
J
H
E
P
0
8
(
2
0
1
3
)
0
3
3

Published for SISSA by Springer

Received: March 8, 2013

Revised: June 17, 2013

Accepted: July 21, 2013

Published: August 7, 2013

Renormalization of dimension-six operators relevant

for the Higgs decays h → γγ, γZ
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Abstract: The discovery of the Higgs boson has opened a new window to test the SM

through the measurements of its couplings. Of particular interest is the measured Higgs

coupling to photons which arises in the SM at the one-loop level, and can then be signifi-

cantly affected by new physics. We calculate the one-loop renormalization of the dimension-

six operators relevant for h → γγ, γZ, which can be potentially important since it could,

in principle, give log-enhanced contributions from operator mixing. We find however that

there is no mixing from any current-current operator that could lead to this log-enhanced

effect. We show how the right choice of operator basis can make this calculation simple. We

then conclude that h → γγ, γZ can only be affected by RG mixing from operators whose

Wilson coefficients are expected to be of one-loop size, among them fermion dipole-moment

operators which we have also included.

Keywords: Higgs Physics, Beyond Standard Model, Renormalization Group

ArXiv ePrint: 1302.5661

Open Access doi:10.1007/JHEP08(2013)033

mailto:jelias@ifae.es
mailto:espinosa@ifae.es
mailto:eduard.masso@ifae.es
mailto:pomarol@ifae.es
http://arxiv.org/abs/1302.5661
http://dx.doi.org/10.1007/JHEP08(2013)033


J
H
E
P
0
8
(
2
0
1
3
)
0
3
3

Contents

1 Introduction 1

2 Dimension-six operator basis 2

3 Non-renormalization of h → γγ, γZ from current-current operators 5

4 The importance of the choice of basis 7

5 Renormalization group equation for κγγ and κγγ̃ 10

6 RGEs for κγZ and κ
γZ̃

and a new basis 11

7 Dipole operators 14

8 The S parameter 15

9 Conclusions 16

A Change of basis by field redefinitions 18

1 Introduction

The discovery by the LHC [1, 2] of the long-sought Higgs boson is a landmark in our quest

for understanding the mechanism of electroweak symmetry breaking, which is now open to

experimental scrutiny. It is important to measure with precision the Higgs couplings not

only to put the Standard Model (SM) to yet another test, but also because one generically

expects deviations from the SM values in most extensions of the SM, particularly those

that address the hierarchy problem. Among all experimentally accessible couplings, the

Higgs coupling to two photons is particularly interesting. It has played a central role in the

Higgs discovery and, as it arises in the SM at one-loop level, it can be significantly affected

by new physics. Furthermore, there are tantalizing experimental hints of deviations of the

h → γγ rate from SM expectations [1, 2]. Another related and interesting Higgs-decay is

h → γZ, which is also induced at the one-loop level in the SM, and will be accessible in

the near future.

New-physics effects on SM Higgs decays can be systematically studied by means of

higher-dimensional operators. This approach is valid whenever the new-physics mass-

scale Λ is much heavier than the Higgs mass mh, a condition that recent LHC searches

seem to suggest. The purpose of this article is to calculate the renormalization group

equations (RGEs) for the dimension-six operators responsible for h → γγ, γZ at the one-

loop level. Our main interest is to look for log-enhanced contributions coming from operator
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mixings. Particularly interesting are those contributions that could arise from mixings with

operators induced at tree-level by the theory at high-energies. These can potentially give

corrections to the hγγ and hγZ couplings of order ∼ g2Hv2 log(Λ/mh)/(16π
2Λ2) where gH

is the coupling of the Higgs to the heavy sector and v is the Fermi scale.

Recently, ref. [3] has argued that these type of contributions could in fact be present

for a general class of models as, for example, those in ref. [5], although the result was based

on a calculation that included only a partial list of operators and not the complete basis

set. We show however that such corrections are not present. The right choice of operator

basis is crucial to make the calculation of the anomalous dimensions simple. We work in a

basis where the dimension-six operators are classified according to the expected size of their

Wilson coefficients. We mainly consider two groups: those operators that can be written

as scalar or vector current-current operators (and could therefore arise at the tree-level by

the interchange of heavy fields), and the rest, expected to be induced at the one-loop level.

By working in this basis, we show that none of the current-current operators affects the

running of any one-loop operator. This is not a surprising result, as it is already known

to happen in other situations. For example, the magnetic moment operator responsible

for b → sγ does not receive log-contributions from current-current quark operators at the

one-loop level [4].

We also show how to reconcile our conclusion with the results of [3] by completing

the calculation done in the basis used in that analysis. Furthermore, we use the results

of ref. [3] to calculate the complete leading-log corrections to the operators responsible for

h → γγ and h → γZ. This is only affected by Wilson coefficients of one-loop operators,

and therefore these effects are not expected to be very large. Finally, we also extend the

calculation to include mixing with fermion dipole-moment operators.

2 Dimension-six operator basis

Whenever the mass-scale of new physics Λ is larger than the relevant energy-scale involved

in a SM process, we can parametrize all new-physics effects by higher-dimensional local

operators made from an expansion in

Dµ

Λ
,
gHH

Λ
,
gfL,R

fL,R

Λ3/2
,
gFµν

Λ2
. (2.1)

We denote by Dµ the covariant derivatives, gH and gfL,R
respectively account for the

couplings of the Higgs-doublet field H and SM fermion fL,R to the new heavy sector,

while g and Fµν are the SM gauge couplings and field-strengths. At leading order in

this expansion, and assuming lepton number is conserved, the dominant operators are of

dimension six. It is very important to choose the right set of independent dimension-six

operators that defines a complete basis. A suitable basis is one which can capture in

a simple way the impact of different new-physics scenarios. Since usually a given new-

physics scenario only generates a sub-class of operators, it is convenient to choose a basis

that does not mix these sub-classes, at least for the most interesting scenarios. Another

important requirement for the basis is that it should not mix operators whose coefficients
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are naturally expected to have very different sizes. For example, tree-level operators, that

can be induced in weakly-coupled renormalizable theories, should be kept separate from

one-loop induced ones. As already said, this is also important since, at the one-loop level,

it is frequently found that tree-level induced operators do not contribute to the RG flow of

one-loop induced ones.

