). The bosonic

part of the supergravity model at C|θ=0 = c = 0 is given by the following expression

e−1L|c=0 =
1

2
R− 3α

∂T∂T̄

(T + T̄ )2
− 1

3

F (T )F (T̄ )

(T + T̄ )3α−1
. (4.15)

When the imaginary part of the T -field is stabilized, the action becomes at T = T̄ = t and

c = 0

e−1L =
1

2
R− 3

4
α
(∂t

t

)2
− 1

12
f̃2(t) . (4.16)

Here f̃(t) = F (t)t(1−3α)/2. In canonical variables T = e

√

2
3α

ϕ
and using the fact that

f̃
(

e

√

2
3α

ϕ)
= f

(

tanh ϕ√
6α

)

one find the action for the inflaton in the form

e−1L =
1

2
R− 1

2
(∂ϕ)2 − f2

(

tanh
ϕ√
6α

)

. (4.17)

In this form one can recognize it as conformal inflation universality class attractor models

in [9–12]. Above we described a supersymmetric embedding of this class of models, fol-

lowing [13, 14]. In (4.14) we actually present a simpler version of supersymmetric models

in [13, 14] since we are now using a nilpotent superfield S.

We have two comments on these models. First, at α = 1 we can add to the superpo-

tential a constant term

K = −3 log
(

T + T̄ − CC̄
)

, W = CF (T ) +W0 at C2 = 0 . (4.18)

As always in the no-scale case, this will not affect anything in our bosonic model, the

potential will be the same as above, however, the fermionic action will be different, for

example the gravitino will have a contribution to the mass term due to W0.

Our second comment is about the choice of α from the string theory perspective. One

would expect that 3α = n where n = 1, 2, 3 which means that α = 1/3, 2/3, 1.

K = −n log
(

T + T̄ − CC̄
)

, W = CF (T ) at C2 = 0 . (4.19)

In view of the fact that for all these attractor models with generic F (T ) the prediction for

gravity waves T/S = r depends on n as r = 12α
N2 [14] we find now that

r =
4n

N2
, (4.20)

where N is a number of e-foldings. In this form the inflationary attractor model has a

simple relation to D-brane actions.

The new manifestly supersymmetric superconformal action for the α-attractor mod-

els is

−
[

X̄0X0
(

T + T̄ − CC̄
)α

]

D

+
(

[

CF (T )(X0)3 + Λ(X0)2C2
]

F
+ h.c.

)

. (4.21)
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where the nilpotency of the superfield C is imposed as a result of a solution of the equation

of motion over the Lagrange multiplier superfield Λ. It differs from the related action

in [13] by the absence of the stabilization term depending on (CC̄)2 and by the presence

of the term Λ(X0)2C2. And now the action (4.21) is associated with the D-brane actions.

4.3 Exit from inflation

The general class of models which we study in this paper has a potential V =

eK(ϕ)KSS̄ |f(ϕ)|2, where ϕ is the inflaton, either φ or a, defined earlier. At the mini-

mum of the potential with f(φ) = f0, there are two possibilities, one is that f0 6= 0 and

the other is that f0 = 0. If f0 6= 0, the potential is positive at the minimum, V > 0. If

f0 = 0 , the potential also vanishes at the minimum, V = 0. In the bosonic theory there

is no significant difference between these two cases. However, in our new models with the

nilpotent multiplet, the fermionic sector of the theory is highly sensitive to this difference:

there are many terms in the fermionic action which have negative powers of f , see for

example (2.19), or the super-Dp-brane action in (3.11) where α = f−1.

In models where f(ϕ) does not vanish at the minimum, the exit of inflation takes place

in de Sitter space and the fermionic action at the minimum of the potential is well defined

since f0 6= 0. If, however, f0 = 0, the fermionic part of the action appears to become

singular. However, the careful procedure of taking the limit to f → 0 in the action of the

D-brane involves a redefinition of the fields

λα = fλ̃α , (4.22)

and the same for vectors, Fµν = fF̃µν , if they are present. Replacing also α−1 by f in the

DBI-VA action (3.11) we find

SDBI−V A = −f2
∫

d10σ

{

√

− det(G̃µν + F̃µν)

}

, (4.23)

G̃µν = ηmnΠ̃
m
µ Π̃n

ν Πm
µ = δmµ − ¯̃

λΓm∂µλ̃ , (4.24)

F̃µν ≡ F̃µν − 2
¯̃
λΓ[ν∂µ]λ̃ . (4.25)

When the limit f → 0 in the action of the D-brane is taken with fields λ̃α and F̃µν fixed,

the total action of the D-brane vanishes. This is consistent with the fact that the total

S multiplet disappears. During inflation when f > 0 the fermionic goldstinos exist in the

action in agreement with the nilpotent S2 = 0 multiplet, however, when f → 0 it means

that λλ/f becomes fλ̃λ̃ and disappears in the limit f → 0. In such case the degrees of

freedom on the D-brane decouple near the exit from inflation.

