
J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Published for SISSA by Springer

Received: June 3, 2019

Accepted: June 21, 2019

Published: July 5, 2019

FiniteFlow: multivariate functional reconstruction

using finite fields and dataflow graphs

Tiziano Peraro

Physik-Institut, Universität Zürich,

Wintherturerstrasse 190, CH-8057 Zürich, Switzerland

E-mail: peraro@physik.uzh.ch

Abstract: Complex algebraic calculations can be performed by reconstructing analytic

results from numerical evaluations over finite fields. We describe FiniteFlow, a frame-

work for defining and executing numerical algorithms over finite fields and reconstructing

multivariate rational functions. The framework employs computational graphs, known as

dataflow graphs, to combine basic building blocks into complex algorithms. This allows to

easily implement a wide range of methods over finite fields in high-level languages and com-

puter algebra systems, without being concerned with the low-level details of the numerical

implementation. This approach sidesteps the appearance of large intermediate expressions

and can be massively parallelized. We present applications to the calculation of multi-loop

scattering amplitudes, including the reduction via integration-by-parts identities to mas-

ter integrals or special functions, the computation of differential equations for Feynman

integrals, multi-loop integrand reduction, the decomposition of amplitudes into form fac-

tors, and the derivation of integrable symbols from a known alphabet. We also release

a proof-of-concept C++ implementation of this framework, with a high-level interface in

Mathematica.

Keywords: Perturbative QCD, Scattering Amplitudes

ArXiv ePrint: 1905.08019

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP07(2019)031

mailto:peraro@physik.uzh.ch
https://arxiv.org/abs/1905.08019
https://doi.org/10.1007/JHEP07(2019)031

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Contents

1 Introduction 1

2 Finite fields and functional reconstruction 4

2.1 Finite fields and rational functions 4

2.2 Multivariate functional reconstruction 6

2.3 Parallelization 10

3 Dataflow graphs 11

3.1 Graphs as numerical procedures 11

3.2 Learning nodes 13

3.3 Subgraphs 13

4 Numerical algorithms over finite fields 14

4.1 Evaluation of rational functions 14

4.2 Dense and sparse linear solvers 15

4.3 Linear fit 19

4.4 Basic operations on lists and matrices 21

4.5 Laurent expansion 23

4.6 Algorithms with no input 24

5 Reduction of scattering amplitudes 24

5.1 Integration-by-parts reduction to master integrals 24

5.2 Reduction to special functions and Laurent expansion in ε 28

6 Differential equations for master integrals 30

6.1 Reconstructing differential equations 30

6.2 Differential equations in ε-form 31

6.3 Differential equations with square roots 33

7 Integrand reduction 34

7.1 Integrand reduction via linear fits 34

7.2 Choice of an integrand basis 37

7.3 Writing the integrand 38

8 Decomposition of amplitudes into form factors 40

9 Finding integrable symbols from a known alphabet 41

10 Proof-of-concept implementation 43

10.1 Parallel execution 47

11 Conclusions 48

– i –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

A Mutability of graphs and nodes 50

B Further observations on IBP identities 50

1 Introduction

Scientific theoretical predictions often rely on complex algebraic calculations. This is es-

pecially true in high energy physics, where current and future experiments demand precise

predictions for complex scattering processes. One key ingredient for making these predic-

tions are scattering amplitudes in perturbative quantum field theory. The complexity of

these predictions depends on several factors, most notably the loop order, where higher

loop orders are required for higher precision, the number of scattering particles involved,

and the number of independent physical scales describing the process.

A major bottleneck in many analytic predictions is the appearance of large expres-

sions in intermediate stages of the calculation. These can be orders of magnitude more

complicated than the final result. Large analytic cancellations often happen in the very last

stages of a calculation. While computer algebra extraordinarily enhances our capability of

making such predictions, due to the reasons above, it needs to complemented with more

effective techniques when dealing with the most challenging computations.

One can trivially observe that the mentioned bottleneck is not present in numerical

calculations with fixed precision, where every intermediate result is a number (or a list of

numbers). However, in some fields, high-energy physics being one of them, analytic calcu-

lations provide more valuable results — since they can provide a more accurate numerical

evaluation, and the possibility of further checks, studies and manipulations — and in some

cases our only reliable way of obtaining them.

An effective method for sidestepping the bottleneck of complex intermediate expres-

sions consists of reconstructing analytic expressions from numerical evaluations. This can

be effectively used in combination with finite fields, i.e. numerical fields with a finite num-

ber of elements. In particular, we may choose fields whose elements can be represented by

machine size integers, where basic operations can be done via modular arithmetic. Numeri-

cal operations over these fields are therefore relatively fast, but also exact, while they avoid

the need of using multi-precision arithmetic, which is computationally expensive. Full ana-

lytic expressions for multivariate rational functions can then be obtained, using functional

reconstruction techniques, from several numerical evaluations with different input values

and, if needed, over several finite fields. Thanks to these algorithms, the problem of com-

puting a rational function is reduced to the problem of providing an efficient numerical

evaluation of it over finite fields. This implies that they can be applied to a very broad

range of problems. Moreover, numerical evaluations can be massively parallelized, taking

full advantage of the available computing resources.

Finite fields have been used by computer algebra systems for a long time. In high-

energy physics, they were introduced in ref. [1] for the solution of (univariate) integration-

by-parts (IBP) identities. In ref. [2] we developed a multivariate reconstruction algorithm

– 1 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

which is suitable for complex multi-scale problems and showed how to apply it to other

techniques in high-energy physics, such as integrand reduction [3–8] and generalized uni-

tarity [9–12]. Since then, functional reconstruction techniques based on evaluations over

finite fields have been successfully employed in several calculations which proved to be

beyond the reach of conventional computer algebra systems, with the available computing

resources (see e.g. ref.s [13–21] for some notable examples).

Despite the remarkable results which have already been obtained with functional re-

construction techniques, there are still some obstacles which prevent a more widespread

usage of them. A first one is the lack of a public implementation of functional reconstruc-

tion techniques suitable for arbitrary multivariate rational functions.1 A second obstacle

is the need of providing an efficient numerical implementation of the functions to be re-

constructed, which is typically best done in statically compiled low-level languages, such

as C, C++ or Fortran. In this paper, we try to address both these problems.

Let us assume a functional reconstruction algorithm is available, and consider the prob-

lem of providing an efficient numerical evaluation of an algorithm representing a rational

function over finite fields. The first possibility is obviously low-level coding. This offers

great performance and flexibility, but it is also hard and time-consuming to program and

therefore it limits the usability of these techniques, especially if compared with the ease of

use of computer algebra systems.

Another strategy consists in coding up some algorithms in low-level languages and pro-

viding interfaces in higher level languages and computer algebra systems. This combines the

efficiency of low-level languages with the ease of use of high-level ones. As an example, con-

sider the problem of solving a linear system of equations with parametric rational entries.