Let us start considering only operators made of SM bosons. These can be induced from

integrating out heavy states in ”universal theories”, those whose fields only couple to the

bosonic sector of the SM. (A generalization including SM fermions will be given later.) The

appropriate basis was defined in ref. [5] and in it we can broadly distinguish three classes

of operators. The first two classes consist of operators that can in principle be generated

at tree-level when integrating out heavy states with spin ≤ 1 under the assumption of

minimal-coupling as defined in ref. [5] (or, alternatively, induced at tree-level from weakly-

coupled renormalizable theories). The operators of the first class are those that involve

extra powers of Higgs fields, and are expected to be suppressed by g2H/Λ2. Since gH can be

as large as ∼ 4π, the effects of these operators can dominate over the rest. The operators of

the second class involve extra (covariant) derivatives or gauge-field strengths and, according

to eq. (2.1), are generically suppressed by 1/Λ2. Finally, in the third class, we consider

operators that, in minimally-coupled theories, can only be induced at the one-loop level.

These operators are expected to be suppressed by g2H/(16π2Λ2), although they could be

further suppressed by an extra factor g2/g2H if the external fields are gauge bosons.

We can then classify the dimension-six operators as

L6 =
∑

i1

g2H
ci1
Λ2

Oi1 +
∑

i2

ci2
Λ2

Oi2 +
∑

i3

κi3
Λ2

Oi3 , (2.2)

where for notational convenience we introduce for the third type of operators the one-loop

suppressed coefficients

κi3 ≡ g2H
16π2

ci3 . (2.3)

All coefficients ci are of order ci ∼ O(1)×f(g/gH , . . .) . O(1), with f(g/gH , . . .) a function

that depends only on ratios of couplings and is not expected to be larger than order one.

In the first class of operators, Oi1 , suppressed by g2H/Λ2, we have1

OH =
1

2
(∂µ|H|2)2 , OT =

1

2

(
H†

↔

DµH

)2

, Or = |H|2|DµH|2 , O6 = λ|H|6 . (2.4)

Here we have defined H†
↔

DµH ≡ H†DµH − (DµH)†H, with DµH = ∂µH − igσaW a
µH/2−

ig′BµH/2, the standard covariant derivative (our Higgs doublet, H = (G+, (h+iG0)/
√
2)T ,

has hypercharge Y = 1/2). Finally, λ is the Higgs quartic coupling in the SM potential,

V = m2|H|2 + λ|H|4. By means of the redefinition H → H[1− crg
2
H |H|2/(2Λ2)] we could

trade the operator Or with [5]

Oy = |H|2
[
yuQ̄LH̃uR + ydQ̄LHdR + ylL̄LHlR

]
, (2.5)

1In O6 we have replaced a factor g2H by a factor λ, the Higgs self-coupling, as this is what appears

in theories in which the Higgs is protected by a symmetry. Similarly, for operators involving f̄LfRH we

include a Yukawa coupling, as in (2.5).
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where sum over all families is understood, and H̃ = iσ2H∗. Here yf are Yukawa couplings,

normalized as usual, with mf = yfv/
√
2 and v = 〈h〉 = 246GeV.

In the second class of operators, Oi2 , suppressed by 1/Λ2, we have2

OW =
ig

2
(H†σa

↔

DµH)DνW a
µν , OB =

ig′

2
(H†

↔

DµH)∂νBµν ,

O2W = −1

2
(DµW a

µν)
2 , O2B = −1

2
(∂µBµν)

2 , O2G = −1

2
(DµGa

µν)
2 .

(2.6)

The easiest way to see that the operators of eq. (2.4) and eq. (2.6) can be generated at tree-

level is to realize that they can be written as products of vector and scalar currents [5, 6].

For example, OT = (1/2)JH
µJHµ, where JH

µ = H†
↔

DµH, could arise from integrating out

a massive vector. We will refer to the operators (2.4) and (2.6) as ”current-current” or

”tree-level” operators.

In the third class of operators, Oi3 , suppressed by an extra loop factor, we have the

CP-even operators

OBB = g′2|H|2BµνB
µν , OGG = g2s |H|2Ga

µνG
aµν , (2.7)

OHW = ig(DµH)†σa(DνH)W a
µν , OHB = ig′(DµH)†(DνH)Bµν , (2.8)

O3W = gǫabcW
a ν
µ W b

νρW
c ρµ , O3G = gsfabcG

a ν
µ Gb

νρG
c ρµ , (2.9)

and the CP-odd operators

O
BB̃

= g′2|H|2BµνB̃
µν , O

GG̃
= g2s |H|2Ga

µνG̃
aµν , (2.10)

O
HW̃

= ig(DµH)†σa(DνH)W̃ a
µν , O

HB̃
= ig′(DµH)†(DνH)B̃µν , (2.11)

O
3W̃

= gǫabcW̃
a ν
µ W b

νρW
c ρµ , O

3G̃
= gsfabcG̃

a ν
µ Gb

νρG
c ρµ , (2.12)

where F̃µν = ǫµνρσFρσ/2. We will refer to these operators as ”one-loop suppressed” oper-

ators.

We emphasize again that the above classification is useful even when one is not working

under the minimally-coupled assumption of ref. [5]. When studying the RGEs of these

operators, we will find that, at leading order, current-current operators do not affect the RG

running of one-loop suppressed operators (irrespective of their UV origin). Furthermore,

the above classification can also be useful to parametrize the effects of strongly-coupled

models. In particular, if the Higgs is part of the composite meson states, taking gH ∼ 4π

gives the correct power counting for strongly-coupled theories with no small parameters.

One finds in this case that operators of the first class are the most relevant, while operators

of the second and third class have the same 1/Λ2 suppression. Also the basis is suited

for characterizing holographic descriptions of strongly-coupled models [5]. In this case

gH ∼ 4π/
√
N , where N plays the role of the number of colors of the strong-interaction,

and then operators of the first and second class are less suppressed than operators of the

third class.