5 Manifestly supersymmetric uplifting using Dp-branes

Adding other fields and taking more general superpotential W by adding an S-

independent part,

W = Sf(Φ, T i) +W (T i) , (5.1)
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where S is a nilpotent field, may allow us to uplift AdS and Minkowski vacua to dS as well

as to study more general inflationary models. Even more general models of cosmology may

be studied, which have more chiral nilpotent superfields, as well as other unconstrained

chiral superfields. According to the superconformal action (2.4), supergravity models with

any number of chiral multiplets and nilpotent chiral multiplets are now available. We

expect that these models will be studied in the future.

A combination of models including string theory volume modulus used in the KKLT

models [68] or KL models [69] with some other superfields, matter multiplets and hidden

sector superfields including the so-called Polonyi models [70], was constructed and studied

in [90–92] and [67]. In all of these models, the superfield S is an unconstrained superfield,

which is either zero or takes some other constant value at the minimum of the potential. Its

presence in the theory helped to uplift AdS or Minkowski vacua of the KKLT-type models

to dS vacua. However, as we already mentioned, it was not easy to find an interpretation

of the superfield S from the string theory perspective.

In this section, we will give a brief overview of the new approach to uplifting when the

superfield S in (5.1) is nilpotent.

5.1 O’KKLT uplifting with the nilpotent multiplet

To explain how things changed now when we restrict S by the nilpotent condition, S2 = 0,

let us look at the O’KKLT models in [67], where O’ refers to the underlying O’Raifeartaigh

model. In this model there are two relatively heavy fields which are integrated out. This

leads to the effective O’KKLT supergravity models with

W =W0 +Ae−aρ − µ2S, K = −3 ln(ρ+ ρ) + SS̄ − (SS̄)2

Λ2
. (5.2)

The complete potential V (σ, α, x, y) as a function of 4 scalars,

ρ = σ + iα , S = x+ iy . (5.3)

at small SS̄, can be represented in a rather compact form

VO′KKLT = VKKLT (ρ, ρ̄) +
VO′(S, S̄)

(ρ+ ρ̄)3
− i(S − S̄)V3 + (S + S̄)V4 + SS̄V5 . (5.4)

Here the potential of the quantum corrected O’Raifeartaigh model VO′(S, S̄) is

VO′(S, S̄) = µ4e
SS̄(Λ2

−SS̄)

Λ2

[

(

Λ2(1 + (SS̄)− 2(SS̄)2
)2

Λ4 − 4Λ2SS̄
− 3SS̄

]

, (5.5)

and separately is has a minimum at S = x + iy = 0. V3(ρ, ρ̄, S, S̄), V4(ρ, ρ̄, S, S̄) and

V5(ρ, ρ̄, S, S̄) depend on S, S̄ polynomially.

The KKLT potential VKKLT (ρ, ρ̄), taken separately, has an AdS minimum at the

vanishing axion, α = 0, and at some (large) value of σ. It was established in [67] that the

values of the axion fields α and y at the minimum of the combined potential remain equal

to zero, whereas the values of σ and x are slightly shifted.
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According to the rules explained earlier, the potential in the new O’KKLT model

follows from

W =W0 +Ae−aρ − µ2S , K = −3 ln(ρ+ ρ) + SS̄ at S2 = 0 . (5.6)

Here S in the nilpotent generalization of the Polonyi field. Now, after computing the

potential, we have to set the scalar part of the superfield S to zero. Therefore we do not

need the stabilization term − (SS̄)2

Λ2 . We find

VNewO′KKLT = VKKLT (ρ, ρ̄) +
µ4

(ρ+ ρ̄)3
. (5.7)

This shows that (5.6) corresponds to a manifestly supersymmetric version of uplifting of

the KKLT model (improving the purely bosonic expression for the uplifting term from the

anti-D-3 brane used in [68]).

In case we would start with the model

W =W0 +Ae−aρ − µ2S , K = −3 ln(ρ+ ρ− SS̄) at S2 = 0 . (5.8)

the uplifted potential would be

V warped
NewO′KKLT = VKKLT (ρ, ρ̄) +

µ4

(ρ+ ρ̄)2
. (5.9)

as expected in the situation with warping [93]. Here one can see it from our general formula

Veff = eKKSS̄ |WS |2.
Thus we have shown here that once the uplifting O’KKLT-type models used in [67, 90–

92] are modified to include a nilpotent chiral multiplet, they become string theory moti-

vated via Dp-branes and provide a manifestly supersymmetric uplifting to dS vacua for

numerous AdS vacua in the stringy landscape. The price for this is a non-linearly real-

ized spontaneously broken supersymmetry of the Volkov-Akulov type with a complicated

fermion action, which is present on the world-volume of the Dp-branes.