Most computer algebra systems have dedicated built-in procedures for this. One could build

another procedure, with a similar interface, which instead sends the system to a C/C++

code, which in turn solves it numerically several times and reconstructs the analytic solution

from these numerical evaluations. For the user of the procedure, there is very little differ-

ence (except for performance) with respect to using the built-in procedure. Unfortunately,

this strategy strongly limits the flexibility of functional reconstruction, since one is limited

to use a set of hardcoded algorithms. Moreover, these algorithms often solve only an inter-

mediate step of a more complex calculation needed by a scientific prediction. For instance,

in most cases, one needs to substitute the solution of a linear system into another expression

and then perform other operations or substitutions before obtaining the final result. Sig-

nificant analytic simplifications often occur at the very last steps of the calculation, making

thus the reconstruction of the intermediate steps a highly inefficient strategy. We thus need

something which is much more flexible and applicable to a wider variety of problems.

One can observe that many different complex calculations share common building

blocks. For instance, many calculations involve the solution of one or more linear systems,

changes of variables, linear substitutions, and so on, in intermediate stages. These interme-

diate calculations, however, need to be combined in very different ways, depending on the

1During advanced stages of preparation of this work, an implementation of a sparse multivariate recon-

struction algorithm was published [22]. In this paper we describe instead a dense reconstruction algorithm.

– 2 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

specific problem an algorithm is meant to solve. Building on this observation, we propose a

strategy which allows to easily combine these basic building blocks into arbitrarily complex

calculations.

In this paper, we introduce a framework, that we call FiniteFlow, which allows to

easily define complicated numerical algorithms over finite fields, and reconstruct analytic

expressions out of numerical evaluations. The framework consists of three main compo-

nents. The first component is a set of basic numerical algorithms, efficiently implemented

over finite fields in a low-level language. These include algorithms for solving linear sys-

tems, linear fits, evaluating polynomials and rational functions, and many more. The sec-

ond component is a system for combining these basic algorithms, used as building blocks,

into arbitrarily more complex ones. This is done using dataflow graphs, which provide

a graphical representation of a complex calculation. Each node in the graph represents

a basic algorithm. The inputs of each of these algorithms are in turn chosen to be the

outputs of other basic algorithms, represented by other nodes. This provides a simple and

effective way of defining complicated algebraic calculations, by combining basic building

blocks into complex algorithms, without the need of any low-level coding. Indeed, this

framework can be more easily used from interfaces in high-level languages and computer

algebra systems. Dataflow graphs can be numerically evaluated and their output represents

— in our framework — a list of rational functions. Numerical evaluations with different

inputs can be easily performed in parallel, in a highly automated way. Indeed, this defines

an algorithm-independent strategy for exploiting computing resources consisting of several

cores, nodes, or machines. The third and last component consists of functional recon-

struction algorithms, which are used to reconstruct analytic formulas out of the numerical

evaluations (which in turn, as stated, may be represented by a graph). We propose here

an improved version of the reconstruction algorithms already presented in [2].

The idea of using dataflow graphs for defining a numerical calculation is not new. For

instance, they are notably used in the popular TensorFlow library [23], in the context of

machine learning and neural networks. Although in this paper, we are interested in a very

different application, one can point out a few similarities. For instance, the TensorFlow

library allows to define complex functions (which, in that case, often represent neural

networks) from high-level languages, which then need to be efficiently evaluated several

times. To the best of our knowledge, this paper describes for the first time an application

of dataflow graphs for the purpose of defining (rational) numerical algorithms over finite

fields, to be used in combination with functional reconstruction techniques. In particular,

we will show, by providing several examples, that they are suited for solving many types

of important problems in high-energy physics.

With this paper, we also release a proof-of-concept C++ implementation of this frame-

work, which includes a Mathematica interface. This code has already been used in a

number of complex analytic calculations, including some recently published cutting-edge

scientific results [14, 17, 21], and we thus think its publication can be highly beneficial.

We stress that FiniteFlow is not meant to provide the solution of any specific scientific

problem, but rather a framework which can be used for solving a wide variety of problems.

We also provide public codes with several packages and examples of applications of Finite-

– 3 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Flow to very common problems in high-energy physics, which can be easily adapted to

similar problems as well.

The paper is organized as follows. In section 2 we review some basic concepts about

finite fields and rational functions, and we describe an efficient functional reconstruction

algorithm for multivariate functions. In section 3 we describe our system for defining nu-

merical algorithms, based on dataflow graphs. In section 4 we describe the implementation

of several numerical algorithms over finite fields, which are the basic building blocks of

the dataflow graphs representing a more complex computation. In the next sections, we

describe the application of this framework to several problems in high-energy physics. In

section 5 we discuss the reduction of scattering amplitudes to master integrals or special

functions, as well as the Laurent expansion in the dimensional regulator. In section 6 we dis-

cuss the application to differential equations for computing master integrals. In sections 7

and 8 we discuss multi-loop integrand reduction and the decomposition of amplitudes into

form factors respectively. In section 9 we talk about the derivation of integrable sym-

bols from a known alphabet. Finally, in section 10 we give some details about our public

proof-of-concept implementation, and in section 11 we draw our conclusions.

2 Finite fields and functional reconstruction

In this section, we set some notation by reviewing well-known facts about finite fields

and rational functions. We also describe a multivariate reconstruction algorithm based on

numerical evaluations over finite fields. The latter is based on the one described in [2] with

a few modifications and improvements. A slightly more thorough treatment of the subject,

which uses a notation compatible with the one of this paper, can be found in ref. [2] (in

particular, in sections 2, 3 and appendix A of that reference).

2.1 Finite fields and rational functions

Finite fields are mathematical fields with a finite number of elements. In this paper, we

are only concerned with the simplest and most common type of finite field, namely the set

of integers modulo a prime p, henceforth indicated with Zp. In general, for any positive

integer n, we call Zn the set of non-negative integers smaller than n. All basic rational

operations in Zn, except division, can be trivially defined using modular arithmetic. One

can also show that if a ∈ Zn and gcd(a, n) = 1 then a has a unique inverse in Zn. In

particular, if n = p is prime, an inverse exists for any non-vanishing element of Zp, hence

any rational operation is well defined. This also defines a map between rational numbers

q = a/b ∈ Q and Zn, for any rational whose denominator b is coprime with n. It also

implies that any numerical algorithm which consists of a sequence of rational operations

can be implemented over finite fields Zp. In particular, polynomials and rational functions

are well defined mathematical objects.