2 The operator O4K = |D2

µH|2 can be eliminated by a field redefinition of H. See appendix for details.
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3 Non-renormalization of h → γγ, γZ from current-current operators

The operator basis introduced in the previous section is particularly well-suited to describe

new-physics contributions to h → γγ, which come only from two operators: the CP-even

OBB and the CP-odd O
BB̃

. On the other hand, h → γZ comes (on-shell) from OBB, OHB,

OHW and their CP-odd counterparts. The relevant Lagrangian terms for such decays are

δLγγ =
e2

2Λ2

[
κγγ h

2FµνF
µν + κγγ̃ h

2FµνF̃
µν
]
,

δLγZ =
eG

2Λ2

[
κγZ h2FµνZ

µν + κ
γZ̃

h2FµνZ̃
µν
]
, (3.1)

where e = gg′/G andG2 = g2+g′2. The photon field, Aµ = cwBµ+swW
3
µ , has field-strength

Fµν , while Zµ = cwW
3
µ − swBµ has field-strength Zµν , where we use sw ≡ sin θw = g′/G

and cw ≡ cos θw = g/G. We have

κγγ = κBB , κγZ =
1

4
(κHB − κHW )− 2s2wκBB ,

κγγ̃ = κ
BB̃

, κ
γZ̃

=
1

4
(κ

HB̃
− κ

HW̃
)− 2s2wκBB̃

. (3.2)

The Wilson coefficients of these dimension-six operators are generated at the scale Λ, at

which the heavy new physics is integrated out, and they should be renormalized down to

the Higgs mass, at which they are measured in Higgs decays. Let us focus for simplicity on

κγγ , as similar considerations will be applicable to κγγ̃ , κγZ , κγZ̃ . At one-loop leading-log

order one has, running from Λ to the Higgs mass mh:

κγγ(mh) = κγγ(Λ)− γγγ log
Λ

mh
. (3.3)

Here, γγγ = dκγγ/d logµ, with µ the energy scale, is the one-loop anomalous dimension

for κγγ . In principle, γγγ can depend on the Wilson coefficients of any dimension-six

operator in eq. (2.2). A particularly interesting case would be if the RGEs were to mix

the tree-level operators into the RG evolution of one-loop suppressed operators, such as

OBB. In that case we would expect γγγ ∼ g2H/(16π2) from mixings with the operators of

eq. (2.4), or γγγ ∼ g2/(16π2) from mixings with (2.6). Such loop effect could give a sizeable

contribution to κγγ(mh), logarithmically enhanced by a factor log Λ/mh. The initial value

κγγ(Λ), expected to be one-loop suppressed, would then be subleading.

Remarkably, and this is our main result, there is no mixing from tree-level opera-

tors (2.4)–(2.6) to one-loop suppressed operators (2.7)–(2.12), at least at the one-loop

level. This can be easily shown for the renormalization of κγγ . The argument goes as

follows. Let us first consider the effects of the first-class operators, eq. (2.4). Since these

operators have four or more H, their contribution to the renormalization of κγγ can only

arise from a loop of the electrically-charged G± with at least one photon attached to the

loop. However,

• O6 has too many Higgs legs to contribute.
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• OH is simply ∂µ(h
2 + G2

0 + 2G+G−)∂µ(h2 + G2
0 + 2G+G−)/8 and this momentum

structure implies that a G± loop can only give a contribution ∝ ∂µh
2, which is not

the Higgs momentum structure of eq. (3.1).

• OT does not contain a vertex h2G+G−.

• Or can be traded with Oy, which clearly can only give one-loop contributions to

operators ∝ |H|2H, so it only contributes to the RGE of itself and O6.

We conclude that there is no contribution from these operators to the RGE of κγγ . To gen-

eralise the proof that no operator in (2.4) contributes to the one-loop anomalous-dimension

of any operator in (2.7)–(2.9),3 we have calculated explicitly the one-loop operator-mixing.

We find that the only operators involving two Higgs and gauge bosons that can be affected

by (2.4) are the tree-level operators (2.6). The result is given in section 4.

For the operators of eq. (2.6), proving the absence of one-loop contributions to the

anomalous dimension of (2.7)–(2.9) is even simpler. By means of field redefinitions, as

those given in the appendix, or, equivalently, by using the equations of motion,4 we can

trade the operators (2.6) with operators of eq. (2.4), four-fermion operators and operators

of the type

Of
R = (iH†

↔

DµH)(f̄Rγ
µfR),

Of
L = (iH†

↔

DµH)(f̄Lγ
µfL),

Of (3)
L = (iH†σa

↔

DµH)(f̄Lγ
µσafL) . (3.4)

Now, four-fermion operators contain too many fermion legs to contribute to operators made

only of SM bosons. Concerning the operators of eq. (3.4), after closing the fermion legs

in a loop, it is clear that they can only give contributions to operators with the Higgs

structure H†
↔

DµH or H†σa
↔

DµH, corresponding to the tree-level operators (2.6). This

completes the proof that no current-current operator contributes to the running of any

one-loop suppressed operator.

The calculation above could have also been done in other operator bases. To keep the

calculation simple, it is crucial to work in bases that do not mix current-current operators

with one-loop suppressed ones. This is guaranteed if we change basis by means of SM-field

redefinitions, as shown in the appendix. We can make use of these field-redefinitions to

work in bases that contain only 3 operators made of bosons, the rest consisting of operators

involving fermions, such as those in eq. (2.5), eq. (3.4) or 4-fermion operators. There are

different options in choosing these 3 operators; what is physically relevant are the 3 (shift-

invariant) combinations of coefficients in eq. (A.3). This freedom can be used to select the

set of 3 operators most convenient to prove, in the simplest way, that their contribution

to the running of κγγ and κZγ is zero at the one-loop level. For example, we could have

3Obviously, their contribution to the CP-odd operators (2.10)–(2.12) is zero as the SM gauge-boson

couplings conserve CP.

4That is, 2DνW a
µν = igH†σa

↔
DµH+gf̄Lσ

aγµfL and ∂νBµν = ig′H†
↔
DµH/2+g′Y f

L f̄LγµfL+g′Y f
R f̄RγµfR,

where Y f
L,R are the fermion hypercharges and a sum over fermions is understood.
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chosen O2B instead of OT : since O2B only affects the propagator of the neutral state Bµ,

one can easily see that it cannot contribute to the hγγ or hγZ coupling.

Let us finally mention that there is an alternative way to see that the running of κγγ
is not affected at the one-loop level by tree-level operators. This corresponds to showing

that any heavy charged state of mass M , coupled to photons only through the covariant

derivative, gives at the one-loop level a contribution to the effective hγγ coupling that does

not contain terms like logM/mh (which in the effective theory below M are interpreted

as the running from M to mh). We can easily show the absence of such logarithms by

working in the limit M ≫ mh where we can use low-energy theorems [7] to relate the hγγ

coupling to the two-point function of the photon. At the one-loop level we have

κγγ(µ)

Λ2
= − 1

4v

∂

∂h

1

e2eff(µ, h)

∣∣∣∣
h=v

, (3.5)

where eeff(µ, h) is the effective electric coupling calculated in a nonzero Higgs background:

1

e2eff(µ, h)
=

1

e2(ΛUV)
+

ba
16π2

log
M(h)

ΛUV
+

bb
16π2

log
µ

M(h)
, (3.6)

with ba,b being respectively the beta-function of the gauge coupling above and below M(h),

the mass of the heavy state in the Higgs background. From eq. (3.5) and eq. (3.6) we have

γγγ =
Λ2

16π2

d

d logµ

[
(bb − ba)

4vM(h)

∂M(h)

∂h

]∣∣∣∣
h=v

= 0 , (3.7)

due to the fact that ba,b are independent of µ at the one-loop level. Simply put, a heavy

charged particle with mass M contributes to the running of the photon two-point function

through a loop which only contains that particle itself, and therefore no log-terms involving

the light-state masses are possible.

