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1 Introduction

Along with supersymmetry, moduli are ubiquitous in string theory. Both must be lifted

in the real world, but may manifest themselves at low or intermediate energies � MPlanck

and thereby allow contact with observations. Understanding how this happens is one of

the main themes of string phenomenology.

Most earlier studies employed either effective supergravities, or gauged supergravities

which are consistent truncations in flux-compactification backgrounds (for a review of flux

compactifications see e.g. [1–3]). One of our motivations for the present work is to explore

the limitations of these approaches. We will consider a class of AdS4 vacua with N = 4

supersymmetry for which improved tools are now at our disposal: (a) ten-dimensional

solutions of Type IIB string theory with fully localized NS5- and D5-brane sources [4, 5];

(b) the dual three-dimensional gauge theories based on linear or circular quivers [6]; (c) cor-

responding N = 4 gauged supergravities [7–10]; and last but not least (d) a complete list

of unitary representations of the superconformal algebra osp(4|4) [11, 12].

We will provide a detailed dictionary between representations, string excitations, fields

of the quiver theory and fields of gauged supergravities, identifying in particular the ones
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that contain N = 2 supersymmetric moduli. As will be clear, gauged supergravity retains

some, but not all pertinent information about the solutions. It misses in particular most

of the massless moduli.

To be sure, these AdS4 solutions are far from realistic vacua of string theory. In

addition to a plethora of moduli, they also contain scalar fields with (mass)2 < 0, though

above the Breitenlohner-Freedman stability bound. One would have to worry about all

these modes in any attempt to uplift these vacua to more realistic de Sitter backgrounds.

One of the most satisfying results of our analysis is the match between string exci-

tations of the solutions and chiral fields in the Higgs or Coulomb branches of the dual

gauge theories. This parallels, but is different, from the analysis in [13]. We will ex-

hibit in particular a selection rule for allowed representations of the SU(2)H × SU(2)C
R-symmetry, whose origin is strikingly different on the two sides. This is a non-trivial test

of holographic duality.

The outline of the paper is as follows: in section 2 and in appendix A we briefly

review the relevant features of the Type IIB solutions of [4, 5], as well as the analysis

of supersymmetric vacua in gauged N = 4 supergravity by Louis and Triendl [10]. We

then examine the excitations around these backgrounds, comparing the two approaches.

In section 3 we first review the multiplets of N = 4 superconformal symmetry classified

in [11, 12], and identify the ones that contain putative N = 2 moduli (there are no N = 4

moduli, as shown in [14]). We match these multiplets to the excitations of section 2,

summarizing our conclusions in a table. In section 4 we introduce the ‘good’ quiver gauge

theories of Gaiotto and Witten [15], conjectured to flow to interacting CFTs that are dual

to the above AdS4 backgrounds. We show how the spectrum of chiral operators on the

Higgs branches of the electric and magnetic quivers matches nicely with expectations from

string theory, comment on mixed-branch operators and count moduli in some examples.

Note added. In one higher dimension, the similar problem of identifying N = 1 moduli

of N = 2 D = 4 SCFT’s with AdS5 holographic duals has been recently addressed in [16]

from the perspective of generalized exceptional geometry.

2 AdS4 vacua of string theory

In this section we review those features of the N = 4 AdS4 solutions that will be useful

later, compare them with the solutions of gauged supergravity, and derive some properties

of the small-fluctuation spectrum. There is a large literature on AdS4 compactifications

with fluxes and branes, mostly in Type IIA string theory (a non-exhaustive list is [17–23]).

What is special about the solutions of [4, 5] is that they have fully localized (as opposed

to smeared) brane sources. A general method of searching for such solutions with the help

of pure-spinor equations has been proposed recently in [24].

2.1 Review of the N = 4 Type IIB solutions

We begin with the N = 4 AdS4 compactifications of Type IIB string theory found in [4, 5].

The geometry of these solutions has the warped form (AdS4×S2×S2 ′)×wΣ, where the base
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Σ is an open Riemann surface, which is either the disk or the annulus. Superconformal

symmetry osp(4|4) is realized as isometries of the AdS4×S2×S2 ′ fiber. R-symmetry, in

particular, is realized as isometries of the two 2-spheres.

In addition to the metric, the solutions feature non-trivial dilaton, 5-form and complex

3-form backgrounds. As shown by D’Hoker, Estes and Gutperle [25, 26] all these back-

grounds can be expressed in terms of two harmonic functions hi : Σ→ C (i = 1, 2), which

are positive in the interior of Σ and vanish at alternating parts of the boundary. This latter

property ensures that generic points of ∂Σ are regular interior points of the 10-dimensional

geometry. The explicit expressions of all background fields are given in appendix A.

A key feature of the solutions is that they have localized D5-brane and NS5-brane

sources (at finite distance) on the internal space M6 := (S2×S2 ′) ×w Σ. The D5-branes

wrap the S2 fiber and are localized in the transverse space S2 ′ ×w Σ, whereas the NS5-

branes wrap the S2 ′ fiber and are localized in S2 ×w Σ. These cycles are homologically

trivial, so there is no need for tadpole cancellation by orientifolds or anti-branes.

We focus on the solutions with Σ the infinite strip 0 ≤ Imz ≤ π/2 (the case of the

annulus is a simple extension). The singularities labelled by a ∈ {1, · · · , p} have D5-brane

charge Na and are located at Rez = δa on the upper strip boundary, while the singularities

labelled by â ∈ {1, · · · , p̂} have NS5-brane charge N̂â and position Rez = δ̂â on the lower

boundary. Both the 5-brane charges and their positions are continuous parameters of the

supergravity solutions but in string theory they are all quantized. This is obvious for the

5-brane charges, but more subtle for their positions {δa, δ̂â}. It turns out that these latter

can be related to the D3-brane charges of the 5-brane stacks [4]

`a = −
p̂∑
â=1

N̂â
2

π
arctan

(
e−δa+δ̂â

)
, ˆ̀̂

a =

p∑
a=1

Na
2

π
arctan

(
e−δa+δ̂â

)
, (2.1)

where `a is the D3 charge of a D5-brane in the ath stack and ˆ̀̂
a the D3 charge of a NS5-

brane in the âth stack. The above equations can be used to solve for all source positions

in terms of the charges {Na, `a, N̂â, ˆ̀̂
a} which are quantized.

Thanks to this dimensional transmutation (charges transmuting to geometric posi-

tions) the solutions of [4, 5] have only discrete but no continuous moduli. As we will

discuss in section 3, the absence of continuous N = 4 superconformal moduli follows in

all generality from the study of unitary osp(4|4) representations [14]. Charge quantization

removes therefore a potential contradiction with this general result.

The data {Na, `a} and {N̂â, ˆ̀̂
a} can be repackaged conveniently in two Young diagrams

ρ and ρ̂. The diagram ρ has Na rows of |`a| boxes (with the |`a| arranged in descending

order). Likewise ρ̂ has N̂â rows of ˆ̀̂
a boxes. In the Type IIB solutions ρ and ρ̂ are

not independent: they have the same total number of boxes by conservation of D3-brane

charge (one can indeed check that
∑

â N̂â
ˆ̀̂
a = −

∑
aNa`a := N), and they furthermore

automatically satisfy the partial ordering condition

ρT > ρ̂ . (2.2)

Here ρT is the transposed Young diagram (with columns and rows interchanged) and the

above condition means that the first k rows of the left diagram contain more boxes than the
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Figure 1. Three theories (A,B,C) with the same ρ and different ρ̂. These theories admit the same

continuous global symmetry SU(8)×
(
U(2)×U(1)

)
/U(1) but different fine print. The gravitational

dual solutions all consist of one stack of N = 8 D5-branes and two stacks of N̂1 = 2 and N̂2 = 1

NS5-branes, but they differ in the distribution of the 8 units of D3-brane charge.

first k rows of the right diagram, for all k = 1, · · · , p̂− 1.1 In the dual linear-quiver gauge

theory, where `a, ˆ̀̂
a become the linking numbers of the 5-branes, this condition ensures that

the gauge symmetry can have a non trivial Higgs branch, see section 4. Such theories were

called ‘good’ by Gaiotto and Witten [15] and conjectured to flow to strongly-interacting

fixed points in the infrared. That the same conditions also arise in string theory is a nice

check of holographic duality [4].

The gauge symmetries on the worldvolumes of the 5-branes correspond to global flavor

symmetries of the dual field theory. The D5-brane symmetry U(N1) × · · · × U(Np) is

manifest when the CFT is realized as an ‘electric quiver’ gauge theory, while the NS5-

brane symmetry U(N̂1)×· · ·×U(N̂p̂) is manifest in the Lagrangian of the mirror ‘magnetic

quiver’. At the origin of the Higgs branch, the electric- and magnetic-quiver gauge theories

are expected to flow to the same CFT where these flavor symmetries coexist.