Given a set of variables z = {z1, . . . , zn} and a numerical field F, one can define

polynomial and rational functions of z over F. More in detail, any list of exponents α =

– 4 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

{α1, . . . , αn}, defines the monomial

zα =

n∏
j=1

z
αj

j . (2.1)

Polynomials over F have a unique representation as linear combinations of monomials

p(z) =
∑
α

cα zα, (2.2)

with coefficients cα ∈ F. Rational functions are ratios of two polynomials

f(z) =

∑
α nα zα∑
α dα zα

, (2.3)

with nα, dα ∈ F. Notice that the representation of f(z) in eq. (2.3) is not unique. A

unique representation can, however, be obtained by requiring numerator and denominator

to have no common polynomial factor, and fixing a convention for the normalization on the

coefficients nα, dα. We find that a useful convention is setting dmin(α) = 1, where zmin(α) is

the smallest monomial appearing in the denominator with respect to a chosen monomial

order. Using this convention, the constant term in the denominator, if present, is always

equal to one.

An important result in modular arithmetic is Wang’s rational reconstruction algo-

rithm [24, 25] which allows, in some cases, to invert the map between Q and Zn. More in de-

tail, given the image z ∈ Zn of a number q = a/b ∈ Q, Wang’s algorithm successfully recon-

structs q if n is large enough with respect to the numerator and the denominator of the ratio-

nal number — more precisely if and only if |a|, |b| <
√
n/2. Hence, if a prime p is sufficiently

large, one can successfully reconstruct a rational number from its image in Zp. However,

our main reason for using finite fields is the possibility of performing calculations efficiently

using machine size integers, which on most modern machines can have a size of 64 bits.

This requirement forces us to use primes such that p < 264. One can overcome this limita-

tion by means of the Chinese remainder theorem, which allows to deduce a number a ∈ Zn
from its images ai ∈ Zni if the integers ni have no common factors. Hence, given a se-

quence of primes {p1, p2, . . .}, from the image of a rational number over several prime fields

Zp1 ,Zp2 , . . . one can deduce the image of the same number over Zp1 p2.... Once the product

of the selected primes is large enough, Wang’s reconstruction algorithm will be successful.

The functional reconstruction algorithm we will describe in the next section can be

performed over any field, but in practice, it will only be implemented over finite fields.

The coefficients of the reconstructed function (i.e. nα, dα appearing in eq. (2.3)) are then

mapped over the rational field using Wang’s algorithm and checked numerically against

evaluations of the function over other finite fields. If the check is unsuccessful, we proceed

with reconstructing the function over more finite fields Zpi , and combine them using the

Chinese remainder theorem as explained above, in order to obtain a new result over Q.

The algorithm terminates when the result over Q agrees with numerical checks over finite

fields which have not been used for the reconstruction.

– 5 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

2.2 Multivariate functional reconstruction

We now turn to the, so called, black box interpolation problem, i.e. the problem of infer-

ring, with very high probability, the analytic expression of a function from its numerical

evaluations. We assume to have a numerical procedure for evaluating an n-variate rational

function f , whose analytic form is not known. More in detail, the procedure takes as input

numerical values for z and a prime p and returns the function evaluated at z over the finite

field Zp,

(z, p) −→ f −→ f(z) mod p. (2.4)

We also allow the possibility for this procedure to fail the evaluation. We call this evaluation

points bad points or singular points. Notice that these do not necessarily correspond to

a singularity in the analytic expression of the function, but also to spurious singularities

in intermediate steps of the procedure, or to any other interference with the possibility of

evaluating the function with the implemented numerical algorithm. When this happens,

the singular evaluation point is simply replaced with a different one. We stress, however,

that the occurrence of such cases is extremely unlikely for a realistic problem, provided

that the evaluation points are chosen with care (we will expand on this later).

A functional reconstruction algorithm aims to identify the monomials appearing in the

analytic expression of the function as in eq. (2.3), and the value of their coefficients nα, dα.

The basic reconstruction algorithm we discuss in this section is based on a strategy already

proposed in ref. [2]. However, we find it is useful to briefly summarize it here in order to

point out a few modifications and improvements, and also because the discussion below

will benefit from having a rough knowledge of how the functional reconstruction works.

For univariate polynomials, our reconstruction strategy is based on Newton’s polyno-

mial representation [26]

f(z) =

R∑
r=0

ar

r−1∏
i=0

(z − yi)

= a0 + (z − y0)
(
a1 + (z − y1)

(
a2 + (z − y2)

(
· · ·+ (z − yR−1) aR

)))
, (2.5)

where R is the total degree, and y0, y1, y2, . . . are a sequence of distinct numbers. One

can easily check that, with this representation, any coefficient ar can be determined from

the knowledge of the value of the function at z = yr and from the coefficients aj with

j < r. In particular, it does not require the knowledge of the total degree R. This allows

to recursively reconstruct the coefficients ar of the polynomial, starting from a0 which is

determined by f(y0). If the total degree of the polynomial is not known, the termination

criterion of the reconstruction algorithm is the agreement between new evaluations of the

function f and the polynomial defined by the coefficients reconstructed so far. In some

cases, the total degree, or an upper bound to it, is known a priori (see e.g. when this is

used in the context of a multivariate reconstruction) and therefore one can terminate the

reconstruction as soon as this bound is reached. After the polynomial is reconstructed, it

is converted back into a canonical representation.

– 6 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

For univariate rational functions, we distinguish two cases. The first case, which will

be useful in the context of multivariate reconstruction, is when the total degree of the

numerator and the denominator of the function are known and the constant term in the

denominator does not vanish. This means, remembering the normalization convention we

introduced in section 2.1, that we can parametrize the function as

f(z) =

∑R
j=0 nj z

j

1 +
∑R′

j=1 dj z
j

(2.6)

for known total degrees R and R′. Given a sequence of distinct numbers y0, y1, y2, . . .,

one can build a linear system of equations for the coefficients nj and dj by evaluating the

function f at z = yk, namely

R∑
j=0

nj y
j
k −

R′∑
j=1

dj y
j
k f(yk) = f(yk). (2.7)

This strategy is even more convenient when a subset of the coefficients is already known

since it allows to significantly reduce the number of needed evaluations of the function (this

will also be important later).

For the more general case where we do not have any information on the degrees of the

numerator and the denominator of the function, we use Thiele’s interpolation formula [26],

f(z) = a0 +
z − y0

a1 +
z − y1

a2 +
z − y3

· · ·+ z − yr−1
aN

= a0 + (z − y0)

a1 + (z − y1)

(
a2 + (z − y2)

(
· · ·+ z − yN−1

aN

)−1)−1−1 , (2.8)

where y0, y1, . . . is, once again, a sequence of distinct numbers. Thiele’s formula is the

analogous for rational functions of Newton’s formula, and indeed it can be used in order

to interpolate a univariate rational function using the same strategy we illustrated for the

polynomial case. Similarly as before, the result is converted into a canonical form after the

reconstruction.