4 The importance of the choice of basis

The relevance of the possible contributions from tree-level operators to the one-loop RGE

of κγγ and κγZ has been highlighted recently in ref. [3]. In fact, that analysis claims that

such important effect could actually occur, in contradiction with the results presented in

the previous section. In this section we show how this contradiction is resolved.

The analysis in ref. [3], GJMT in what follows, focuses on a subset of dimension-six

operators, chosen to be OBB and the two operators

OWB = gg′(H†σaH)W a
µνB

µν , OWW = g2|H|2W a
µνW

aµν , (4.1)

which are not included in the basis we have used. The relation to our basis follows from

the two operator identities:

OB = OHB +
1

4
OWB +

1

4
OBB , (4.2)

OW = OHW +
1

4
OWW +

1

4
OWB , (4.3)

– 7 –
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which allow us to remove OWW and OWB in favor of OB and OW . The two operators

OHW and OHB were also mentioned in ref. [3], although their effect was not included in

the analysis. To understand the issues involved it will be sufficient to limit the operator

basis to five operators, with the two bases used being

B1 = {OBB,OB,OW ,OHW ,OHB} , (this work) (4.4)

B2 = {OBB,OWW ,OWB,OHW ,OHB} , (GJMT). (4.5)

In relating both bases we will use primed Wilson coefficients for the GJMT basis

L6 =
∑

i

c′i
Λ2

Oi , (4.6)

and the dictionary to translate between B1 and B2 is:

κHW = c′HW − 4c′WW ,

κHB = c′HB + 4(c′WW − c′WB) ,

κBB = c′BB + c′WW − c′WB ,

cW = 4c′WW ,

cB = 4(c′WB − c′WW ) . (4.7)

From these relations we can directly write the expressions for κγγ and κγZ going from (3.2)

to the GJMT basis:

κγγ = c′BB + c′WW − c′WB ,

κγZ = 2c2wc
′
WW − 2s2wc

′
BB − (c2w − s2w)c

′
WB +

1

4
(c′HB − c′HW ) . (4.8)

Let us first note that the operator identities (4.2) and (4.3) show that two operators

of the GJMT basis, OWW and OWB, are a mixture of tree-level operators and one-loop

suppressed ones of basis B1. This has the following drawback. Let us suppose that the op-

erator OW is generated, for example, by integrating out a heavy SU(2)-triplet gauge boson

(see e.g. [6]). This operator can be written in the GJMT basis by using the identity (4.3),

but then the coefficients of the operators OWW , OWB and OHW generated in this way

will all be correlated. In this particular example, we will have c′WW = c′WB = c′HW /4.

This is telling us that when using the GJMT basis to study the physical impact of this

scenario we must include the effects of all operators, and not only a partial list of them,

as done in ref. [3]. Otherwise, one can miss contributions of the same size that could lead

to cancellations. The same argument goes through for scenarios generating the tree-level

operator OB. In general, the correlation of the coefficients in the GJMT basis is explicitly

– 8 –
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shown in the reversed dictionary:

c′WW =
1

4
cW ,

c′WB =
1

4
(cB + cW ) ,

c′BB =
1

4
cB + κBB ,

c′HW = cW + κHW ,

c′HB = cB + κHB . (4.9)

Obviously, physics does not depend on what basis is used, which is a matter of choice, as

long as the full calculation is done in both bases. Reducing, however, the calculations to

a few operators in a given basis can be dangerous as this can leave out important effects.

This is especially true in bases whose operators are a mixture of operators with Wilson

coefficients of different sizes. For this reason the basis B1 is preferable to B2.

To explicitly show how this correlation between Wilson coefficients can lead to cancel-

lations in the final result, let us consider a particularly simple example: the calculation of

the radiative corrections to the operators OWW , OBB and OWB proportional to λ. This

is partly given in the analysis of [3], apparently showing a one-loop mixing from tree-level

operators to one-loop suppressed ones. As obtained in [3], the λ-dependent piece of the

anomalous-dimension matrix for c′BB, c
′
WW , c′WB is given by

d

d logµ




c′BB

c′WW

c′WB


 =

1

16π2




12λ 0 0

0 12λ 0

0 0 4λ







c′BB

c′WW

c′WB


+ . . . . (4.10)

From (4.8), one obtains the RGE

γγγ =
dκγγ
d logµ

=
4λ

16π2
(3κγγ + 2c′WB) + . . . , (4.11)

showing explicitly that the coefficient c′WB, which can be of tree-level size in the GJMT basis

[see (4.9)], affects the running of the one-loop suppressed κγγ . This apparent contradiction

with our previous result is, as expected, resolved by adding the effect of the operators OHW

and OHB in the renormalization of κγγ . We obtain the (λ-dependent) contributions

dc′BB

d log µ
= − 3λ

16π2
c′HB ,

dc′WW

d log µ
= − 3λ

16π2
c′HW ,

dc′WB

d log µ
= − λ

16π2
(c′HB + c′HW ) , (4.12)

which change the RGE (4.11) into

γγγ =
2λ

16π2
(6κγγ + 4c′WB − c′HB − c′HW ) . (4.13)

These additional contributions eliminate the possibly sizeable tree-level correction from

c′WB. Indeed, using (4.9), we explicitly see that the contributions proportional to cW and

cB cancel out, giving

γγγ =
2λ

16π2

(
6κγγ − κHB − κHW

)
, (4.14)
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leaving behind just corrections from one-loop suppressed operators. This is not an accident:

this cancellation was expected from our discussion in the previous section. Beyond the λ-

dependent terms we have examined, the same cancellation will necessarily occur for the

rest of the potentially sizeable contributions to γγγ identified in [3].