It is important here to note that global symmetries do not determine the SCFT

uniquely. There is extra information contained in the D3-brane charges or linking numbers

{`a, ˆ̀̂
a} of the 5-branes. We will refer to this extra information as the ‘fine print’. Figure 1

shows an example of three theories with the same 5-brane charges {Na, N̂â}, and hence the

same global flavor symmetry.2

1This condition has appeared earlier in related contexts [27, 28]. It is also natural in the Brieskorn-

Slodowy theory of transverse slices [29, 30] reviewed in section 4. It would be interesting to see if this

condition can be obtained from some appropriate version of K theory along the lines of [31, 32].
2In principle some theories could be distinguished by extra discrete symmetries. This does not seem to

be the case for the examples of the figure, even though we cannot rule out the possibility that some higher-

form discrete symmetry emerges in the infrared. Note in passing that a diagonal electric and a diagonal

magnetic U(1) act trivially and can be modded out of the global-symmetry groups. but with different fine

print. These theories have different operator spectra and AdS4 duals as will become clear later on.
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2.2 Gauged supergravity

A different approach to supersymmetric AdS4 vacua is the approach of gauged supergrav-

ity [7–10, 33].3 For the case at hand one starts with N = 4 supergravity coupled to m vector

multiplets in 4d Minkowski spacetime, and then deforms this theory by gauging a subgroup

of the global symmetry group SL(2)×SO(6,m). Gauging is elegantly achieved by the intro-

duction of an embedding tensor that obeys a set of quadratic constraints [33]. The result

is not an effective low-energy theory, but its solutions are guaranteed to be solutions of any

higher-dimensional theory of which the gauged supergravity is a consistent truncation.

The existence of maximally-supersymmetric AdS4 vacua has been studied systemati-

cally within this formalism by Louis and Triendl [10]. Before gauging, the scalar fields of the

N = 4 supergravity take values in the coset spaceM = [SL(2)/SO(2)]×[SO(6,m)/SO(6)×
SO(m)]. Gauging generates a potential that lifts some of these flat directions. Louis and

Triendl showed that whenever maximally supersymmetric AdS4 vacua exist the following

is true:

• The gauge group is of the form G+×G−×Gv
0, where G± ⊂ SO(3,m±) and Gv

0 ⊂SO(q)

with m+ + m− + q = m. Furthermore, the gauging of G+ employs the electric

components of three graviphotons while the gauging of G− employs the magnetic

components of the other three graviphotons.

• The vacua break spontaneously G± to their maximal compact subgroups SO(3)±×H±
where H± ⊂ SO(m±). The only continuous moduli are the Goldstone bosons of these

broken gauge symmetries that are eaten by the corresponding massive vector bosons

and are hence unphysical. As a result, there are no N = 4 preserving continu-

ous moduli.

Let us compare these conclusions with the findings of the previous subsection. Clearly

SO(3)+×SO(3)− is theN = 4 R-symmetry and it is natural to identify H+ and H− with the

flavor symmetries realized, respectively, on D5-branes and NS5-branes. The extra factor

Gv
0 can be a priori attributed to either type of 5-branes, or may come from extra bulk vector

bosons. The absence of continuous moduli in this description is remarkable. For instance

SL(2, R) transformations of Type IIB supergravity which activate the RR axion field take

us outside the class of solutions given in appendix A. Such transformations can generate

new (‘orbifold equivalent’) solutions [5], but they are discretized by the fact that all 5-brane

charges must remain integer. The fact that gauged supergravity has no continuous SL(2, R)

moduli shows that the embedding-tensor formalism knows about integrality of charges.

Of course gauged supergravity cannot know everything about the solutions, since it is

a truncation of the full string theory. It is unclear, in particular, whether it can store the

‘fine print’ data of the previous subsection, i.e. distinguish vacua with the same unbroken

gauge symmetry. In gauged supergravity this fine print can only come from inequivalent

embeddings H+ × H−×Gv
0 ⊂ SO(6,m), or from multiple solutions of the quadratic con-

3There is a vast literature on gauged supergravity and stabilization of moduli by fluxes, the above

references are just closer to the contents of this paper. A recent review is [34].
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straints. In many previous studies the number of vector multiplets was small (usually

m = 6) so the possibilities were restricted. The question deserves further scrutiny.

What is certain is that gauged supergravity misses many scalar excitations including

those with (mass)2 ≤ 0 which correspond to marginal and relevant deformations of the

dual CFT. Apart from the multiplets of the graviton and the vector bosons of unbroken

gauge symmetries, the only other surviving fields are the multiplets of massive gauge bosons

corresponding to the broken non-compact gauge symmetries. These are in representations

(1; 0) or (0; 1) of the R-symmetry group, i.e. they carry a vector index under either SO(3)+

or SO(3)−.4 We will soon see that they belong (in the notation of [12], modified only by

halving the spins) to the superconformal multiplets B1[0]
(2;0)
2 or B1[0]

(0;2)
2 which provide

some, but not all, of the N = 2 superconformal moduli. Thus gauged supergravity is not

a reliable tool for addressing the problem of moduli stabilization.

2.3 Properties of vacuum excitations

The complete spectrum of small excitations can be in principle derived by expanding around

the backgrounds of [4, 5]. In practice this is a formidable task. We will limit ourselves to

some generic features that are easy to extract.

We will use certain facts about representations of the superconformal algebra osp(4|4),

postponing a more systematic discussion to the following section. Unitary representations

are decsribed by the spacetime spin of the highest-weight state, and by its SO(3)+×SO(3)−
R-symmetry spins which are denoted (R;R′). When not otherwise qualified, ‘spin’ means

spacetime spin. Apart from the long representation L[0]
(0;0)
1 which corresponds to a massive

supergraviton, there are three series of representations with maximum spin ≤ 2: [12]

• the B1[0]
(R;0)
R and B1[0]

(0;R′)
R′ series with max. spin ≤ 1,

• the B1[0]
(R;R′)
R+R′ series (RR′ 6= 0) with max. spin ≤ 3/2,

• the A2[0]
(R;R′)
R+R′+1 series with max. spin ≤ 2.

Barring excited-string modes, single-particle states of the theory are either the 10d graviton

multiplet, or the lowest-lying modes of open strings living on the 5-branes. Both have spins

not exceeding 2, and are therefore organized in the above representations.

Consider first the open strings which contain spins ≤ 1 and belong to the B1[0]
(R;0)
R

series. We concentrate on the D5-branes, the discussion of NS5-branes is mirror symmetric.

Strings on the ath D5-brane stack transform in the adjoint representation of U(Na), while

those stretching from the ath to the bth stack transform in the bifundamental (Na, N̄b)

representation of U(Na)×U(Nb). There are no open strings stretching between D5-branes

and NS5-branes, so CFT operators charged under both electric and magnetic flavor groups

can only correspond to multi-string states.

4For illustration, consider gauging G+=SO(3, 2) ⊂SO(3,m+) where m+ = 7. Note that 3+7 = 10 is

precisely the dimension of the gauge group. The maximal compact subgroup of this latter is SO(3)×U(1).

The six non-compact generators transform in the (3,±) representations of this unbroken gauge group.
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We now focus on the spin-1 component of the multiplet which transforms in the (R−
1; 0) representation of SO(3)+, see eq. (3.6) of the following section. Clearly R − 1 is the

angular momentum of the string on S2, the 2-sphere wrapped by all the D5-branes. We

can constrain the range of R for D5-brane strings by the following argument: a D5-brane

of the ath stack carries `a units of D3-brane charge, which must be induced by `a units of

internal monopole flux in the 2-sphere direction [35]. Therefore open strings from a to b

feel a monopole field of strength `a− `b in appropriate units. Their spin-1 components are

classified by the scalar monopole harmonics on S2, which have R − 1 ≥ 1
2 |`a − `b|, see e.g.

ref. [36]. This leads then to the following selection rule:

R =
1

2
|`a − `b|+ n (n = 1, 2, · · · ) for (ab) open strings . (2.3)

We will see that this prediction agrees beautifully with the analysis of the CFT side. It is

important also to note that the S2 angular momentum can be half-integer, a well-known

fact of physics in the background of magnetic poles [37, 38].

We come next to the closed-string modes. Barring again string excitations, these in-

clude the N = 4 supergraviton in four dimensions, its Kaluza Klein excitations, and mas-

sive spin-3/2 or spin-1 multiplets corresponding to the supersymmetries and R-symmetry

generators broken by the compactification. All closed strings are of course flavor sin-

glets. In addition, since 10d closed-string states are either tensors or spinors on all three

(pseudo)spheres of the AdS4×S2×S2 ′ fiber simultaneously, the quantum numbers R and

R′ of the highest-weight state (which is always scalar) must be integer.5 These simple facts

will also emerge automatically on the CFT side.

Gauged supergravity retains three types of fields: (i) the massless 4d graviton cou-

pling to the stress tensor multiplet, A2[0]
(0;0)
1 in the notation of ref. [12]; (ii) the massless

vector bosons of compact symmetries coupling to conserved-current multiplets B1[0]
(1;0)
1 or

B1[0]
(0;1)
1 , and (iii) the massive vector bosons of broken non-compact symmetries, which

couple to the B1[0]
(2;0)
2 or B1[0]

(0;2)
2 multiplets (whose spin-1 components are vectors of

SO(3)+ or SO(3)−). We will see that these last multiplets contain marginal N = 2 su-

persymmetric operators, but they are not the only ones. Marginal N = 2 operators are

also contained in the spin-3/2 multiplet B1[0]
(1;1)
2 which is truncated out in gauged N = 4

supergravity. We expect such multiplets to exist in half-supersymmetric vacua of N = 8 su-

pergravity, where four of the gravitini become massive, but have not checked this explicitly.

An example of a deformation that excites the truncated modes is the TsT deformation

of Lunin and Maldacena [39]. For the backgrounds of interest, the two commuting Killing

isometries are the azimuthal rotations of S2 and S2 ′. If τ is the complexified Kähler modulus

of the 2-torus generated by these Killing isometries, the deformed solutions have

τ → τ ′ =
τ

1 + γτ
, (2.4)

where γ is the real deformation parameter. Besides the metric and B-field components

that are encoded in τ , several other supergravity fields are also deformed — explicit general

5There can be an exception to this rule if a 2-sphere is transpersed by magnetic flux of a gauge field under

which the closed string is electrically charged. This situation does not arise in the solutions of interest.