The reconstruction of multivariate polynomials is performed by recursively applying

Newton’s formula. Indeed a multivariate polynomial in z = {z1, . . . , zn} can be seen as

a univariate polynomial in z1 whose coefficients are multivariate polynomials in the other

variables z2, . . . , zn,

f(z1, . . . , zn) =
R∑
r=0

ar(z2, . . . , zn)
r−1∏
i=0

(z1 − yi). (2.9)

For any fixed numerical value of z2, . . . , zn one can apply the univariate polynomial recon-

struction algorithm in z1 to evaluate the coefficients ar. This means that the problem of

– 7 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

reconstructing an n-variate polynomial is reduced to the one of reconstructing an (n− 1)-

variate polynomial. Hence we apply this strategy recursively until we reach the univariate

case, which we already discussed. The result is then converted into the canonical form of

eq. (2.2).

Before moving to the case of multivariate rational functions, it is worth making a few

observations on the choice of the sequence of evaluation points y0, y1, . . . which appear in

all the previous algorithms. We want to make a choice which does not interfere with our

capability of evaluating the function f — which may have singularities both in its final

expression and in intermediate stages of its numerical evaluation — and of inverting the

relations for obtaining Thiele’s coefficients. While making a choice which works for any

function is clearly impossible, in practice we can easily make one which almost always works

in realistic cases. This is done by choosing as y0 a relatively large and random-like integer in

Zp, where common functions are extremely unlikely to have singularities. We then increase

the integer by a relatively large constant δ for the next points, i.e. yi+1 = yi + δ mod p.

In the multivariate case, we use a different starting point y0 and a different constant δ for

each variable. Heuristically we find that, with this strategy, especially when using 64-bit

primes, one can reasonably expect to find no singular point even in millions of evaluations.

We finally discuss the more complex problem of reconstructing a multivariate rational

function f = f(z). We first observe that the reconstruction is much simpler when the

constant term in the denominator is non-vanishing since this unambiguously fixes the

normalization of the coefficients. As suggested in ref. [27], we can force any function to

have this property by shifting its arguments by a constant vector s = {s1, . . . , sn} and

reconstruct f(z+s) instead. In practice, by default, we find it is convenient to always shift

arguments by a vector s such that any function coming from a realistic problem is unlikely

to be singular in z = s. The criteria for the choice of s are similar to the ones for choosing

the sample points, i.e. choosing relatively large and random-like numbers in Zp. The result

is shifted back to its original arguments after the full reconstruction over a finite field Zp
is completed (note that this detail differs from what is proposed in ref.s [2, 27]). Hence,

in the following, we assume that the function f has a non-vanishing constant term in the

denominator, which by our choice of normalization is equal to one.

The key ingredient of the algorithm, which was also proposed in ref. [27], is the in-

troduction of an auxiliary variable t which is used to rescale all the arguments of f . This

defines the function h = h(t, z), which takes the form

h(t, z) ≡ f(t z) =

∑R
r=0 pr(z) tr

1 +
∑R′

r=1 qr(z) tr
. (2.10)

In other words, h(t, z) is a univariate rational function in t, whose coefficients pr and qr are

multivariate homogeneous polynomials of total degree r in z. This allows to reconstruct

f(z) = h(1, z) by combining the algorithms discussed above for univariate rational functions

and multivariate polynomials. In practice, we start with a univariate reconstruction in t

for fixed values of z using Thiele’s formula, in order to get the total degree of numerator

and denominator. This allows to check that the denominator has indeed a non-vanishing

constant term. The knowledge of the total degree also allows to use the system-solving

– 8 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

strategy for the next reconstructions in t. We also perform a univariate reconstruction

of the unshifted function f in each variable zj for fixed values of all the other variables.

The minimum degrees in each variable are used to factor out polynomial prefactors in the

numerator and denominator of the function, which can significantly reduce the number

of required evaluations (note that it is essential that this is done before shifting variables

since after the shift any realistic function is unlikely to have monomial prefactors). The

maximum degrees are used to provide, together with the total degree r of each polynomial

pr and qr, the possibility of terminating the polynomial reconstructions in the interested

variables earlier. They are also used in order to estimate a suitable set of sample points

for reconstructing the function before performing the evaluations, as we will explain when

discussing the parallelization strategy in section 2.3. We then proceed with using the

system-solving strategy for univariate rational functions, reconstructing h(t, z) as a function

of t for any fixed numerical value of z. This provides an evaluation of the polynomials pr
and qr at z. By repeating this for several values of z, we reconstruct these multivariate

polynomials using Newton’s formula recursively.

A few observations are in order. First, because the polynomials pr and qr are homoge-

neous, we can set z1 = 1 and restore its dependence at the end. This makes up for having

introduced the auxiliary variable t. Moreover, each reconstruction in t provides an evalua-

tion of all the polynomial coefficients at the same time. For this reason, for each z we cache

the reconstructed coefficients so that we can reuse the evaluations in several polynomial

reconstructions. As for the reconstruction of the polynomials themselves, we proceed from

the ones with a lower degree to the ones of higher degree (this detail is also different from

what is presented in ref. [2]). This way the polynomials with a lower degree, which can be

reconstructed with fewer evaluations, become known earlier and can thus be removed from

the system of equations in eq. (2.7) when reconstructing the ones with higher degrees. This

makes the system of equations for higher-degree polynomial coefficients smaller, and hence

it further reduces the number of needed evaluations. As already mentioned, we also use

the information on the total degree r of each polynomial, as well as the maximum degree

with respect to each variable, in order to terminate the polynomial reconstructions earlier,

when possible.

When combining all these ingredients, we find that the number of evaluations we

need for the reconstruction is comparable (if not better) to the one we would need by

writing a general ansatz based on the degrees of the numerator and the denominator of

the function (both the total ones and the ones with respect to each variable). However,

while the ansatz-based approach is impractical for complicated multivariate functions since

it requires to solve huge dense systems of equations, the method presented here is instead

able to efficiently reconstruct very complex functions depending on several variables. It has

indeed been applied to a large number of examples, some of which have been mentioned in

the introduction.

Finally, we point out that so far we only discussed single-valued functions, but in the

most common cases the output of an algorithm will actually be a list of functions

f(z) = {f1(z), f2(z), . . .}. (2.11)

– 9 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

In this case, the reconstruction proceeds as described above considering one element of the

output at the time. However, for each functional evaluation, the whole output, or a suitable

subset of it, is cached (more details on our caching strategy are discussed in section 10) so

that the same evaluations can be reused for the reconstruction of different functions fj(z).

2.3 Parallelization

A well-known advantage of functional reconstruction techniques is the possibility to exten-

sively parallelize the algorithm.

The most important step which can be parallelized is the evaluation of the function.

Since numerical evaluations are independent of each other, they can be run in parallel over

different threads, nodes, or even on different machines.

Building an effective parallelization strategy is actually easier for the multivariate case.