5.2 More models with Polonyi superfield replaced by a nilpotent one

A similar generalization/simplification is available for the recent string theory motivated

analytic classes of metastable de Sitter vacua where only the unconstrained chiral super-

fields are involved [94]. One may start with the KL model [69] with K = −3 log(T + T̄ )

and the racetrack potential

WKL(T ) =W0 +Ae−aT −Be−bT . (5.10)

The term Be−bT allows the new model to have a supersymmetric Minkowski solution.

Indeed, for the particular choice of W0,

W0 = −A
(

aA

bB

)
a

b−a

+B

(

aA

bB

)
b

b−a

, (5.11)
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the potential of the field T has a supersymmetric minimum T0 = 1
a−b ln

(

aA
bB

)

with

WKL(T0) = 0, DρWKL(T0) = 0, and V (T0) = 0. To achieve supersymmetry breaking

one can add to this model the Polonyi field C. The Kähler and superpotential are

K = K(T ) + CC̄ − (CC̄)2

Λ2
, W =W (T ) + µ1 + µ2C . (5.12)

Here µi are supposed to be very small. Depending on the relation between µi, this may

either lead to a downshift of the Minkowski minimum, making it AdS (for µ22 < 3µ21), or

uplift it to a dS minimum (for µ22 > 3µ21). To obtain a slightly uplifted state with the

present value of the cosmological constant ∼ 10−120, one should have µ22 ≈ 3µ21. In this

case m2
C =

3µ2
1

2T 3
0Λ

2 , which becomes superheavy in the limit Λ → 0 [94, 95].

What happens to this scenario if one takes the Polonyi field C which belongs to the

nilpotent multiplet? This field vanishes, which is similar to what happens in the model

considered above in the limit Λ → 0. However, now we do not need the stabilization term
(CC̄)2

Λ2 , and we have string theory interpretation of the uplifting.

Moreover, in this scenario the Polonyi field C does not cause the famous cosmological

moduli problem, which bothered cosmologists for more than three decades [96–100]. This

problem does not appear because this superfield is nilpotent, and therefore the scalar

vanishes by construction.

The situation with uplifting in other string theory models is very similar. One of the

examples is the STU model with a Minkowski vacuum with all moduli stabilized, with

K(S, T, U) = − log(S + S̄)− 3 log(T + T̄ )− 3 log(U + Ū) , (5.13)

W (S, T, U) = A (S − S0)(1− c e−aT ) +B (U − U0)
2 . (5.14)

The potential has a stable supersymmetric minimum at S = S0, U = U0 and T = log c
a .

Just as in the KL model, one can uplift this stable Minkowski vacuum to a metastable

dS vacuum by adding the Polonyi field C as we did in (5.12) with µ1 ∼ µ2 ≪ 1, and

Λ ≪ 1 [94]:

K = K(S, T, U) + CC̄ − (CC̄)2

Λ2
, W =W (S, T, U) + µ1 + µ2C . (5.15)

In fact, for some parameters of this model, uplifting can be realized even in the absence of

the stabilizing term − (CC̄)2

Λ2 ; however, this term certainly helps.

Once again, for the nilpotent Polonyi field C, we do not need any stabilization terms.

The field C vanish as in the original model in the limit Λ− > 0. Thus, the uplifting, which

was realized in the original model in [94], is achieved even easier in the model with the

nilpotent Polonyi field C,

K = K(S, T, U) + CC̄ , W =W (S, T, U) + µ1 + µ2C at C2 = 0 . (5.16)

6 Discussion

Volkov-Akulov construction of a non-linearly realized supersymmetry [26, 27] had a pur-

pose of describing a massless Goldstone spin 1/2 fermion in Minkowski space, for example
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neutrino. This supermultiplet does not have a scalar spin 0 partner, as different from the

models with linear supersymmetry. VA theory was invented before we knew that neutrino

is not massless and the space-time is not Minkowski but de Sitter with a cosmological

constant Λ ∼ 10−120M4
P . Several authors noted that this parameter could be related to

the neutrino mass as mν ∼ Λ1/4 ∼ 10−2eV. This relation remains puzzling and suggests

that, perhaps, better understanding of the Volkov-Akulov construction and developing on

it might be useful. In particular, the general investigation of the fermionic sector of this

theory is in order, if one would like to relate it to particle phenomenology.