– 7 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
0

formulae have been worked out by Imeroni [40] but are not needed here. One crucial remark

is that in the original backgrounds B has no 2-torus component, so τ = B+ i
√
G is purely

imaginary. This guarantees that the deformed solutions do not develop singularities at the

loci where the torus degenerates [39].

The TsT deformation breaks the SO(4) R-symmetry to U(1)×U(1) which is compatible

with at most N = 2 supersymmetry. Generally-speaking we expect all four supersymme-

tries to be broken by this deformation.6 The point we want to make however here is

different: this is a deformation of the classical background that is truncated away in the

gauged N = 4 supergravity description. Indeed, this deformation is generated by a neutral

scalar operator of scaling dimension ∆ = 3 in the dual CFT, and there is no such operator

in the N = 4 stress-tensor multiplet A2[0]
(0;0)
1 .

3 Superconformal multiplets

The N = 4 superconformal algebra is osp(4|4). Its maximal compact subalgebra includes

spatial rotations and the R-symmetry algebra su(2) ⊕ su(2)′ ' so(4)R. Unitary represen-

tations of this algebra have been classified by Dolan [11], and by Cordova, Dumitrescu and

Intriligator who classified representations of superconformal algebras in all dimensions [12].

We adopt the conventions of this latter work and denote the highest-weight states in

a given representation by [j]
(R;R′)
∆ , where ∆ is the scaling dimension and (j, R,R′) are the

spins with respect to space rotations and the two R-symmetry factors. Contrary to [12],

our spins will be however canonically normalized. For instance [1]
(0;1)
∆ is a vector field in

the (singlet, vector) representation of R symmetry. When this is a superconformal primary,

the N = 4 representation built on it is denoted as in reference [12], e.g. A1[1]
(0;1)
3 for a

short representation in the A1 series, or L[1]
(0;1)
∆≥3 for a long representation.

We start with a short review of superconformal multiplets, their spin content and

matching string-theory modes, then decompose them under N = 2 supersymmetry and

identify the ones that contain N = 2 moduli.

3.1 N = 4 multiplets

The 8 independent Poincaré supercharges can be labelled by the projections of the

three spins, Q
(±;±)
± . The primary conformal operators are obtained by acting with

these supercharges on the primary superconformal operators. There exist 128 bosonic

and 128 fermionic raising operators transforming as follows under su(2)space ⊕ [su(2) ⊕

6In the dual field theory the TsT deformation inserts charge-dependent phases in front of field products,

fg → exp(iγ(Q1(f)Q2(g) − Q1(g)Q2(f)) where Q1, Q2 are the two U(1) charges being used. When one

of these charges is the R-charge, different components in the product of two superfields acquire different

phases. For general charges supersymmetry is thus broken.
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su(2)′]R−symmetry:

1 (1) : (0, 0, 0)

Q (8) : ( 1
2 ,

1
2 ,

1
2 )

Q2 (28) :
[
(1, 1, 0)⊕ perms

]
⊕ (0, 0, 0)

Q3 (56) :
[
( 3

2 ,
1
2 ,

1
2 )⊕ perms

]
⊕ ( 1

2 ,
1
2 ,

1
2 )

Q4 (70) :
[
(2, 0, 0)⊕ perms

]
⊕ (1, 1, 1)⊕

[
(1, 1, 0)⊕ perms

]
⊕ (0, 0, 0)

Q5 (56) :
[
( 3

2 ,
1
2 ,

1
2 )⊕ perms

]
⊕ ( 1

2 ,
1
2 ,

1
2 )

Q6 (28) :
[
(1, 1, 0)⊕ perms

]
⊕ (0, 0, 0)

Q7 (8) : ( 1
2 ,

1
2 ,

1
2 )

Q8 (1) : (0, 0, 0)

Here ‘perms’ stands for all inequivalent permutations of the three spins, and the number

of operators at each level is given in parenthesis. The scaling dimension of Qn is n/2.

Tensoring these representations with those of a superconformal primary gives the spin

content at each level of a long superconformal representation. This rombus is truncated in

short multiplets because of the appearance of null states.

Short N = 4 multiplets come in three different series called A1, A2 and B1

A1[j]
(R;R′)
1+j+R+R′ (j > 0) , A2[0]

(R;R′)
1+R+R′ , and B1[0]

(R;R′)
R+R′ . (3.1)

The subscript 1, 2 indicates the level of the first null states. The A1,2 multiplets appear in

the decomposition of long multiplets at unitarity threshold, so their scaling dimension can

change continuously by recombination. The B1 multiplets, on the other hand, are separated

from the unitarity threshold by a gap and some of them do not appear in the decomposition

of any long representation. Their dimension cannot therefore change without breaking

N = 4 superconformal symmetry, it is in this sense ‘absolutely protected’.

The most basic multiplets are the (16+16)-component multiplet of the N = 4 graviton

in four dimensions, and the (8+8)-component of the unbroken electic and magnetic gauge

bosons. The former includes the graviton, six vectors and two scalars, while the latter

include a vector and six scalar fields. These fields couple to the stress-tensor and flavor-

current multiplets of the dual SCFT,

stress : A2[0]
(0;0)
1 = [0]

(0;0)
1 ⊕ [0]

(0;0)
2 ⊕ [1]

(1;0)
2 ⊕ [1]

(0;1)
2 ⊕ [2]

(0;0)
3 ⊕ fermions (3.2)

e− flavor : B1[0]
(1;0)
1 = [0]

(1;0)
1 ⊕ [1]

(0;0)
2 ⊕ [0]

(0;1)
2 ⊕ fermions (3.3)

m− flavor : B1[0]
(0;1)
1 = [0]

(0;1)
1 ⊕ [1]

(0;0)
2 ⊕ [0]

(1;0)
2 ⊕ fermions (3.4)

Notice the absence of a ∆ = 3 scalar in the graviton multiplet, in agreement with our

earlier claim that the TsT mode is not part of the 4d supergravity spectrum.

The vector multiplets (3.3) and (3.4) of the conserved flavor-symmetry currents belong

to absolutely-protected B1 representations. This implies that flavor symmetries cannot
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break continuously in N = 4 superconformal theories. Equivalently, gauge symmetries in

the AdS4 bulk cannot be broken à la Higgs-Brout-Englert without also breaking N = 4

supersymmetry, a conclusion confirmed by the analysis of Louis and Triendl [10].

The stress-tensor multiplet, on the other hand, belongs to the A2 series of representa-

tions and does not enjoy the same kinematic protection. At unitarity threshold one finds

L[0]
(0;0)
1 = A2[0]

(0;0)
1 ⊕B1[0]

(1;1)
2 . (3.5)

One may expect this recombination to occur when two decoupled theories, with separately-

conserved energy-momentum tensors, are made to interact very weakly so that only the

total energy-momentum is exactly conserved. This still cannot happen continuously be-

cause N = 4 superconformal theories do not have any continuous moduli. It can however

happen after a ‘small’ renormalization-group flow as will be discussed elsewhere.7

The next interesting set of representations are B1[0]
(R;0)
R and B1[0]

(0;R′)
R′ for generic

R, R′. Their superconformal primaries are always annihilated by 4 out of the 8 Poincaré

supercharges, so they are also 1/2 BPS. The superconformal primary with spin labels

(0, R, 0) for example is annihilated by the supercharges Q
(+;±)
± . These multiplets contain

16R− 8 bosonic and as many fermionic fields, all with spins ≤ 1,

B1[0]
(R;0)
R = [0]

(R;0)
R ⊕ [1]

(R−1;0)
R+1 ⊕ [0]

(R−1;1)
R+1 ⊕ [0]

(R−2;0)
R+2 ⊕ fermions . (3.6)

These are the representations in which open BPS strings on D5-brane stacks transform.

Note that the spin-1 component of the multiplet has S2 angular momentum R − 1, as

anticipated in the previous section. When R = 2 it is a vector of SO(3)+, precisely

like the vector bosons corresponding to broken non-compact electric symmetries in the

gauged-supergravity description, SO(3,m+) → SO(3)+ × G+ (see section 2.2). Similar

statements hold of course for the mirror NS5-brane excitations which have Kaluza-Klein

momenta (0;R′).

At the level of group theory it is possible to generate the representation (3.6) by taking

tensor products of the simplest ultrashort representation

B1[0]
(1/2;0)
1/2 = [0]

(1/2;0)
1/2 ⊕ [ 1

2 ]
(0;1/2)
1 . (3.7)

This is a free hypermultiplet corresponding to a free superfield Ha = qa + θaȧα ζ
α
ȧ with qa a

scalar doublet of su(2), and ζαȧ a spinor doublet of su(2)′. The product of two hypermulti-

plets gives a conserved vector current multiplet

HaHb = qaqb + θ{aȧα qb}ζαȧ − θaȧα θbḃβ ζαȧ ζ
β

ḃ
→ B1[0]

(1;0)
1 , (3.8)

while, more generally, the product of R identical hypermultiplets gives

Ha1 · · ·HaR → B1[0]
(R;0)
R .

7C. Bachas and I. Lavdas, work in progress. A slightly massive graviton also occurs in the Karch-Randall

model of locally-localized gravity [41]. The limit of vanishing graviton mass is, however, necessarily singular

in this context [42].
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The absence of spin 3/2 components in these representations follows from the identity8

Symabc Symαβγ

[
θaȧα θ

bḃ
β θ

cċ
γ

]
= 0 .

All this can be repeated for twisted hypermultiplets H̃a = q̃ȧ + θaȧα ζ̃
α
a whose products give

the mirror representations B1[0]
(0;R′)
R′ .