As discussed above, the multivariate reconstruction begins with a univariate reconstruction

in t of the function h(t, z) in eq. (2.10), and univariate reconstructions in each variable

zj for fixed values of all the other ones. This amounts, for an n-variate problem, to

n + 1 univariate reconstructions, which being independent of each other can be all run in

parallel. These univariate reconstructions are significantly faster than a multivariate one

and provide valuable information for the multivariate reconstruction. After this step we

use this information to determine a suitable set of evaluation points for the reconstruction

of each function in the output of the algorithm, assuming the result is a generic function

constrained by the degrees found in the univariate fits. While this might result in building

a set of evaluation points which is slightly larger than needed, it allows to obtain a list

of sample points which can be independently evaluated before starting any multivariate

reconstruction. Any performance penalty, due to this oversampling of the function, is

very small compared to what we gain from the possibility of parallelizing the evaluations.

Therefore, this list of points can be split according to the available computing resources

and evaluated in parallel over as many threads and cores as possible.

The main advantage of this parallelization strategy is the relative ease of implementa-

tion since it requires minimal synchronization (each thread just needs to evaluate all the

points assigned to it and wait for the others to finish), and the fact that it does not depend

on the specific numerical algorithm which is implemented.

After the evaluations have completed, they are collected and used for the multivariate

reconstruction algorithm described above, except that the calls to the numerical “black

box” procedure are now replaced by a lookup of its values in the set of cached evaluations.

In building the list of evaluation points, one may initially assume that a given number

np of primes will be needed for the reconstruction over Q (typically, one will start with

the choice np = 1), and that additional primes will only be used for a small number of

evaluations, for the purpose of checking the result. If the rational reconstruction described

in section 2.1 fails these checks, points using additional primes will be added to the list

and another evaluation step will be performed for these.

We now turn to the univariate case. Since building an effective and clean parallelization

strategy here is significantly harder than for the multivariate case and in general, one does

not need too many evaluations for univariate reconstructions, by default we don’t perform

– 10 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

any parallelization in the univariate case. Indeed, the strategy illustrated above would

require us to perform a univariate reconstruction over a finite field before performing any

parallelization, in order to obtain information on the degree of the result. For the univariate

case, however, this task is of comparable complexity than performing a complete recon-

struction over Q. Despite this, if needed, we can still parallelize the evaluations in a highly

automated way as follows. We start by making a guess on the maximum degrees of numera-

tor and denominator and build a set of evaluation points based on this assumption. Then we

perform the evaluations in parallel, as before. After this, we proceed with the reconstruction

using the cached evaluations. If during the reconstruction we realize we need more evalua-

tion points, we make a more conservative guess of the total degrees and proceed again with

the evaluation (in parallel) of the additional points needed. This can be done automatically,

by gradually increasing the maximum degree by a given amount in each step. We proceed

this way until the reconstruction is successful. Obviously, making an accurate guess of the

total degrees may not be easy. While making a conservative choice of a high degree might

result in too many evaluations, choosing a total degree which is too low will cause the recon-

struction to fail and it will create additional overhead in launching the parallel tasks for eval-

uating the additional points until the successful reconstruction. This method also requires

some additional input from the user of the reconstruction algorithm, which needs to provide

these guesses, since one cannot obviously make a choice which is good for any problem. For

these reasons, we usually prefer to avoid parallelization in univariate reconstruction, but it

is still important to know that a parallelization option is available for these cases as well.

Another step which can be, to some extent, parallelized, is the reconstruction itself.

As mentioned, in the most common cases, the output of our algorithm is not a single

function but a list of functions. Since the reconstructions of different functions from a set

of numerical evaluations are independent of each other, they can also be run in parallel.

Even if this is generally not as important as the parallelization of the functional evaluations,

which are the typical bottleneck, it can still yield a sizeable performance improvement.

3 Dataflow graphs

In this section, we describe one of the main novelties introduced in this paper, namely a

method for building numerical algorithms over finite fields using a special kind of compu-

tational graphs, known as dataflow graphs.

The algorithms described in the previous sections reduce the problem of computing

any (multivariate and multivalued) rational function to the one of providing a numerical

implementation of it, over finite fields Zp. The goal of the method described in this section is

providing an effective way of building this implementation, characterized by good flexibility,

performance, and ease of use.

3.1 Graphs as numerical procedures

Dataflow graphs are directed acyclic graphs, which can be used to represent a numerical

calculation. The graph is made of nodes and arrows. The arrows represent data (i.e.

– 11 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Figure 1. A node in a dataflow graph, where arrows represent lists of values and nodes represent

numerical algorithms. In our implementation, a node can take zero or more incoming arrows as

input and has exactly one outgoing arrow as output.

numerical values in our case) and the nodes represent algorithms operating on the (incom-

ing) data received as input and producing (outgoing) data as output. In the following, we

describe a simplified type of dataflow graphs which we use in our implementation.

In our case, an arrow represents a list of values. A node represents a basic numerical

algorithm. A node can take zero or more incoming arrows (i.e. lists) as input and has

exactly one outgoing arrow2 (i.e. one list) as output (see figure 1). For simplicity, we also

require that each list (represented by an arrow) has a well-defined length which cannot

change depending on the evaluation point. We also understand that nodes can also contain

metadata with additional information needed to define the algorithm to be executed.

Typically nodes encode common, basic algorithms (e.g. the evaluation of rational func-

tions, the solution of linear systems, etc. . .) which are implemented, once and for all, in

a low-level language such as C++. We will give an overview of the most important ones

in section 4. Complex algorithms are defined by combining these nodes, used as building

blocks, into a computational graph representing a complete calculation, where the output

of a building block is used as input for others. This way complex algorithms are easily built

without having to deal with the low-level details of their numerical implementation. The

graph can indeed be built from a high-level language, such as Python or Mathematica.

Several explicit examples will be provided in the next sections.

In each graph, there are two special nodes, namely the input node and the output node.

The input node does not represent any algorithm, but only the list of input variables z

of the graph. The output node can be any node of the graph and represents, of course,

its output. A dataflow graph thus defines a numerical procedure which takes as input the

variables z represented by the input node and returns a list of values which is the output

of the output node.

Graphs are evaluated as follows. First, every time we define a node, we assign to it

an integer value called depth. The depth of a node is the maximum value of the depths of

its inputs plus one. The depth of the input node is zero, by definition. When an output

node is specified, we recursively select all the nodes which are needed as inputs in order to

evaluate it, and we sort this list by depth. We then evaluate all the nodes from lower to

2In the graphical representations in this paper, if there are two or more outgoing arrows for a node, we

understand that they all represent the same list.

– 12 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

higher depths and store their output values to be used as inputs for other nodes. Once the

output node has been evaluated, its output is returned by the evaluation procedure.

3.2 Learning nodes

As we already mentioned, each node has exactly one list of values as output, and the length

of this list is not allowed to change depending e.g. on the evaluation point. However, for

some algorithms, we cannot know the length of the output at the moment the numerical

procedure is defined.