5 Renormalization group equation for κγγ and κγγ̃

In this section we use the results of ref. [3], combined with our results in section 3, to obtain

γγγ . Let us write the RGEs for the Wilson coefficients in basis B2 in a compact way as

16π2 dc′i
d logµ

=
5∑

j=1

b′i,jc
′
j . (5.1)

The b′i,j is a 5×5 anomalous-dimension matrix of which the 3×3 submatrix corresponding

to i, j = 1− 3 (that is, c′BB, c
′
WW , c′WB) was calculated in [3], while the rest is unknown.

From κγγ =
∑5

i=1 ζic
′
i where ζi = (1, 1,−1, 0, 0), we have

16π2γγγ =
5∑

i,j=1

ζib
′
i,jc

′
j . (5.2)

Using eq. (4.9), we can translate this anomalous dimension to our basis. We get

16π2γγγ =
5∑

i=1

ζi(b
′
i,BBκBB + b′i,HWκHW + b′i,HBκHB) (5.3)

+
1

4
cB

5∑

i=1

ζi(b
′
i,WB + b′i,BB + 4b′i,HB) +

1

4
cW

5∑

i=1

ζi(b
′
i,WW + b′i,WB + 4b′i,HW ) .

From our discussion in section 2, we know that the tree-level coefficients cB and cW do not

appear in this RGE. This means that the two last terms of eq. (5.3) must be zero, allowing

us to extract the sum of the unknown coefficients b′i,HB and b′i,HW in terms of coefficients

calculated in ref. [3]:

5∑

i=1

ζib
′
i,HB = −1

4

5∑

i=1

ζi(b
′
i,WB + b′i,BB) ,

5∑

i=1

ζib
′
i,HW = −1

4

5∑

i=1

ζi(b
′
i,WW + b′i,WB) . (5.4)

Notice that ζ4 = ζ5 = 0 is crucial to allow us to restrict the sums in the right-hand-side to

terms that were already calculated in [3]. Plugging the terms (5.4) back in (5.3), one gets

16π2γγγ =
5∑

i=1

ζi

[
b′i,BBκBB − 1

4
(b′i,WB + b′i,WW )κHW − 1

4
(b′i,BB + b′i,WB)κHB

]
. (5.5)

Using the coefficients b′i,WW , b′i,WB and b′i,BB from [3], one arrives at

16π2γγγ =

[
6y2t −

3

2
(3g2 + g′

2
) + 12λ

]
κBB +

[
3

2
g2 − 2λ

]
(κHW + κHB) . (5.6)
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This expression gives the one-loop leading-log correction to κγγ(mh). For the resummation

of the log terms we would need the full anomalous-dimension matrix. Nevertheless, this is

not needed for Λ ∼TeV since the log-terms are not very large.

The size of the contributions of eq. (5.6) to κγγ(mh) is expected to be of two-loop

order in minimally-coupled theories. Therefore, we have to keep in mind that the tree-level

operators of eq. (2.4), possibly entering in the RGE of κγγ at the two-loop level, could give

corrections of the same order. For strongly-coupled theories in which gH ∼ 4π, we could

have κi ∼ O(1), and the corrections from eq. (5.6) to h → γγ could be of one-loop size.

Of course, in principle, the initial values κi(Λ) will give, as eq. (3.2) shows, the dominant

contribution to h → γγ, γZ and not eq. (5.6). Nevertheless, it could well be the case that

|κBB(Λ)| ≪ 1 and |κHB(Λ) − κHW (Λ)| ≪ 1 due to symmetries of the new-physics sector.

For example, if the Higgs is a pseudo-Goldstone boson arising from a new strong-sector,

κBB(Λ) is protected by a shift symmetry and can only be generated by loops involving SM

couplings, while κHB(Λ) = κHW (Λ) ∼ g2H/(16π2) if the strong sector has an accidental

custodial O(4) symmetry5 [5]. In this case eq. (5.6) could give the main correction to the

SM decay h → γγ and could be as large as ∆Γγγ/Γ
SM
γγ ∼ g2v2/Λ2 log(Λ/mh) if gH ∼ 4π.

Notice also that there can be finite one-loop corrections to κγγ(mh) from the operators (2.4)

and (2.6) which can dominate over those in eq. (5.6). These were calculated in ref. [5].

A similar analysis can be performed for κγγ̃ , with the simplification that the operator

identities corresponding to eqs. (4.2) and (4.3) are, for the dual field strengths:

O
HB̃

+
1

4
O

WB̃
+

1

4
O

BB̃
= 0 , (5.7)

O
HW̃

+
1

4
O

WW̃
+

1

4
O

WB̃
= 0 , (5.8)

due to the Bianchi identity. The above equations do not mix tree and loop generated

operators; hence, from the calculation of [3] with the set {O
BB̃

,O
WW̃

,O
WB̃

} one can

obtain the γγγ̃ in terms of the coeficients of the operators {O
BB̃

,O
HB̃

,O
HW̃

} of our basis.

One arrives at the expected result: γγγ̃ = dκγγ̃/d log µ is given by the same expression as

γγγ but with the corresponding CP-odd coefficients instead of the CP-even ones.

6 RGEs for κγZ and κγZ̃ and a new basis

If we try to obtain the RGE for κγZ in the same way as for κγγ , we face the complication

that κγZ depends not only on c′BB, c
′
WW and c′WB, but also on c′HB and c′HW , and these

coefficients were not included in the calculation presented in ref. [3]. In other words, one

would need to calculate the anomalous-dimension matrix elements b′i,j for i = {HW,HB}
and j = {WW,WB,BB}, or, in our basis, to complete the 3 × 3 anomalous-dimension

matrix for κBB, κHW , κHB.

We can circumvent this difficulty by realizing that the operators OWW ,OBB and OWB

do not enter in the (one-loop) RGEs for c′HW and c′HB, so that the matrix elements required

5We have O(4) ≃ SU(2)L × SU(2)R × PLR under which PLR interchange L ↔ R. Under this PLR we

have cHW ↔ cHB . To make the transformation properties under this symmetry more manifest, it is better

to work with OWB , which is even under PLR, instead of OBB .