The B1 multiplets with RR′ 6= 0 contain spin-3/2 components and are 1/4 BPS (they

continue up to level Q6). They must be dual to Kaluza-Klein modes of the 10d gravitini,

those that do not arrange themselves inside spin-2 towers. The lowest-lying such multiplet,

B1[0]
(1/2;1/2)
1 , has as its top component a conserved supercurrent. It is present in back-

grounds with enhanced supersymmetry, but not in the solutions studied here which break

half of the N = 8 supersymmetries.

The next entry in the list (3.1) are the representations A2[0]
(R;R′)
∆0

with R+R′ > 0 and

∆0 = 1 + R + R′. These all contain spins up to and including 2 and are hence Kaluza-

Klein excitations of the graviton. Like the stress-tensor multiplet, these multiplets can also

recombine into long representations at the unitarity threshold.

The last set of short super-conformal multiplets is A1[j]
(R;R′)
∆0

with ∆0 = 1+ j+R+R′

and j > 0. These contain spins higher than 2 and can only be dual to excited string states,

or to multiparticle states. They end at level Q4 if R = R′ = 0, at level Q6 if RR′ = 0, and

at level Q7 otherwise. With some abuse of terminology, these special semi-short multiplets

may be termed accordingly 1/2, 1/4 or 1/8 BPS. An example of such a representation

is A1[1]
(0;0)
2 . It contains a conserved vector current at the lowest level and a conserved

spin-3 current at level Q4, and can become long by eating A1[ 1
2 ]

(1/2;1/2)
5/2 . States in the A1

representations are interesting for the study of supersymmetric black holes, but they are

outside our scope here.

For later reference we have collected in table 1 the short N = 4 superconformal mul-

tiplets and corresponding single-particle fields in the AdS4 backgrounds.

3.2 Marginal deformations

Marginal deformations are generated by scalar operators of dimension ∆ = 3. To preserve

maximal supersymmetry they must be top components of N = 4 multiplets. Inspection

of all short multiplets shows that such operators do not exist [14], so N = 4 SCFT3 have

no fully superconformal moduli. We have seen that the same conclusion has been reached

from gauged supergravity, and also from the explicit Type IIB solutions. The proof based

on representations of osp(4|4) settles definitely the issue.

Actually, the inspection of multiplets is tricky because some of the 3d superfields have

top (or rather ‘dead end’) components at intermediate levels [14]. An example is the scalar

[0]
(0;0)
2 in the stress-tensor multiplet (3.2) which is annihilated by all supercharges, and can

be used to trigger a universal N = 4 mass deformation.9 No such dead-end components

8The reader may be amused to note that in the context of the quark model this same identity shows

why the mysterious ∆++ resonance requires the existence of three colors.
9This deformation exists for any N ≥ 4. It has been discussed by many authors, especially in the context

of the ABJM theory. An incomplete list of references is [43–46].
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N = 4 Multiplet String mode Gauged SUGRA

A2[0]
(0;0)
1 Graviton yes

B1[0]
(1;0)
1 D5 gauge bosons yes

B1[0]
(0;1)
1 NS5 gauge bosons yes

B1[0]
(R>1;0)
R

Open F-strings, R ∈ 1
2
|`a − `b|+ N

Closed strings, R ∈ N
only R = 2

B1[0]
(0;R′>1)
R′

Open D-strings, R′ ∈ 1
2
| ˆ̀̂a − ˆ̀̂

b|+ N
Closed strings, R′ ∈ N

only R′ = 2

B1[0]
(R≥1;R′≥1)
R+R′ Kaluza Klein gravitini (R,R′∈N) no

A2[0]
(R>0;R′>0)
1+R+R′ Kaluza Klein gravitons (R,R′∈N) no

A1[j > 0]
(R;R′)
1+j+R+R′ Stringy excitations no

Table 1. The short N = 4 superconformal multiplets in the notation of ref. [12], possible dual

single-string excitations in the Type IIB solutions of [4, 5], and the fate of these excitations after

the gauged-supergravity truncation. In the middle column N = {1, 2, · · · } is the set of non-zero

natural numbers. A yes/no entry in the third column indicates that the excitation survives/does

not survive in gauged supergravity. Among the R = 2 or R′ = 2 modes some may (but need

not) survive.

arise however at ∆ = 3. The only other relevant N = 4 deformations reside in the electric

and magnetic flavor-current multiplets B1[0]
(1;0)
1 and B1[0]

(0;1)
1 and correspond to triplets

of flavor masses and Fayet-Iliopoulos terms [47, 48].

As shown in ref. [14] N = 3 also does not allow fully superconformal moduli.10 The

maximal supersymmetry that allows them is N = 2. This is enough supersymmetry to pro-

tect some marginal operators againts quantum corrections, making the problem technically

tractable. We focus henceforth on N = 2.

The N = 2 Poincaré supercharges are spinors Q and Q̄ with R-charge, respectively,

r = −1 and r = 1. The unitary multiplets are two-sided: they are obtained by imposing

independent unitarity bounds and shortening conditions for Q and Q̄. All possible rep-

resentations are listed in pages 67-69 of ref. [12]. The most relevant multiplets are the

conserved stress tensor, vector current, and ‘superpotential’ multiplets

stress tensor : A1Ā1[1]
(0)
2 = [1]

(0)
2 ⊕ [ 3

2 ]
(±1)
5/2 ⊕ [2]

(0)
3 , (3.9)

vector current : A2Ā2[0]
(0)
1 = [0]

(0)
1 ⊕ [ 1

2 ]
(±1)
3/2 ⊕ [0]

(0)
2 ⊕ [1]

(0)
2 , (3.10)

superpotential : LB̄1[0](r>0)
r = [0](r)r ⊕ [ 1

2 ]
(r−1)

r+ 1
2

⊕ [0]
(r−2)
r+1 . (3.11)

10In principle on can obtain N = 3 theories from N = 4 by turning on a ‘quantised’ super potential,

that in N = 2 notation reads W = kTr(Φ2), and integrating out the massive modes. This produces Chern-

Simons and supersymmetry related terms. In the brane setup it corresponds to combining the original

5-branes into (1,k) 5-branes.
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These couple respectively to the graviton multiplet, the vector boson multiplets, and the

hypermultiplets of 4d N = 2 supergravity. The first two representations are self-conjugate,

while the third is paired with the antichiral multiplet B1L̄[0]
(r<0)
−r .

The local structure of the superconformal manifold of 3d N = 2 CFTs is essentially

the same as for 4d N = 1 theories, and is well understood [49, 50]. Firstly, candidate

moduli only exist in the marginal superpotential multiplet LB̄1[0]
(2)
2 and its conjugate [14].

They may, however, fail to be exactly marginal because these multiplets are not absolutely

protected and can recombine in long multiplets at the unitarity threshold. The power of the

superconformal algebra is that it points to a unique culprit: the only possible recombination

is with a vector current

LB̄1[0]
(2)
2 ⊕B1L̄[0]

(2)
−2 ⊕A2Ā2[0]

(0)
1 → LL̄[0]

(0)
1 . (3.12)

This is the only mechanism by which a marginal operator L can become marginally ir-

relevant in 3d N = 2 providing the ‘longitudinal’ component of a previously conserved

current Jµ,11

∂µJ µ = 0 → ∂µJ µ = L . (3.13)

In the end, as shown using only superconformal perturbation theory in [51], the supercon-

formal manifoldMc is the Kähler quotient of the space {λi} of complex marginal couplings

by the complexified global (flavor) symmetry group G,

Mc = {λi|Da = 0}/G = {λi}/GC . (3.14)

Here Da = 0 is the moment-map condition

Da = λiT aij̄ λ̄
j̄ +O(λ3) = 0 (3.15)

with T a the generators of the global group in the representation of the marginal couplings.

This condition follows directly from conformal perturbation theory, while the extra quotient

by G is just the identification of theories obtained by G-transformation of the deforming

operator [49, 50].

The story is more familiar in the context N = 1 SCFTs in four dimensions, following

the pioneering work of Leigh and Strassler [52] and further explored in [49, 50, 53, 54]. From

the perspective of the dual supergravity the recombination (3.12) is the familiar ‘Higgsing’

of a gauge symmetry which is allowed by N = 2, but not by N = 4 supersymmetry.12

When the CFT has no flavor symmetries the supergravity has no vector multiplets.

Marginal deformations are dual to hypermultiplets and since N = 2 forbids a superpotential

11As shown in [55–59], this generalises to generic spin s currents in (super)conformal theories,

∂J(s,∆=s+D−2) = 0 → ∂J(s,∆=s+D−2+γ) = L(s−1,∆=s+D−1+γ) ,

provided that the required ‘Goldstone’ or Stückelberg modes L(s−1,∆=s+D−1+γ) exist in the spectrum.
12N = 4 supersymmetry is however compatible with a pantagruelic Higgs mechanism, termed La Grande

Bouffe in [55–59], whereby higher spin currents are violated by the interactions and acquire anomalous

dimensions γ in the boundary (S)CFT, holographic dual to mass-shifts in the bulk AdS (super)gravity. The

prototypical example is the long Konishi super-multiplet, originally studied in e.g. [60–63].
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they are, in this case, exactly marginal. This agrees with the fact that the quotient (3.14)

is in this case the trivial quotient. When the supergravity couples to vector multiplets the

analysis of the vacua is more involved, see for example [64].