In our paper, we concentrated on other aspects of the VA construction, related to its

bosonic sector. We studied general cosmological issues such as inflation and string theory

moduli stabilization by including the VA supermultiplet interacting with supergravity and

other chiral superfields. The technical tool for including Volkov-Akulov supermultiplet was

to use it in the form of a nilpotent chiral multiplet, S2 = 0, as suggested by Rocek in [28–

31]. The first important modification of the supersymmetric version of the Starobinsky

inflation [1–3] by replacing one of the superfields in this model by a nilpotent one was

made in [35].

In this paper we found that a large number of the previously studied inflationary

models in supergravity [1–14] can be easily updated to replace one the superfields by the

nilpotent one. The superpotential of these models is linear in a chiral superfield S, which

in the new versions of these models has to be replaced by the nilpotent S satisfying the

constraint S2 = 0, so that these new models now include the VA goldstino supermultiplet.

All these models are significantly simplified when one of the superfields is nilpotent, and we

explained the relation between the old and new models. The bosonic part of the theory is

simpler, and since only the bosonic part is immediately relevant to inflationary cosmology,

the new inflationary models look significantly more attractive. The scalar component

of the nilpotent supermultiplet is replaced by the fermion bilinear, it does not need to be

stabilized, many terms in the bosonic action vanish, investigation of the existing inflationary

models is considerably simplified, and many new inflationary models become possible.

Another interesting aspect of the new model is that the Dp-brane actions in string

theory are ultimately related to the VA actions [63, 64]. The fermions which leave on the

world-volume of the Dp-brane have a non-linearly realized spontaneously broken super-

symmetry. In this sense, our new models of inflation with one of the superfields replaced

by a nilpotent one, originate from string theory. This means, in particular, that this set of

models may provide a manifestly supersymmetric basis for axion monodromy supergravity

models related to string theory via Dp-branes interacting with the supergravity background.

We also demonstrated that the new models with the nilpotent goldstino multiplet provide

a simple manifestly supersymmetric uplifting mechanism in the KKLT-type constructions.

Acknowledgments

We are grateful to A. Antoniadis, E. Bergshoeff, C. Cecotti, E. Dudas, K. Olive, A. Van

Proeyen and A. Westphal for collaboration on closely related recent projects, on which

our current work is based. We would like to thank S. Kachru, M. Porrati, D. Roest, A.

– 21 –



J
H
E
P
1
0
(
2
0
1
4
)
1
4
3

Sagnotti, E. Silverstein, B. Vercnocke and T. Wrase for enlightening conversations. SF

is supported by ERC Advanced Investigator Grant n. 226455 Supersymmetry, Quantum

Gravity and Gauge Fields (Superfields). RK and AL are supported by the SITP and by

the NSF Grant PHY-1316699 and RK is also supported by the Templeton foundation grant

‘Quantum Gravity Frontiers’.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to

matter. 1, Phys. Lett. B 190 (1987) 86 [INSPIRE].

[2] R. Kallosh and A. Linde, Superconformal generalizations of the Starobinsky model,

JCAP 06 (2013) 028 [arXiv:1306.3214] [INSPIRE].

[3] S. Ferrara, R. Kallosh and A. Van Proeyen, On the supersymmetric completion of R+R2

gravity and cosmology, JHEP 11 (2013) 134 [arXiv:1309.4052] [INSPIRE].

[4] M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity,

Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].

[5] R. Kallosh and A. Linde, New models of chaotic inflation in supergravity,

JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].

[6] R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity,

Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].

[7] R. Kallosh, A. Linde and B. Vercnocke, Natural inflation in supergravity and beyond,

Phys. Rev. D 90 (2014) 041303 [arXiv:1404.6244] [INSPIRE].

[8] R. Kallosh, A. Linde and A. Westphal, Chaotic inflation in supergravity after Planck and

BICEP2, Phys. Rev. D 90 (2014) 023534 [arXiv:1405.0270] [INSPIRE].

[9] R. Kallosh and A. Linde, Superconformal generalization of the chaotic inflation model
λ
4
φ4 − ξ

2
φ2R, JCAP 06 (2013) 027 [arXiv:1306.3211] [INSPIRE].

[10] R. Kallosh and A. Linde, Universality class in conformal inflation, JCAP 07 (2013) 002

[arXiv:1306.5220] [INSPIRE].

[11] R. Kallosh, A. Linde and D. Roest, Universal attractor for inflation at strong coupling,

Phys. Rev. Lett. 112 (2014) 011303 [arXiv:1310.3950] [INSPIRE].

[12] R. Kallosh, A. Linde and D. Roest, Superconformal inflationary α-attractors,

JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].

[13] S. Cecotti and R. Kallosh, Cosmological attractor models and higher curvature supergravity,

JHEP 05 (2014) 114 [arXiv:1403.2932] [INSPIRE].

[14] R. Kallosh, A. Linde and D. Roest, Large field inflation and double α-attractors,

JHEP 08 (2014) 052 [arXiv:1405.3646] [INSPIRE].
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