– 11 –



J
H
E
P
0
8
(
2
0
1
3
)
0
3
3

cV V ′

g

cV V ′

g, g
′

Figure 1. The only two diagrams that could give a contribution (at one loop) from OWW ,

OBB and OWB (with coefficient generically denoted as cV V ′ in the figure) to the renormal-

ization of OHW and OHB (or to OW and OB).

to get γγZ are in fact zero. In order to see this, notice that both OHW and OHB include

the trilinear pieces (with two Higgses and one gauge boson):

OHW = 2ig(∂µH)†σa(∂νH)∂µW
a
ν + · · · ,

OHB = 2ig′(∂µH)†(∂νH)∂µBν + · · · , (6.1)

while OWW ,OBB and OWB have two Higgses and at least two gauge bosons. Therefore, in

order to generate (at one loop) trilinears like those in (6.1), the only possibility is that one

of the two gauge boson legs is attached to the other gauge boson leg or to one of the Higgs

legs (see figure 1). In the first case (figure 1, left diagram) it is clear that the resulting Higgs

structure for the operator generated is either |H|2 or H†σaH and not that in (6.1) (in fact,

the diagram is zero). In the second case (figure 1, right diagram) the only structures that

result are either ∂µH†∂ν(HBµν) or ∂µH†σa∂ν(HW a
µν), which give zero after integrating

by parts.

We can therefore extract γγZ following the same procedure used for γγγ in the previous

section, and we obtain

16π2γγZ = κγZ

[
6y2t + 12λ− 7

2
g2 − 1

2
g′

2
]
+ (κHW + κHB)

[
2g2 − 3e2 − 2λ cos(2θw)

]
,

(6.2)

and a similar expression for γ
γZ̃

with the corresponding CP-odd operator coefficients in-

stead of the CP-even ones.

The arguments we have used to prove that OWW ,OBB and OWB do not enter into

the anomalous dimensions of OHW and OHB can be applied in exactly the same way to

prove that they do not generate radiatively the operators OW and OB which have exactly

the same trilinear structures displayed in eq. (6.1) for OHW and OHB. This immediately

implies that the 5× 5 matrix of anomalous dimensions will be block diagonal if instead of

using the bases in (4.4) and (4.5), we use instead the basis

B3 = {OBB,OWW ,OWB,OW ,OB} . (6.3)
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Calling ĉi, κ̂i the operator coefficients in this basis, we have

d

d logµ




κ̂BB

κ̂WW

κ̂WB

ĉW
ĉB




=

(
Γ̂ 03×2

02×3 X̂

)



κ̂BB

κ̂WW

κ̂WB

ĉW
ĉB




. (6.4)

Taking the anomalous-dimension matrix in the simple form (6.4) as starting point, it

is a trivial exercise to transform it to other bases. In the GJMT basis one gets

d

d logµ




c′BB

c′WW

c′WB

c′HW

c′HB




=

(
Γ̂ Y ′

02×3 X̂

)



c′BB

c′WW

c′WB

c′HW

c′HB




. (6.5)

The 3× 3 upper-left block is therefore given by the expression calculated in [3]:

Γ̂ =
1

16π2




6y2t + 12λ− 9
2g

2 + 1
2g

′2 0 3g2

0 6y2t + 12λ− 5
2g

2 − 3
2g

′2 g′2

2g′2 2g2 6y2t + 4λ+ 9
2g

2 − 1
2g

′2


 ,

(6.6)

while the 2 × 2 lower-right block X̂ has not been fully calculated in the literature. This

lack of knowledge affects also the 3× 2 block Y ′, which depends on the entries of X̂.

In basis B1 one gets instead:

d

d logµ




κBB

κHW

κHB

cW
cB




=

(
Γ 03×2

Y X̂

)



κBB

κHW

κHB

cW
cB




, (6.7)

where now

Γ =
1

16π2




6y2t + 12λ− 9
2g

2 − 3
2g

′2 3
2g

2 − 2λ 3
2g

2 − 2λ

0 6y2t + 12λ− 5
2g

2 − 1
2g

′2 g′2

−8g′2 9g2 − 8λ 6y2t + 4λ+ 9
2g

2 + 1
2g

′2


 ,

(6.8)

while Y is also dependent on the unknown coefficients of X̂.6 We can reexpress Γ in terms

of the physically relevant combinations of coefficients κγγ and κγZ defined in (3.2) plus the

orthogonal combination κort ≡ κHW + κHB. One gets

d

d log µ




κγγ
κγZ
κort


 = Γo




κγγ
κγZ
κort


 , (6.9)

6Note that the lower-right block X̂ is exactly the same in all the three bases considered.
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where

Γo =
1

16π2




6y2t + 12λ− 9
2g

2 − 3
2g

′2 0 3
2g

2 − 2λ

0 6y2t + 12λ− 7
2g

2 − 1
2g

′2 2g2 − 3e2 − 2λ cos(2θw)

−16e2 −4g2 + 4g′2 6y2t + 4λ+ 11
2 g

2 + 1
2g

′2


 ,

(6.10)

from which we explicitly see that κγZ does not renormalize κγγ and vice versa.

We have seen that the expression for the anomalous-dimension matrix takes the sim-

plest block-diagonal form in basis B3. This basis has also the virtue of B1 of keeping sep-

arated current-current operators from one-loop suppressed ones. Indeed, using eqs. (4.2)

and (4.3), we can reach B3 from B1 by trading two one-loop suppressed operators, OHW

and OHB, by other two one-loop suppressed ones, OWW and OWB. In spite of the fact that

the anomalous-dimension matrix gets its simplest form in basis B3, there are other advan-

tages in using basis B1. For example, in B1 only one operator contributes to h → γγ, while

there are three in basis B3. Also B1 is a more suitable basis to describe the low-energy

effective theory expected for a pseudo-Goldstone Higgs boson [5], as it clearly identifies

operators invariant under constant shifts H → H + c.

7 Dipole operators

The above analysis can be easily extended to include contributions from operators in-

volving SM fermions. We will limit the discussion here to the up-quark sector, having in

mind possible large contributions from the top. The extension to other SM fermions is

straightforward. We organize again the operators as tree-level and one-loop suppressed

ones. Among the first type we have the operators already given in eq. (2.5), eq. (3.4),

apart from four-fermion operators. In section 3, however, we already showed that they

cannot contribute to the anomalous dimension of the operators (2.7)–(2.12) at the one-

loop level. Among one-loop suppressed operators made with SM fermions, we have the

dipole operators

ODB = yuQ̄Lσ
µνuR H̃g′Bµν ,

ODW = yuQ̄Lσ
µνuR σaH̃gW a

µν ,

ODG = yuQ̄Lσ
µνT auR H̃gsG

a
µν , (7.1)

where T a are the SU(3)C generators. These operators can, in principle, give contribu-

tions to other one-loop suppressed operators, as those relevant for h → γγ, γZ. We have

calculated that, indeed, such contributions are nonzero:

16π2γγγ = 8y2uNcQuRe[κDB + κDW ] ,

16π2γγγ̃ = −8y2uNcQuIm[κDB + κDW ] ,

16π2γγZ = 4y2uNc

{(
1

2
− 4Qus

2
w

)
Re[κDB] +

(
1

2
+ 2Quc2w

)
Re[κDW ]

}
,

16π2γ
γZ̃

= −4y2uNc

{(
1

2
− 4Qus

2
w

)
Im[κDB] +

(
1

2
+ 2Quc2w

)
Im[κDW ]

}
, (7.2)
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where Nc = 3, Qu = 2/3 is the electric charge of the up-quark, c2w = cos(2θw), and the κi
are the one-loop suppressed coefficients of the operators of eq. (7.1), i.e. δL = κiOi/Λ

2+h.c..