3.3 N = 4 → N = 2

We are interested in marginal deformations of N = 4 theories preserving N = 2. Such

deformations only exist in the N = 2 superpotential multiplet

LB̄1[0]
(2)
2 = [0]

(2)
2 ⊕ [ 1

2 ]
(1)
5/2 ⊕ [0]

(0)
3 (3.16)

and its conjugate B1L̄. Since our starting point is N = 4 supersymmetric, we must search

for N = 4 multiplets that contain such marginal N = 2 operators. There exist inequivalent

embeddings of the N = 2 subalgebra in N = 4, and each of them will lead to a different

superconformal manifold. We here pick the maximal embedding

osp(2|4)⊕ u(1)F ⊂ osp(4|4) (3.17)

in which the N = 2 R-symmetry is generated by J3 + J′3, where J3 and J′3 are the

canonically-nomalized Cartan generators of the su(2) ⊕ su(2)′ of N = 4, and u(1)F is

an ‘accidental’ flavor symmetry generated by J3 − J′3 which commutes with the N = 2

algebra. We must thus find the branching rules for the decomposition of N = 4 multiplets

under this embedding.

The candidate N = 4 representations must contain a ∆ = 2 scalar component, which

is the lowest component of (3.16). This gives the following short list

B1[0]
(R;R′)
R+R′ with R+R′ = 1, 2 , or A2[0]

(R;R′)
R+R′+1 with R+R′ = 0, 1 . (3.18)

The lowest entries of the list are the familar stress-tensor and vector-current multiplets,

eqs. (3.2)–(3.4), whose N = 2 decomposition reads:

A2[0]
(0;0)
1 = A2Ā2[0]

(0)(0)
1︸ ︷︷ ︸

vector current

⊕ A1Ā1[ 1
2 ]

(0)(1)
3/2 ⊕A1Ā1[ 1

2 ]
(0)(−1)
3/2︸ ︷︷ ︸

supercurrents

⊕ A1Ā1[1]
(0)(0)
2︸ ︷︷ ︸

stress tensor

, (3.19)

B1[0](1;0) = A2Ā2[0]
(0)(0)
1︸ ︷︷ ︸

vector current

⊕ LB̄1[0]
(1)(1)
1 ⊕B1L̄[0]

(−1)(−1)
1︸ ︷︷ ︸

chiral+antichiral

, (3.20)

B1[0](0;1) = A2Ā2[0]
(0)(0)
1 ⊕ LB̄1[0]

(1)(−1)
1 ⊕B1L̄[0]

(−1)(1)
1 . (3.21)

These are the familiar decompositions of the N = 4 graviton and vector multiplets in

terms of N = 2 multiplets. The conserved current in the graviton multiplet is that of

the ‘accidental’ u(1)F symmetry. We indicated the u(1)F charge of representations in blue

fonts next to the N = 2 R-symmetry charge.

None of these multiplets contains the sought-for marginal superpotential (3.16). One

can also rule out the representations A2[0]
(R;R′)
2 with R+R′ = 1 from the list, because the

∆ = 2 scalars in this representation have N = 2 R-charge r = 0,±1, but not r = 2 as

required. This leaves then the representations B1[0]
(R;R′)
2 with R+R′ = 2 as the only ones

containing marginal N = 2 superconformal deformations.
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The decomposition of these representations in terms of N = 2 multiplets is as follows13

[we only exhibit one member of each mirror pair; the c.c. of XȲ [j]
(r)(f)
∆ is Y X̄[j]

(−r)(−f)
∆ ]:

B1[0]
(2;0)
2 =LL̄[0]

(0)(0)
2 ⊕

[
LĀ2[0]

(1)(1)
2 ⊕ LB̄1[0]

(2)(2)
2 ⊕c.c.

]
, (3.22)

B1[0]
(1;1)
2 =LL̄[0]

(0)(0)
2 ⊕

[
LL̄[0]

(0)(2)
2 ⊕LĀ2[0]

(1)(1)
2 ⊕LĀ2[0]

(1)(−1)
2 ⊕ LB̄1[0]

(2)(0)
2 ⊕ c.c.

]
⊕
[
LL̄[ 1

2 ]
(0)(1)
5/2 ⊕LĀ1[ 1

2 ]
(1)(0)
5/2 ⊕ c.c.

]
⊕LL̄[0]

(0)(0)
3 , (3.23)

B1[0]
(3/2;1/2)
2 =

[
LL̄[0]

(0)(1)
2 ⊕LĀ2[0]

(1)(2)
2 ⊕LĀ2[0]

(1)(0)
2 ⊕ LB̄1[0]

(2)(1)
2 ⊕ c.c.

]
⊕ LL̄[ 1

2 ]
(0)(0)
5/2 ⊕

[
LĀ2[0]

(2)(1)
3 ⊕ c.c.

]
. (3.24)

All of them contain the (boxed) marginal superpotential LB̄1, so we should look for these

multiplets in the original N = 4 theory.

The breaking N = 4 → N = 2 requires that two spin-1/2 Goldstini be eaten by the

two spin-3/2 gravitini which acquire a mass. The corresponding recombination reads

A1Ā1[ 1
2 ]

(0)
3/2 ⊕ LĀ2[0]

(1)
2 ⊕ c.c. → LL̄[ 1

2 ]
(0)
3/2 , (3.25)

where LĀ2[0]
(1)
2 is the N = 2 Goldstino multiplet. All of the above muliplets contain,

in addition to the deforming superpotential, a candidate Goldstino as required for consis-

tency. Note also that the self-conjugate representation (3.23) respects the accidental u(1)F
symmetry, while among all flat directions in other multiplets a linear combination will be

lifted by the u(1)F moment-map condition.

To summarize, we have identified the three N = 4 superconformal multiplets that

contain candidate N = 2 moduli. From table 1 we see that the first can arise from either

open or closed strings, and may survive the gauged-supergravity truncation, the second

can come from Kaluza-Klein gravitini, while the third violates our angular-momentum

selection rule of section 3.1 and can only be an exotic multi-particle state. We will now

go to the CFT side of the correspondence, where the first kind of deformations will be

identified with standard superpotential deformations on the Higgs branch of the electric-

quiver gauge theory (or its mirror dual), while the others involve mixed-branch operators.

4 N = 4 quiver gauge theories

The evidence that the AdS4 solutions of [4, 5] are holographic duals to the ‘good’ N = 4

quiver gauge theories of [15] is that their symmetries match, and that the condition (2.2) is

automatically obeyed on the string-theory side. In this section we will find more evidence

for this correspondence. To make the paper self-contained, we start by recalling some

simple facts about N = 4 quiver theories.

13In comparing with the tables in ref. [12] the reader should be warned that these are only valid for

generic values of the spins. For small R,R′ some of the states are actually missing.
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Figure 2. The electric and magnetic quivers corresponding to the theories (A,B,C) of section 2.

The infrared limits of these theories have the same flavor symmetry but different operator content.

4.1 Generalities

The fields of N = 4 gauge theories are vector multiplets and hypermultiplets, and the group

of R symmetries is usually denoted SU(2)H×SU(2)C (for Higgs and Coulomb).14 A vector

multiplet contains a vector, Aµ, and three scalars φ1,2,3 transforming as a vector of SU(2)C ,

while a hypermultiplet contains two complex scalars, H = (q+, q−), which transform as a

doublet of SU(2)H .

The vector fields are in the adjoint representation of the gauge group which is a product

of unitary factors,
∏
i U(ni), while the hypermultiplets transform either in fundamental or

in bifundamental representations. The precise representation content is described by a

linear quiver like those depicted in figure 2. A circular node ni stands for a gauge-group

factor U(ni), a square node Na forNa hypermultiplets in the fundamental of the associated

gauge-group factor, and a horizontal link for a hypermultiplet in the bifundamental of the

adjacent circular nodes. The N = 4 Lagrangian contains the Yang-Mills term but no

Chern-Simons terms,15 and it is completely fixed by the quiver data modulo the gauge

couplings which are free parameters with dimension [mass]1/2.

The relation of the quiver to the data {Na, `a} and {N̂â, ˆ̀̂
a} of the supergravity solu-

tions follows from the engineering of the gauge theory on flat-space branes [6]. The electric

quiver is realized by D3-branes suspended between NS5-branes and intersecting D5-branes,

while for the magnetic quiver the roles of NS5 and D5 are exchanged. It follows from these

14This is the same as the group SO(3)+×SO(3)− of earlier sections.
15Chern-Simons terms are necessary when there exist three different types of 5-brane, in which case the

maximal supersymmetry is N = 3 [65]. The N = 4 theories of interest here have equivalent Chern-Simons

realizations [66], which we will not need in this paper.
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constructions that the electric quiver has Na fundamental hypermultiplets at the i = `a
gauge node (counting from right to left), while the magnetic quiver has N̂â fundamental

hypermultiplets at the î = ˆ̀̂
a gauge node (counting from left to right). The number of

gauge nodes in the electric quiver is the total number k̂ =
∑

â N̂â of NS5-branes minus

one. Reading the complete NS5-brane data {N̂â, ˆ̀̂
a} from the electric quiver, is possible

but slightly more involved (see e.g. ref. [4]). By moving around the 5-branes one obtains

the dual magnetic quiver with a total number of gauge nodes
∑

aNa − 1 := k − 1.