Consider, as an example, a node which solves a linear system of equations. The length

of the output of such a node depends on whether the system is determined or undetermined

and on its rank. This information is usually not known a priori but it must be learned

after the system is defined. In this case, it can easily be learned by solving the system

numerically a few times.

For this reason, we allow nodes to have a learning phase. The latter is algorithm-

dependent and typically consists of a few numerical evaluations used by a node in order to

properly define its output. Hence, the output of these nodes can be used as input by other

nodes only after the learning phase is completed (since, before that, their output cannot

be defined at all).

More algorithms which require a learning phase will be discussed later.

3.3 Subgraphs

An important feature which makes this framework more powerful and usable in realistic

problems is the possibility of defining nodes in which one can embed other graphs.

Consider a graph G1 with a node N which embeds a graph G2. We say that G2 is a

subgraph. Typically, the node N will need to evaluate the subgraph G2 a number of times

in order to produce its output.

The simplest case of a subgraph is when the node N takes one list as input, passes

the same input to G2 in order to evaluate it, and then returns the output of G2. This

case, which we call simple subgraph, is equivalent to having the nodes of G2 attached to the

input node of N inside the graph G1 directly, but it can still be useful in order to organize

more cleanly some complicated graphs.

Another interesting example, which we call memoized subgraph, can be beneficial when

parts of the calculation are independent of some of the variables. This type of subgraph

effectively behaves the same way as the simple subgraph described above, except that it

remembers the input and the output of the last evaluation. If the subgraph needs to

be evaluated several times in a row with the same input, the memoized subgraph simply

returns the output it has stored. This is particularly useful when combined with the

Laurent expansion, the subgraph fit, or the subgraph multi-fit algorithms. We will give a

description of these later in this paper, but for now, it suffices to know that they require to

evaluate a dataflow graph several times for fixed values of a subset of the variables. In such

cases, one may not wish to evaluate every time the parts of a graph which only depend on

the variables which remain fixed for several evaluations. One can thus optimize away these

evaluations by embedding the appropriate parts of the graph in a memoized subgraph.

– 13 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Figure 2. A node representing the evaluation of a list of rational functions. It takes one list z as

input, interpreted as the list of arguments of the functions, and returns the values of the functions

evaluated at z.

One more useful type of subgraph is a subgraph map. This takes an arbitrary number

of lists of length n as input, where n is the number of input parameters for G2. The graph

G2 is then evaluated for each of the input lists, and the outputs are chained together and

returned. This is useful when the same algorithm needs to be evaluated for several inputs.

There are however other interesting cases, where the node N requires to evaluate G2

several times and perform non-trivial operations on its output. Some useful examples are

given at the end of section 4.3 and in section 4.5.

4 Numerical algorithms over finite fields

In this section, we discuss several basic, numerical algorithms which can be used as nodes

in a graph. These are best implemented in a low-level language such as C++ for efficiency

reasons. In later sections, we will then show how to combine these basic building blocks into

more complex algorithms which are relevant for state-of-the-art problems in high-energy

physics.

4.1 Evaluation of rational functions

Most of the algorithms we are interested in have some kind of analytic input, which can be

cast in the form of one or more lists of polynomials or rational functions. The numerical

evaluation of rational functions is, therefore, one of the most ubiquitous and important

building blocks in our graphs. These nodes take as input one list of values z and return a list

of rational functions {fj(z)} evaluated at that value, as schematically illustrated in figure 2.

Polynomials are efficiently evaluated using the well known Horner scheme. Given a

univariate polynomial

p(z) =
R∑
j=0

cj z
j , (4.1)

Horner’s method is based on expressing it as

p(z) = c0 + z (c1 + z (c2 + · · · z (cR−1 + z cR))) . (4.2)

This formula only has R multiplications and R additions for a polynomial of degree R, and

it can be easily obtained from the canonical representation in eq. 4.1. Therefore, it is a

great compromise between ease of implementation and efficiency.

For multivariate polynomials, Horner’s scheme is applied recursively in the variables.

In practice, we use an equivalent but non-recursive implementation and we store all the

– 14 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

polynomial data (i.e. the integer coefficients cj and the metainformation about the total

degrees of each sub-polynomial) in a contiguous array of integers.

Rational functions are obviously computed as ratios of two polynomials. If the denom-

inator vanishes for a specific input, the evaluation fails and yields a singular point.

4.2 Dense and sparse linear solvers

A wide variety of algorithms involves solving one or more linear systems at some stage of

the calculation. Moreover, the solution of these systems is often the main bottleneck of the

procedure, hence having an efficient numerical linear solver is generally very important.

In general, consider a n × m linear system with parametric rational entries in the

parameters z,
m∑
j=1

Aij xj = bi, (i = 1, . . . , n), (4.3)

with

Aij = Aij(z), bi = bi(z). (4.4)

This is defined by the matrix A = A(z), the vector b = b(z), and the set of m variables or

unknowns {xj}. We assume there is a total ordering between the unknowns, x1 � x2 �
· · · � xm. Borrowing from a language commonly used in the context of IBP identities, we

say that x1 has higher weight than x2 and so on. This simply means that, while solving

the system, we always prefer to write unknowns with higher weight in terms of unknowns

with a lower weight.

For each numerical value of z and prime p, the entries Aij(z) and bi(z) are evaluated

and the numerical system is thus solved over finite fields. If the system is determined, for

each numerical value of z the solver returns a list of values for the unknowns xj . In the

more general case where there are fewer independent equations than unknowns, one can

only rewrite a subset of the unknowns as linear combinations of others. This means that

we identify a subset of independent unknowns and the complementary subset of dependent

unknowns which are written as linear combinations of the independent ones,

xi =
∑

j∈indep.
cij xj + ci0 (i ∈ dep.). (4.5)

Notice that the list of dependent and independent unknowns also depends on the chosen

ordering (or weight) of the unknowns. The output of a linear solver is a list with the

coefficients cij appearing in this solution. More specifically they are the rows of the matrix[
{cij}j∈indep. ci0

]
i∈dep.

(4.6)

stored in row-major order. If only the homogeneous part of the solution is needed, the ele-

ments ci0 are removed from the output. A node representing a linear solver is schematically

depicted in figure 3.

It often happens that only a subset of the unknowns of a system is actually needed.

We therefore also have the possibility of optionally specifying a list of needed unknowns.

– 15 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Figure 3. A node representing a linear solver. It takes as input a list of parameters z and returns

the coefficients of the solution defined in eq. (4.5) and (4.6).

When this is provided, only the part of the solution which involves needed unknowns on the

left-hand side is returned. This also allows to perform some further optimizations during

the solution of the system, as we will show later.