In the B3 basis, eq. (7.2) arises from

d

d log µ




κ̂BB

κ̂WW

κ̂WB


 =

4Ncy
2
u

16π2




0 Y u
L + Y u

R

1/2 0

−(Y u
L + Y u

R ) −1/2



(
κ̂DW

κ̂DB

)
, (7.3)

where Y u
L = 1/6 and Y u

R = 2/3 are the up-quark hypercharges. Similar results follow for

the RGE of the Higgs couplings to gluons, κGG and κ
GG̃

,7

16π2γGG = 4y2uRe[κDG] , 16π2γ
GG̃

= −4y2uIm[κDG] . (7.4)

8 The S parameter

As we have shown above, the Wilson coefficients of the current-current operators (2.4)–(2.6)

do not enter in the one-loop RGEs of the κi, but only in their own RGEs. In particular, the

only operators with two Higgs bosons and gauge bosons affected by cH,T at one loop are

OW and OB and not those relevant for h → γγ, γZ. Indeed, an explicit calculation gives

γW =
dcW
d logµ

= − g2H
16π2

1

3
(cH + cT ) , γB =

dcB
d logµ

= − g2H
16π2

1

3
(cH + 5cT ) . (8.1)

In the basis B1 of section 2, these are the only two Wilson coefficients that enter in the S-

parameter [12]. We have S = 4πv2[cW (mZ) + cB(mZ)]/Λ
2 where cW,B(mZ) is the value of

the coefficient at the Z mass. The contributions from eq. (8.1) to cW,B(mZ) can be sizeable

for gH ≫ 1 [13], although the value of cT is highly constrained from the T -parameter [5].

The anomalous dimensions γW and γB can also receive corrections proportional to cW,B,

or from one-loop suppressed operators, such as OBB. Nevertheless these contributions are

not expected to be sizeable. The coefficients cW and cB already contribute at tree-level

to S, while the contributions to S from κi are expected to be small, δγW = O(κi/(16π
2)).

Notice that basis B1 makes very clear the separation between the relevant contributions

to S that come from tree-level operators and those to κγγ , which are from one-loop sup-

pressed operators.

In the GJMT basis the contribution to S arises from the operator OWB and one has

S = 16πv2c′WB(mZ)/Λ
2. In ref. [3], a partial calculation of the anomalous dimension of

OWB was given. Nevertheless, if the interest is to calculate the running of c′WB in universal

theories in which cW and cB encode the dominant effects [apart from cH,T whose effects

are given in eq. (8.1)], one also needs, as eq. (4.9) shows, to include the effects of c′HW

and c′HB given in ref. [14–16]. This is again due to the fact that the GJMT basis mixes

current-current operators with one-loop suppressed ones.

Finally, let us comment on the relation between our basis and one of the most used in

the literature, the one originally given in ref. [10]. After eliminating redundant operators,

7This contradicts the results of ref. [8], which finds a cancelation of the logarithmic divergence responsible

for the non-zero γGG. A similar cancelation found in [9] has been however recently corrected, as C. Grojean

and G. Servant have pointed out to us.
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one ends up with 59 independent operators as listed in ref. [11]. This basis also keeps

separate tree-level operators from one-loop suppressed ones. The set of one-loop suppressed

operators is different from ours though: they use {OWW ,OWB,OWW̃
,O

WB̃
} instead of our

{OHW ,OHB,OHW̃
,O

HB̃
}. The change of basis is given in eqs. (4.2), (4.3), (5.7) and (5.8).

For the tree-level operators they use the minimal set of 3 operators made of SM bosons, in

particular OH , OT and O6, while the rest of operators involves SM fermions: those given in

eq. (2.5), eq. (3.4) and four-fermion operators. As explained in the appendix, we can reach

this set of operators from our basis by performing field redefinitions. The basis of refs. [10,

11] is, however, not very convenient for parametrizing the effects of universal theories.

Although only a few operators parametrize these theories in our basis (see section 2), in

the basis of refs. [10, 11] they require a much larger set of operators. In particular, the two

tree-level operators OW and OB are written in the basis of refs. [10, 11] as

cWOW → cW
g2

g2H


−3

2
OH + 2O6 +

1

2
Oy +

1

4

∑

f

Of (3)
L


 ,

cBOB → cB
g′ 2

g2H


−1

2
OT +

1

2

∑

f

(
Y f
LOf

L + Y f
ROf

R

)

 , (8.2)

where Y f
L and Y f

R are the hypercharges of the left and right handed fermions, respec-

tively. We can see from (8.2) that the Wilson coefficients in the basis of [10, 11] are

correlated, so that one should include them all in operator analyses of universal theo-

ries. As far as the anomalous-dimension matrix is concerned, the basis of [10, 11] keeps

also the same block-diagonal form as the basis of B3, since loop-suppressed operators

{OBB,OWW ,OWB,OBB̃
,O

WW̃
,O

WB̃
} do not mix with current-current ones.

9 Conclusions

After the recent discovery of the Higgs boson at the LHC, it is natural to start precision

studies of the Higgs couplings to SM particles. The h → γγ decay is of special importance

because of its clean experimental signature, and also because its measurement hints at a

possible discrepancy with the SM prediction [1, 2]. In this article we have analyzed potential

effects of new physics in this decay rate (together with the closely related one h → γZ)

following the effective Lagrangian approach, where one enlarges the SM Lagrangian with a

set of dimension-six operators. The choice of the operator basis has been crucial to make

the calculations simple and transparent. We have shown the convenience of working in

bases that classify operators in two groups. The first is formed by operators which can

arise from tree-level exchange of heavy states under the assumption of minimal coupling.