The condition (2.2) for a ‘good theory’ ensures that the number of hypermultiplets suf-

fices to completely Higgs the gauge symmetry. The vacuum manifold thus contains a pure

Higgs branch, along which only the hypermultiplet v.e.vs are non-zero, and a pure Coulomb

branch which is isomorphic to the pure Higgs branch of the mirror quiver. These branches

can be viewed as complex varieties described by chiral rings of holomorphic functions. In

the language of N = 2 supersymmetry, vectors decompose into pairs (V,Φ) of vectors and

chiral multiplets in the adjoint representation of the gauge group, while hypermultiplets

contain two chiral fields (q, q̃) in complex-conjugate representations.16 The Yang-Mills La-

grangian includes a superpotential term for each U(ni) factor, W =
∑

α q
T
αΦq̃α where Φ is

the adjoint chiral field and the sum runs over all chiral multiplets in the (anti)fundamental

representation of U(ni). Since on the Higgs branch 〈Φ〉 = 0, the non-trivial F-flatness

conditions are the n2
i equations

∑
α qαq̃

T
α = 0 for each gauge node. The chiral ring consists

of all gauge-invariant combinations of qs and q̃s modulo these F-flatness conditions.

4.2 Chiral-ring operators as open strings

The chiral-ring operators on the Higgs branch are singlets of SU(2)C . Their dimension

is equal to their N = 2 R-symmetry charge which is half the number of chiral fields in a

product. It is easy to see that all such operators are highest-weights in short representations

B1[0]
(R;0)
R of the N = 4 algebra, where ∆ = R is the SU(2)H spin. We have seen that these

representations are absolutely protected, so they should survive in the infrared SCFT.

One can picture these operators as oriented strings with string-bits being the links of

the quiver diagram, as in figure 3. The usefulness of this perspective was demonstrated by

Assel [13] who mapped chiral and monopole operators to strings in the flat-brane setup.

Here we will map them to strings in the near-horizon geometry. The string orientation

indicates whether one picks the q or q̃ chiral field in a hypermultiplet: the q for up- or left-

pointing string bits, and the q̃ for down- or right-pointing string bits. Gauge-group indices

are automatically summed while flavor indices are free, so strings can be either closed, or

have endpoints on the square nodes which we identify with the stacks of D5-branes. The

same holds for the dual magnetic quiver, where the square nodes are NS5-branes and the

relevant N = 4 multiplets are B1[0]
(0:R′)
R′ . Clearly the dimension ∆ is half the total length

of the string.

To make the notation lighter it is convenient to label the D5-brane stacks by their

linking number, indicating the circular node to which they attach. The quiver data is then

16Compared to our previous notation, q := q+ is the upper component of the SU(2)H doublet, and

q̃ := (q−)? is the complex conjugate of the lower component.
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Figure 3. Two chiral operators on the Higgs branch of the magnetic quiver of theory B. The open

string operator (in red) is in the bifundamental of the flavor group U(2) × U(1), while the closed

string operator (in green) is a flavor singlet. Both contain marginal superpotential deformations

since they have length=4, and hence belong to B1[0]
(2;0)
2 multiplets.

+

+ =    0

Figure 4. Graphical representation of the F-flatness conditions on the Higgs branch, as linear

relations among cut-open string segments. The dotted red semicircle in the third term stands for a

summation over the free flavor indices of the open strings.

specified by the set of k̂ − 1 non-negative integers S = {N`}, some of which can be zero,

and by the set of corresponding gauge-group ranks s = {n`}. For example the magnetic

quiver of theory A in figure 2 has S = {0, 1, 2, 0, 0, 0, 0} and s = {2, 4, 5, 4, 3, 2, 1}. We also

consider the q and q̃ as matrices, so that the superpotential at the `th circular node reads

W = tr(Φ` q̃`,� q�,` + Φ` q̃`,`+1 q`+1,` + Φ` q`,`−1 q̃`−1,`) (4.1)

where the subsripts here indicate the link, with gauge and flavor indices suppressed (the

label ‘�, `’ denotes the vertical link). The corresponding F-term condition can be drawn as

a linear relation between strings cut-open at the circular node, as shown in figure 4. Notice

that this relation identifies flavor-singlet combinations of open strings with closed strings.

Having set the notation, let us enumerate some chiral operators by increasing length:

• ∆ = 1. These operators belong to conserved-current multiplets of N = 4. There

exist length-2 open strings in the adjoint representation of each U(N`) flavor-group

factor, and one length-2 closed string for each horizontal node of the quiver, i.e. in

total k̂ − 2 horizonatl nodes. These strings are subject to k̂ − 1 F-term conditions,

one for each trΦ`. The number of independent operators is therefore precisely the

dimension of the flavor group
(∏

` U(n`)
)
/U(1) as expected. Note that the overall

U(1) which acts trivially on the fields consistently decouples.

• ∆ = 3/2. There are no closed strings of length 3, in accordance with the rule on

the gravity side, see section 2.3, that spin-0 closed strings must have integer S2
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angular momenta. Open strings of length 3 exist for every neighbouring pair of square

nodes, and they are linearly independent. They transform in the bifundamental

representation of U(N`)× U(N`+1). Of the six quivers of figure 2 only the magnetic

quiver of theory A has such chiral operators.

• ∆ = 2. There are several possibilities for strings of length 4. The corresponding

chiral operators belong to the short multiplets B1[0]
(2;0)
2 (or B1[0]

(0;2)
2 for the Coulomb

branch or, alternatively, the Higgs branch of the dual quiver) which contain marginal

N = 2 superpotential deformations.

The open strings transform either in the second symmetric product of the flavor

group, or in bifundamental representations of next-to-nearest-neighbor group factors

U(N`)× U(N`+2), when such exist. Of the six quivers of figure 2 only the magnetic

quiver of theory B has such chiral operators. The operators in the second symmetric

product of the adjoint representation consist of the “second adjoint” representation,

the adjoint representation, and the 4th rank antisymmetric representation. These

can be thought of as bound states of two open strings. We will argue shortly that

this completes the list of independent ∆ = 2 chiral operators.

One can now see the emerging general pattern. At level ∆ = R there exist single-

string chiral operators that are either closed strings, or open strings in the bifundamental

of U(N`)×U(N`′). They are subject to the following selection rules:

R = 1 + n for closed strings, R =
1

2
|`− `′|+ n for open strings (4.2)

where n = 1, 2 · · · . These are precisely the rules derived from Type IIB string theory in

section 2.3, in perfect agreement with the conjectured holographic duality. They have been

also obtained as scaling dimensions of monopole operators on the Coulomb branch of the

magnetic quiver in agreement with mirror symmetry [67].

For linear quivers, it is actually possible to choose a basis in which all chiral operators

are multiparticle bound states of open strings. This follows from the F-term condition in

figure 4

− q̃`,`+1 q`+1,` = q`,`−1 q̃`−1,` + q̃`,� q�,` , (4.3)

which can be used to “fold and slide” any closed string along the horizontal part of the

quiver. If the second term on the right-hand-side were absent, the closed string would

eventually hit the quiver boundary and annihilate. Because of the second term, the process

is accompanied by the “emission” of open strings, qed.

This argument does not work for circular quivers, which have no boundary and which

can support irreducible closed winding strings.

4.3 Counting techniques

Although the logic is clear, the actual counting of ∆ > 2 operators on the pure Higgs or

pure Coulomb branch can become quickly cumbersome. In this section we mention some

elegant techniques developped by both physicists and mathematicians.
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The moduli spaces of the family of N = 4 quivers considered here have a description in

terms of nilpotent orbits and Slodowy slices, see [68] and references therein. Let us review

the basic points. For a given partition ρ of N we denote by Oρ the closure of the nilpotent

orbit associated to this partition. The orbit consists of all N ×N nilpotent matrices whose

Jordan normal form has Jordan blocks of sizes given by the partition, and the closure

includes the orbits of all smaller partitions as well. We also denote by Sρ the Slodowy slice

associated to this partition, namely the transverse slice to the orbit Oρ in the space which

is freely generated by adjoint-valued variables.

Let the Higgs branch be H and the Coulomb branch be C, and denote the electric

theory by a subscript e and the magnetic theory by a subscript m. Then the Higgs branch

He of the electric theory and the Coulomb branch Cm of the magnetic theory are given by

the intersection [29, 30]

He = Cm = Sρ ∩ Oρ̂T , (4.4)

while the Higgs branch Hm of the magnetic theory and the Coulomb branch Ce of the

electric theory are given by the mirror intersection

Hm = Ce = Sρ̂ ∩ OρT . (4.5)

As an example, we can compute three of the moduli spaces for the partitions of figure 1

by noticing that for the partition ρ in this figure, the Slodowy slice is the whole freely-

generated adjoint-valued variety, and therefore the Higgs branch of the electric theory

becomes the closure of the corresponding nilpotent orbit.

He = Cm = Oρ̂T . (4.6)

The latter have simple descriptions as algebraic varieties with relations given by conditions

on matrices. Explicitly, for models A, B, C of figure 2 we have

HAe = CAm = Oρ̂TA =
{
M8×8 : tr (M) = tr (M2) = 0, M3 = 0, rk(M) ≤ 5

}
, (4.7a)

HBe = CBm = Oρ̂TB =
{
M8×8 : tr (M) = tr (M2) = 0, M3 = 0, rk(M) ≤ 4

}
, (4.7b)

HCe = CCm = Oρ̂TC =
{
M8×8 : tr (M) = tr (M2) = 0, M3 = 0, rk(M) ≤ 2

}
, (4.7c)

where rk(M) is the rank of the matrix M .

In the language used in the previous subsection all electric quivers in figure 2 have

two hypermultiplets. Call for short (q, q̃) the fields in the fundamental of SU(8), and (u, ũ)

those corresponding to the horizontal link. The F-flatness conditions are ũu = uũ+ q̃q = 0.

It follows that the meson matrix M = qq̃ obeys the conditions tr (M) = tr (M2) = M3 = 0.

Furthermore its rank cannot exceed the rank of the gauge group under which the quarks q

and q̃ are charged. This explains the equations (4.7).