As mentioned in section 3.2, a linear solver is an algorithm which needs a learning

step. During this step, with a few numerical solutions of the system, the list of dependent

and independent unknowns is learned. This step is also used in order to identify redundant

equations, i.e. equations which are reduced to 0 = 0 after the solution, which are thus

removed from the system, improving the performance of later evaluations. Moreover, the

list of dependent and independent unknowns is checked during every evaluation against

the one obtained in the learning step, since accidental zeroes may change the nature of the

solution of the system. If the two do not agree, the evaluation fails and the input is treated

as a singular point.

It is useful to distinguish between dense and sparse systems of equations. Even if they

represent the same mathematical problem, from a computational point of view they are

extremely different.

Dense systems of equations are systems where most of the entries in the matrix A

defined above are non-zero. For these systems, we store the n rows of the matrix[
A b

]
(4.7)

as contiguous arrays of m + 1 integers. We also add an (m + 2)-th entry to these arrays

which assigns a different numerical ID to each equation, for bookkeeping purposes. The

solution is a straightforward and rather standard implementation of Gauss elimination.

This distinguishes two phases. The first, also known as forward elimination, puts the

system in row echelon form. The second, also known as back substitution, effectively

solves the systems by putting it in reduced row echelon form. The algorithm we use for

dense systems works as follows.

Forward elimination. We set a counter r = 0, and loop over the unknowns xk for k =

1, . . . ,m, i.e. from higher to lower weight. At iteration k, we find the first equation

Ej with j ≥ r where the unknown xk is still present. If there is no such equation, we

move on to the next iteration. Otherwise, we move equation Ej in position r, and we

“solve” it with respect to xk, i.e. we normalize it such that xk has coefficient equal

to 1. We thus substitute the equation in all the remaining equations below position

r. We then increase r by one and proceed with the next iteration.

Back substitution. We loop over the equations Er, for r = n, n− 1, . . . , 1, i.e. from the

one in the last position to the one in the first position. At iteration r, we find the

– 16 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

highest weight unknown xj appearing in equation Er (note that this is guaranteed to

have coefficient equal to one, after the forward elimination). If equation Er does not

depend on any unknown, we proceed to the next iteration. Otherwise, we substitute

equation Er, which contains the solution for xj , in all the equations Ek with k < r.

We then proceed with the next iteration in r.

During the learning phase, the system is solved in order to learn about the independent

variables and the independent equations. The remaining equations, once the system has

been reduced, will become trivial (i.e. 0 = 0) and will, therefore, be removed. We also

identify unknowns which are zero after the solution. These are then removed from the

system and this allows to find, through another numerical evaluation, a smaller set of

independent equations needed to solve for the non-zero unknowns. We recall that solving a

dense n× n system has O(n3) complexity, hence it scales rather badly with the number of

equations and unknowns, and it greatly benefits from the possibility of removing as many

equations as possible.

We now discuss the reduction of sparse systems of equations, i.e. systems where most

of the entries of the matrix A which defines it are zero. In other words, in such a system,

most of the equations only depend on a relatively small subset of variables. We repre-

sent sparse systems using a sparse representation of the rows of the matrix (4.7). More

specifically, for each row, we store a list of non-vanishing entries, with the number of their

columns and their numerical value. These are always kept sorted by column index from

the lowest to the highest, or equivalently by the weight of the corresponding unknown

from the highest to the lowest. We also store additional information, namely the number

of non-vanishing terms in the row, and the index of the equation corresponding to that

row. When solving such systems, it is crucial to keep the equations as simple as possible

at every stage of the solution. This way the complexity of the algorithm can have a much

better scaling behaviour than the one which characterizes dense systems (the exact scaling

strongly depends on the system itself, and it can be as good as O(n) in the best scenarios,

and as bad as O(n3) in the worst ones). For these reasons, we implement a significantly

different version of Gauss elimination for sparse systems, which shares many similarities

with the one illustrated in [28]. We first sort the equations by complexity, from lower

to higher. The complexity of an equation is defined the same way as in ref. [28], and is

determined by the following criteria, sorted by their importance,

• the highest weight unknown in the equation (higher weight means higher complexity)

• the number of unknowns appearing in the equation (a higher number means higher

complexity)

• the weight of the other unknowns in the equation, from the ones with higher weight to

the ones with lower weight (i.e. if two equations have the same number of unknowns,

the most complex one is the one with the highest weight unknown among those that

are not shared by both equations).

If all the three points above result in a tie between two equations, it means that they

depend on exactly the same list of unknowns, and we say that they are equally complex,

– 17 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

hence their relative order does not matter. Obviously, other more refined definitions of this

complexity are possible, but we find that this one works extremely well for systems over

finite fields, despite its simplicity. Once the equations are sorted, the algorithm for sparse

systems works as follows for the forward and back substitution.

Forward elimination. We create an array S whose length is equal to the number of

unknowns. This will contain, at position j, the index S(j) of the equation containing

the solution for the unknown xj , or a flag indicating that there is no such equation.

We loop over the equations Ei for i = 1, . . . , n, from lower to higher complexity. If

any equation is trivial (i.e. 0 = 0), we immediately move to the next one. We find

the unknowns appearing in Ei for which a solution is already found, via lookups in

the array S. Among these, we select the unknown xk such that ES(k) has the lowest

complexity. The equation ES(k) is then substituted into Ei. This is repeated until

all the unknowns in Ei have no solution registered in S. We then take the highest

weight unknown xh and “solve” the equation with respect to it. Once again, this

means that we normalize the equation such that the coefficient of xh is one. We then

register this solution in S by setting S(h) = i, and proceed with the next iteration

in i.

Back substitution. We remove from the system any equation which has become trivial

(0 = 0), but otherwise, we keep them in the same order. We also update the array S to

take this change into account. Let thus nI be the number of independent equations

which survived after the forward elimination. We loop again over the remaining

equations Ei for i = 1, . . . , nI −1, from lower to higher complexity, excluding the last

one. If a list of needed unknowns was specified, and the highest weight unknown in

equation Ei is not in it, the equation is skipped. We then find the unknowns in Ei,

excluding the highest weight one, for which a solution is registered in S. Among these,

we pick the unknown xk such that the equation ES(k) has the lowest complexity. We

then substitute equation ES(k) in Ei. This is repeated until none of the unknowns in

Ei, except the one with the highest weight, has a registered solution in S.

Similarly as before, during the learning step we identify the independent equations, re-

moving all the other ones, and the independent unknowns. For each equation Ei, we also

keep track of all the other equations which have been substituted into Ei either during the

forward elimination or the back substitution. This information can optionally be used in

order to further reduce the number of needed equations. Indeed, while after the learning

stage the system is guaranteed to contain only independent equations, there might be a

smaller subset of them which is still sufficient in order to find a solution for all the needed

unknowns, which sometimes are a significantly smaller subset of the ones appearing in the

system. This simplification is obtained, when requested, by means of the mark and sweep

algorithm.3 After the learning stage, for each equation Ej we have a list of dependencies

3The mark-and-sweep method is a well known algorithm primarily used for automatic memory manage-

ment (garbage collection) in order to reclaim the unused memory of a computer program. Here we use it

instead to identify equations which are no longer useful (rather than allocated memory which is no longer

being used), but it is based on the same mechanism.