This group contains operators that can be written as a product of local currents. A second

group contains operators that are generated, from weakly-coupled renormalizable theories,

at the loop-level, and thus have suppressed coefficients. Following this criteria, we have

defined our basis in eq. (2.2), where we have symbolized the Wilson coefficients of the

operators of the first group by ci1 and ci2 , while the Wilson coefficients of the second

group, which contain a loop factor, have been written as κi3 .
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The operators relevant for h → γγ, γZ are, as expected, of the second group, specif-

ically OBB, OHW and OHB and their CP-odd counterparts. We have been interested in

the anomalous dimensions of these operators that can be generically written as

16π2 dκj3
d logµ

=
∑

i1

bj3,i1ci1 +
∑

i2

bj3,i2ci2 +
∑

i3

bj3,i3κi3 , (9.1)

where j3 = BB,HW,HB,BB̃,HW̃ ,HB̃. The main purpose of this article has been to

calculate bj3,i1 and bj3,i2 . Since the corresponding coefficients ci1 and ci2 can be of order one,

the RG evolution can enhance the new-physics effect on κi3 by a factor log(Λ/mh). Our

main result is that such enhancement is not present, because the corresponding elements

of the anomalous-dimension matrix vanish

bj3,i1 = bj3,i2 = 0 . (9.2)

Therefore, tree-level (current-current) operators do not contribute to the RGEs of the

one-loop suppressed operators relevant for the γγ and γZ Higgs decay. This differs from

ref. [3], which claims that such enhancement exists. Nevertheless, we have shown that the

results of ref. [3] can be put in agreement with our result when one takes into account

all operators in their basis. The anomalous-dimension matrix elements bj3,i3 are however

nonzero. Using ref. [3], we have been able to calculate these elements for the case of κBB

relevant for h → γγ. The result is given in eq. (5.6) (and its CP-odd analog).

We have also obtained the RGEs for κHW and κHB, eq. (6.7), which affect the decay

h → γZ, by realizing that the operators OBB, OWW , OWB (used in [3]) do not renormalize

(at one-loop) OHW , OHB (nor OW , OB). Exploiting this fact, we have further clarified the

structure of the anomalous-dimension matrix for these operators, showing that it takes a

particularly simple block-diagonal form in the basis B3 of eq. (6.3). The tree-level operators

OB and OW do not mix with the one-loop operators OWW , OBB, OWB and vice versa, as

eq. (6.4) shows. Enlarging this basis with dipole-moment operators for the SM fermions,

we have further computed the effect of such dipoles on h → γγ, γZ.

To conclude, we have discussed how the appropriate choice of operator basis can shed

light on the physical structure behind the renormalization mixing of operators and reveal

hidden simplicities in the structure of the matrix of anomalous dimensions that describes

such mixing.
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A Change of basis by field redefinitions

The following field redefinitions

H → H
(
1 + α1g

2
H |H|2/Λ2

)
, H → H

(
1− α2g

2
Hm2/Λ2

)
+ α2g

2
H(D2H)/Λ2 ,

Bµ → Bµ + ig′αB(H
†
↔

DµH)/Λ2 , W a
µ → W a

µ + igαW (H†σa
↔

DµH)/Λ2 ,

Bµ → Bµ + α2B(∂
νBνµ)/Λ

2 , W a
µ → W a

µ + α2W (DνW a
νµ)/Λ

2 , (A.1)

where the αi are arbitrary parameters, induce the following shifts in the coefficients of the

dimension-six operators of eqs. (2.4) and (2.6) plus O4K = |D2
µH|2:8

cH → cH + 2(α1 + 2λα2)− αW g2/g2H ,

cr → cr + 2(α1 + 2λα2) + 2αW g2/g2H ,

c6 → c6 − 4α1 ,

cT → cT − αBg
′2/g2H ,

cB → cB − 2αB − α2B ,

cW → cW − 2αW − α2W ,

c2W → c2W − 2α2W ,

c2B → c2B − 2α2B ,

cK4 → cK4 − 2α2g
2
H . (A.2)

Notice that only operators of tree-level type are shifted. This is not a coincidence: dia-

grammatically, a field redefinition Φ → Φ + J [φi, φj , . . .] (with J some current with the

same quantum numbers as Φ and dependent on some other fields φi) corresponds to a Φ

leg splitting in several φi,j . . . legs. Then, an operator generated by such field redefinition

corresponds to a tree-level diagram with a heavy state of mass ∼ Λ (with the same quantum

numbers of Φ) as an internal propagator.

Using this shift freedom, we can trade 6 out of the 9 tree-level operators listed in

section 2 (O2G is irrelevant for our discussion) and leave only OH , OT and O6 plus operators

made of fermions: those in (2.5), (3.4) and four-fermion operators. The shift parameters

are arbitrary, and therefore physical quantities can only depend on the three following

shift-invariant combinations (we reserve capital letters for such physical combinations of

coefficients):

CH ≡ cH − cr −
3g2

4g2H
(2cW − c2W ) ,

CT ≡ cT − g′2

4g2H
(2cB − c2B) ,

C6 ≡ c6 + 2cr +
g2

g2H
(2cW − c2W ) + 4

λ

g2H
cK4 . (A.3)

8Shifts of order m2/Λ2 are also induced on the renormalizable dimension-4 SM operators.
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One concern in analyzing operator renormalization (for instance if one is interested in

calculating the renormalization group equations for the ci Wilson coefficients) is that the

redundant operators we have decided to remove from the Lagrangian might be generated

radiatively anyway. The simplest way to deal with that complication is to write RGEs

for the Ci’s, the physical combinations of coefficients, which must only depend on the Ci’s

themselves. In those equations one can then consistently set equal to zero the coefficients

of the redundant operators appearing implicitly in the Ci’s. In our particular example, this

means that the RGEs of all our tree-level operators can be reduced to a 3× 3 anomalous-

dimension matrix for CH , CT and C6. For this reason, the main question discussed in this

paper about the possible mixing of tree-level operators with loop-induced ones through

their RGEs, reduces to the question of whether OH , OT and O6 do mix with them.

The field redefinitions listed in eq. (A.1) also induce shifts of the coefficients

of dimension-six operators that involve fermions. In addition, further field redefini-

tions of fermions themselves [like fL,R → fL,R(1 + αfL,R
|H|2/Λ2) or Bµ → Bµ +∑

f α
B
fL,R

(fL,RγµfL,R)/Λ
2, etc.] can be used in the same way to remove many of these

fermionic operators. Besides 4-fermion operators, the operators involving only fermions

plus gauge bosons can be eliminated completely by such shifts and the list of dimension-six

operators with Higgs and fermions can be reduced to operators of the type Oy, Of
L, O

f
R

and Of (3)
L .
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