The global symmetry on these branches is SU(8). This is seen in the electric quivers

as flavor symmetry, and it manifests itself in the magnetic quivers from the balanced A7

Dynkin diagram.17 Denoting the highest-weight fugacities of SU(8) by µi, i = 1, . . . , 7 and

17A balanced node is one that has the number of flavors equal to twice the number of colors. For linear

or circular quivers this means 2na = na+1 + na−1 + Na. Amusingly this is nothing but the condition for

vanishing β functions of the D = 4 SYM theory with the same quiver.
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the highest-weight fugacity of SU(2)H(C) by t1(2), we find for all three moduli spaces that

the operators up to dimension ∆ = R = 2 transform in the following representations

1 + µ1µ7t
2
1 + (µ2

1µ
2
7 + µ2µ6 + µ1µ7)t41. (4.8)

At ∆ = 2 we find the adjoint of SU(8), and at ∆ = 4 there are 1232 + 720 + 63 distinct

operators, the same number as in the symmetric traceless product of two adjoints.18This

agrees with our statement that there is a basis consisting of only open strings.

The other branches have the global symmetry
(
U(1) × U(2)

)
/U(1) ' SU(2) × U(1)

with, again, a universal sector in the adjoint representation at dimension 1, but different

content at higher dimensions. This is clear from our earlier enumeration. Letting µ and α

be the two fugacities of SU(2) ×U(1), we find the following content up to dimension 2

A : 1 + (µ2 + 1)t22 + µ(α+ α−1)t32 + (µ4 + µ2 + 1)t42 , (4.9a)

B : 1 + (µ2 + 1)t22 + (µ4 + µ2 + 1)t42 + µ(α+ α−1)t42 , (4.9b)

C : 1 + (µ2 + 1)t22 + (µ4 + µ2 + 1)t42. (4.9c)

These calculations can be checked from the Coulomb branch of the electric quivers. In

addition to the universal adjoint, and (adjoint)2 sectors, we have new operators in the bi-

fundamental of SU(2)×U(1), with ∆ = 3/2, 2 and 7/2 for theories A,B and C, as explained.

For the conformal manifold one must consider all ∆ = 2 operators, including the

product of D5-brane strings in the adjoint of the electric flavor group with NS5-brane strings

in the adjoint of the magnetic flavour group. Notwithstanding additional mixed-branch

operators, the number of candidate moduli even in these simple models is formidable!

Furthermore, the majority of marginal fields are 2-string bound states which would go

undetected by a semiclassical analysis on the gravity side.

The actual conformal manifold is the quotient (3.14) – (3.15) of the space of all candi-

date moduli by the complexified flavor group. This removes 63+3+1 + 1 = 68 directions,

i.e. one direction per each generator of the flavor symmetry and one for the accidental

U(1)F at the enhanced N = 4 supersymmetry point. Denote the space of all U(1) sym-

metries which are preserved by the conformal deformation by P. The U(1)R in the N = 2

superconformal algebra is a particular linear combination of all U(1)s in P. The remaining

U(1) charges in P can be arranged in a convenient orthogonal basis O. The conformal

manifold is given by the Kähler quotient with respect to U(1) symmetries in O. Notice

that at least two charges of opposite sign are necessary to solve U(1) D-term conditions.

The particular choice of U(1)R as the diagonal subgroup of U(1)H × U(1)C implies that

there must exist at least one marginal operator from the Higgs branch and one from the

Coulomb branch, or else the conformal manifold is trivial.

To calculate the manifold one proceeds with the methods presented in [50], with the

help of plethystic techniques as in [69]. To be more specific, one computes the set of

holomorphic functions from the Hilbert series of this moduli space with a Molien Weyl

integral over the group of global symmetries. In the examples at hand, both the dimension

18We already checked that the trace of the product representation, trM2, is indeed zero.
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of the group and the number of marginal operators is large, and the integrals cannot be

done explicitly. Here we will only sketch the calculation, which we illustrate in appendix B

for a simpler case, U(1) theory with one flavor, for which explicit formulae are available.

The formula uses the characters for the representations of the moduli, which can be

found in standard references such as Lie Online. The representations are rather large,

hence we will adopt a short-hand notation to denote the expression for the integral. The

Haar measure for a group G is denoted dµ(G), and the character of a representation of

SU(8)×SU(2) by the Dynkin labels [n1, . . . , n7;n]. With these notational conventions, the

integral for (the most interesting) theory B takes the form∮
dz

z

∮
dw

w

∫
dµSU(8)dµSU(2)Z

where

Z = PE
[
([2, 0, 0, 0, 0, 0, 2; 0] + [0, 1, 0, 0, 0, 1, 0; 0] + [1, 0, 0, 0, 0, 0, 1; 0])z2q2

+ ([~0; 4] + [~0; 2] + [~0; 1](w + w−1) + [~0; 0])z−2q2 + [1, 0, 0, 0, 0, 0, 1; 2]q2
]
. (4.10)

Here PE is the plethistic exponential [69], w is the fugacity of the U(1) magnetic-flavor

group, and z is the fugacity of the accidental U(1)F symmetry which is always present at

the points of moduli space where supersymmetry is enhanced to N = 4. We have also

introduced a fugacity q to keep track of the number of couplings in the problem, which can

be identified with the residual R symmetry.

4.4 Mixed-branch operators

So far we have considered chiral operators on the Higgs branch where the moduli space is

classical, or on the Coulomb branch which is the Higgs branch of the mirror quiver. These

operators organize themselves in B1[0]
(2;0)
2 and B1[0]

(0;2)
2 multiplets of osp(4|4). There exist,

however, also mixed-branch operators. The simplest are products of a current multiplet

of the electric flavor group with a current multiplet of the magnetic flavor group. These

marginal B1[0]
(1;1)
2 operators are bound states of a string on the D5-branes with a string

on the NS5-branes. They are part of the universal spectrum of the CFT.

A natural question to ask is whether there exist single-string (non-factorizable) mixed-

branch operators. Let us consider gauge-invariant products of chiral fields which, in addi-

tion to the q, q̃ coming from hypermultiplets, also involve the fields Φ` sitting in the N = 4

vector multiplets. In the ultraviolet theory, which is free, the Φ` belong to the represen-

tation B1[0]
(0;1)
1 which contains a triplet of scalars and the conserved topological current

εµνρFνρ. Each Φ` adds therefore one unit of SU(2)C spin, and raises the scaling dimension

by 1. The counting is valid in the free theory, but because the N = 4 multiplet in which

such operators sit, is absolutely protected, we may conjecture that it continues to hold in

the strongly-coupled low-energy theory as well.

Such operators can be again depicted as strings which, in addition to line segments,

contain ‘bubbles’ at circular nodes, see figure 5. Each line segment stands for a hyper-

multiplet and contributes ∆ = R = 1/2 to the operator dimension and the SU(2)H spin,
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Figure 5. Mixed-branch operators are gauge-invariant products of chiral fields from both hyper-

multiplets and vector multiplets. The former are linear string bits while the latter, in the adjoint

representation of the gauge group, are denoted by bubbles. The closed string in the figure has 8

linear segments and 2 bubbles, and transforms in the representation B1[0]
(4;2)
6 .

while each bubble stands for a Φ` insertion and contributes ∆ = R′ = 1 to the operator

dimension and the SU(2)C spin. The resulting operator is in the B1[0]
(R;R′)
R+R′ multiplet, with

R′ the number of bubbles and 2R the number of line segments of the string.

How many of these operators are independent? In addition to the conditions (4.3) we

must now also impose the F-term conditions of q, q̃ which read

q�,` Φ` = Φ` q̃`,� = 0 , q`+1,` Φ` ∼ Φ`+1 q`+1,` , q̃`,`+1 Φ`+1 ∼ Φ` q̃`,`+1 . (4.11)

The ‘∼’ sign in the above relations allows for different gauge couplings of the factor groups.

The second and third relations show that bubbles can move freely around the string, while

the first equation shows that if they encounter a vertical segment they vanish. To avoid

this from happening, such mixed-branch single-string operators must thus be closed. This

fits nicely with the analysis in section 3.1 where we argued that B1[0]
(R;R′)
R+R′ multiplets with

RR′ 6= 0 are either multiparticle states or Kaluza-Klein descendants of the gravitini.

Such single-closed-string mixed-branch operators exist in theories based on circular

quivers (whose dual supergravity backgrounds were found in [5]). For linear quivers they

vanish by a similar argument as the one used in section 4.3. As explained there, one can

‘fold and slide’ the closed string until it reaches the boundary of the linear quiver, where

it is annihilated. It can be seen that the bubble insertions go along for the ride, their role

being only to annihilate any open strings emitted in the process.
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A The N = 4 supergravity solutions

The local form of the most general Type IIB solutions with osp(4|4) symmetry was derived

in [25, 26]. It depends on two real non-negative functions h1 and h2 that are harmonic on

the surface Σ. The coordinates on this latter are (z, z̄). Changing slightly the notation of

the above references we define the auxiliary functions

W = ∂z∂z̄(h1h2) and Ui = 2h1h2|∂zhi|2 − h2
iW . (A.1)

The 10-dimensional manifold is a fibration of AdS4×S2
(1)×S2

(2) over Σ with metric

4

α′
ds2 = ρ2

4 ds
2
AdS + ρ2

1 ds
2
(1) + ρ2

2 ds
2
(2) + 4ρ2 dzdz̄ , (A.2)

where α′ is the Regge slope, ds2
(i) = dϑ2

i + sinϑ2
i dϕ

2
i are the metrics of the unit-radius

2-spheres (also called S2 and S2 ′ in the main text) and the scale factors read

ρ8
1 = 16h8

1

U2W
2

U3
1

, ρ8
2 = 16h8

2

U1W
2

U3
2

, (A.3)

ρ8 =
U1U2W

2

h4
1h

4
2

, ρ8
4 = 16

U1U2

W 2
. (A.4)

The solutions have a non-trivial dilaton field

e2φ =

√
U2

U1
, (A.5)

as well as antisymmetric Neveu-Schwarz and Ramond-Ramond 3-form fields

4

α′
Re(f3) = ω(1) ∧ dβ1 and

4

α′
Im(f3) = ω(2) ∧ dβ2 (A.6)

with ω(i) = d cosϑi ∧ dϕi the 2-sphere volume forms and

β1 = 2i
h1

U1
h1h2(∂zh1∂z̄h2 − ∂zh2∂z̄h1) + 2h̃2 , (A.7)

β2 = 2i
h2

U2
h1h2(∂zh1∂z̄h2 − ∂zh2∂z̄h1)− 2h̃1 . (A.8)

Here h̃i are the functions dual to hi, i.e. in terms of two meromorphic functions Ai:

h1 = −i(A1 − Ā1) , h2 = A2 + Ā2 ,

h̃1 = A1 + Ā1 , h̃2 = i(A2 − Ā2) . (A.9)

Finally, there is a non-trivial self-dual Ramond-Ramond 5-form(
4

α′

)2

f5 = −4ρ4
4 ω

AdS ∧ F + 4ρ2
1ρ

2
2 ω

(1) ∧ ω(2) ∧ (∗2F) , (A.10)
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where ωAdS is the volume form of the unit-radius AdS4, and ρ4
4F is a closed one-form given

by the following formidable-looking expressions:

F = ρ−4
4 dJ , with J = 3(C + C̄)− 3D + i

h1h2

W
(∂zh1∂z̄h2 − ∂zh2∂z̄h1) ,

∂C = A1∂zA2 −A2∂zA1 , and D = A1Ā2 +A2Ā1 . (A.11)

The 1-form ∗2F in (A.10) is the dual of F on the Riemann surface Σ.

The explicit solutions found in [4] correspond to the following choices for the mero-

morphic functions Ai (here rescaled by a factor 4/α′)

iA1 =

p∑
a=1

Na log

(
1 + iez−δa

1− iez−δa

)
, A2 =

p̂∑
â=1

N̂â log

(
1 + e−z+δ̂â

1− e−z+δ̂â

)
, (A.12)

where z parametrizes the infinite strip 0 ≤ Imz ≤ π/2. These solutions are holographically

dual to linear-quiver gauge theories at their infrared fixed points. To find the supergravity

backgrounds for circular quivers one simply sums over an infinite array, Ai →
∑

nAi(z+nt),

before identifying z periodically (z ≡ z + t) [5].

The function A1 in (A.12) has logarithmic singularities at z = δa + iπ/2 on the upper

strip boundary, while A2 has logarithmic singularities at z = δ̂â on the lower boundary.

These are the locations, respectively, of (stacks of Na) D5-branes and (stacks of N̂â) NS5-

branes. Both the coefficients {Na, N̂â} and the positions {δa, δ̂â} of these singularities on

the boundary are continuous parameters of the supergravity solution, but in string theory

they are quantized. This is because the former are five-brane charges and the latter are

related to D3-brane charges of the five-brane stacks by the following equations [4]

`a = −
p̂∑
â=1

N̂â
2

π
arctan

(
e−δa+δ̂â

)
= − i

π
A2

(
z = δa +

iπ

2

)
, (A.13)

ˆ̀̂
a =

p∑
a=1

Na
2

π
arctan

(
e−δa+δ̂â

)
=

1

π
A1

(
z = δ̂â

)
, (A.14)

where `a is the D3-brane charge (or linking number) of a D5-brane in the ath stack and ˆ̀̂
a

is the D3-brane charge of a NS5-brane in the âth stack. Note that one equation is trivial,

because the total D3-brane charge is zero, reflecting the arbitrariness in choosing the origin

of the Rez axis. The remaining (p + p̂ − 1) equations determine the (p + p̂ − 1) 5-brane

positions. So the solutions (A.12) have no continuous moduli.

Near a NS5-brane singularity, z − δ̂â = reiθ (r � 1), the meromorphic functions read

A1 = π ˆ̀̂
a + c1 re

iθ +O(r2) , A2 = −N̂â log(reiθ) + c2 +O(r) , (A.15)

where the expansion coefficients c1, c2 are both real,

c1 =

p∑
a=1

Na

cosh(δa − δ̂â)
, c2 = N̂â log 2 +

∑
b̂ 6=â

N̂b̂ log

(
1 + eδ̂b̂−δ̂â

1− eδ̂b̂−δ̂â

)
. (A.16)
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Inserting (A.15) in (A.1)–(A.11) gives the following singular metric and dilaton:

ds2 ' α′c2
1N̂

2
â

(
− log r

r2

)−1/4 (dr2

r2
+ ds2

S3 + (− log r)
[
ds2

AdS + ds2
(2)

])
(A.17)

e2φ '
N̂2
â

c2
1

(
− log r

r2

)1/2

(A.18)

Note in particular that the singularity is at finite distance since the integral
∫
dr
r (− log r

r2 )−1/8

converges at r ' 0. Similar expressions hold for the D5-brane singularities.

B Conformal manifold of U(1) with 1 flavor

The simplest set of examples are those conformal manifolds which have points on their

moduli spaces with free theories, or more generally, with BPS spectra that are generated by

free operators. Although these theories correspond to singular supergravity backgrounds,

the study of their moduli demonstrates the method outlined in section 4.3.

Consider the case of SQED which is well known to have a one (quaternionic) dimen-

sional Coulomb branch and no Higgs branch.19 Details of this theory are conveniently

summarized in [70] and are presented below. The theory starts as an interacting theory

in the UV and flows to a free theory in the IR. Even though the theory is free in the IR,

the free operators are in fact non perturbative objects which carry a magnetic charge. The

Coulomb branch is a copy of H = C2, and the ring of holomorphic BPS operators is the set

Om,k = Vmφ
k, m ∈ Z, k = 0, 1, 2, . . . ∆(m, k) =

1

2
|m|+ k (B.1)

with Vm a bare monopole operator of magnetic charge m and conformal dimension ∆(m) =
1
2 |m| and φ is a complex scalar in the vector multiplet with conformal dimension 1. ∆(m, k)

is the conformal dimension of Om,k. The ring is freely generated, as the moduli space is H
and this implies non trivial relations that these operators satisfy. They can be written as

Om,k Om′,k′ = Om+m′,k+k′ φ
∆(m)+∆(m′)−∆(m+m′) (B.2)

or perhaps a slightly simpler expression for bare monopole operators,

Vm Vm′ = Vm+m′ φ
∆(m)+∆(m′)−∆(m+m′) (B.3)

from which one can derive relations like

Vm = (V1)m, V−m = (V−1)m, m > 0 (B.4)

and perhaps the most crucial relation

V1V−1 = φ (B.5)

19This means that there can be no conformal manifold corresponding to the maximal embedding (3.17),

but there is one if we pick the N = 2 R-symmetry to lie entirely inside SU(2)C .
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where V1 and V−1 are the generators of the ring. The global symmetry of this theory is

Sp(1) = SU(2) under which the monopole operators V1 and V−1 transform in the fun-

damental (doublet) representation. The set of holomorphic BPS operators can be recast

into a collection of representations of Sp(1) with fixed conformal dimension. We have a

spin j representation of Sp(1) for every operator of conformal dimension j. This can be

summarized by the highest weight generating function (HWG) [71]

1

1− µt
(B.6)

where t is the fugacity for the conformal dimension (or alternatively the fugacity for

SU(2)C) and µ is the fugacity for the highest weight n = 2j of the representation with

spin j. For example we list the operators up to spin 2 of Sp(1).

V00

V1, V−1
1

2

V2, φ, V−21

V3, V1φ, V−1φ, V−3
3

2

V4, V2φ, φ
2, V−2φ, V−42

At conformal dimension 2 we find 5 different operators which can be added with arbitrary

coefficients λij , i, j = 1, 2, 3 symmetric such that λii = 0 as marginal deformations, breaking

supersymmetry from N = 4 to N = 2. Recalling that the moduli space is C2 with a

U(2) = U(1)r × SU(2) isometry that preserves N = 2 supersymmetry, where U(1)r is the

N = 2 R symmetry, we find that the SU(2) symmetry rotates the 5 parameters and leaves

a 2 complex dimensional conformal manifold. To compute this manifold we proceed with

the methods that are presented in [50], with the help of plethystic techniques as in [69].

The moduli space of conformal deformation is given by the Kähler quotient of the gauge

theory of SU(2) coupled to 1 chiral multiplet in the spin 2 representation. To compute the

set of holomorphic functions we compute the Hilbert series of this moduli space with the

Molien Weyl integral∮
|z|=1

dz
1− z2

2πiz
PE
[
(z4 + z2 + 1 + z−2 + z−4)q

]
=

1

(1− q2)(1− q3)
(B.7)

where the fugacity q measures the number of λ’s, to be consistent with equation (B.6).

This computation has the interpretation that the conformal manifold is a copy of C2 and

is freely generated by two invariants which are quadratic and cubic in λ, say c2 = λijλij
and c3 = λijλjkλki. The functions c are globally defined on the conformal manifold as

they are invariant under the SU(2) rotations. These invariants can be used to construct

any globally defined function on the conformal manifold, and in particular any physical

quantity on the conformal manifold must be a function of these two invariants.

Open Access. This article is distributed under the terms of the Creative Commons
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