– 18 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Lj . If Ek ∈ Lj , then Ej depends on Ek, because Ek was substituted into Ej at some point

during the Gauss elimination. We identify a set R containing the so-called roots, which in

our case are the equations containing solutions for the needed unknowns. We then “mark”

all the equations in R. “Marking” is a recursive operation achieved, for any equation Ej ,

by setting a flag which says that Ej is needed, and then recursively marking all the equa-

tions in Lj whose flag hasn’t already been set. Finally, we “sweep”, i.e. discard all the

equations which have not been marked. Notice that the mark and sweep algorithm loses

some information about the system, and therefore it is only performed upon request. It is

however extremely useful, e.g. when solving IBP identities, since it often reduces the size of

the system by a factor even greater than the simplification achieved in the learning stage.

We also implement a dense solver algorithm called node dense solver, which takes the

elements of the matrix in eq. (4.7) from its input node, in row-major order, rather than

from analytic formulas. In the future, we may implement a node sparse solver as well,

which only takes the non-vanishing elements of that matrix from its input node, and uses

a sparse solver for the solution.

It goes without saying that these linear solvers can also be used in order to invert

matrices, using the Gauss-Jordan method. Indeed, the inverse of a n×n matrix Aij is the

output of a linear solver node which solves the system

n∑
j=1

Aijxj − ti = 0, i = 1, . . . , n, (4.8)

with respect to the following unknowns, sorted from higher to lower weights,

{x1, . . . , xn, t1, . . . , tn}.

In particular, when only the homogeneous part of the solution is returned, the output of

such a node will be a list with the matrix elements A−1ij in row-major order. Both the

dense and the sparse solver can be used for this purpose, depending on the sparsity of the

matrix Aij . Also, notice that the matrix Aij is invertible if and only if {xj} is the list of

dependent unknowns and {tj} is the list of independent unknowns. This can be checked

after the learning phase has completed.

4.3 Linear fit

Linear fits are another important algorithm which is often part of calculations in high

energy physics. For instance, it is the main building block of integrand reduction methods

(see section 7). They are also used, for instance, in order to match a result into an ansatz

and to find linear relations among functions.

In general, in a linear fit, we have two types of variables, which in this section we

call z = {zj} and τ = {τj}. In particular, the z variables are simply regarded as free

parameters. A linear fit is thus defined by an equation of the form

m∑
j=1

xj(z) fj(τ, z) + f0(τ, z) = g(τ, z) (4.9)

– 19 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

where fj and g are known (or otherwise computable) rational functions and the coefficients

xj are unknown. While fj and g depend on both sets of variables, the unknown coefficients

xj can depend on the free parameters z only. For each numerical value of z, eq. (4.9) is

sampled for several numerical values of the variables τ . This will generate a linear system

of equations for the unknowns xj . Linear fits are thus just a special type of dense linear

systems. Hence, we refer to the previous section for information about the implementation

of the reduction and the output of this algorithm. In particular, each equation is associated

with a particular numerical sample point for the variables τ = {τj}. In total, we use

m+ nchecks sample points, where m is the number of unknowns and nchecks is the number

of additional equations added as a further consistency check (we typically use nchecks =

2). Notice that, just like in any other linear system, redundant equations (including the

additional nchecks ones) are eliminated after the learning phase.

In order to use this algorithm more effectively for the solution of realistic problems,

and in particular integrand reduction, we made it more flexible by adding some addi-

tional features. The first one is the possibility of introducing a set of auxiliary functions

a = a(τ, z) and defining several (known) functions gj on the right-hand side, in order to

rewrite eq. (4.9) as

m∑
j=0

xj(z) fj(z,a(τ, z)) + f0(z,a(τ, z)) =
∑
j

wj gj(z,a(τ, z)). (4.10)

This is useful when the functions fj and gj are simpler if expressed in terms of these

auxiliary variables a, which do not need to be independent, and when the sum on the

right-hand side is not collected under a common denominator. The value of the weights

wj in the previous equation depends on the inputs of the node defining the algorithm. The

first input list is always the list of variables z, similarly to the case of a linear system. If

no other input is specified, then we simply define wj = 1 for all j. If other lists of inputs

are specified, besides z, they are joined and interpreted as the weights wj appearing in

eq. (4.10). This allows to define these weights numerically from the output of other nodes.

As we will see in section 7, this allows, among other things, to easily implement multi-loop

integrand reduction over finite fields without the need of writing any low-level code.

We provide two more usages of linear fits as nodes embedding subgraphs (introduced

in section 3.3). The first one is used to find linear relations among the entries of the output

of the subgraph G which has input variables {τ, z}. Let

{f1(τ, z), . . . , fm(τ, z)} (4.11)

be the output of G. The subgraph fit algorithm solves the linear fit problem

m−1∑
j=1

xj(z) fj(τ, z) = fm(τ, z). (4.12)

In particular, if z is chosen to be the empty list, and fm = 0, it will find vanishing linear

combinations of the output of G with numerical coefficients. An interesting application

– 20 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

of this is the attempt of simplifying the output of a graph. One can indeed estimate the

complexity of each entry in the output at the price of relatively quick univariate recon-

structions. A simple way of estimating the complexity is based on the total degrees of

numerators and denominators, which can be found with one univariate reconstruction over

one finite field, as we already explained. A more refined method would be counting the

number of evaluation points needed for the reconstruction of each entry over a finite field,

which can be found after the total and partial degrees have been computed and it is an

upper bound on the number of non-vanishing terms in the functions. One can, of course,

use any other definition or estimate for the complexity of the output functions based on

other elements specific to the considered problem. Regardless of how we choose to define

it, we then sort the entries by their complexity, from lower to higher, and we make sure

that fm = 0, e.g. by appending to the graph a Take node (this will be described in sec-

tion 4.4). After solving the linear fit above for the unknowns xj we are then able to write

more complex entries of the output as linear combinations of simpler entries. When this is

possible, only the independent entries need to be reconstructed.

The second subgraph application of linear fits, which we call subgraph multi-fit, is a

generalization of the previous one. If eq. (4.11) represents, again, the output of a graph G,

the subgraph multi-fit node, which has input variables z, is defined by providing a list of

lists of the form

{{σ1j}l1j=1, {σ2j}
l2
j=1, . . .} (4.13)

where the sublists can be of any length and σij are integer indexes in the interval [1,m].

For each sublist {σij}j , the subgraph multi-fit node solves the linear fit

li−1∑
j=1

xij(z) fσij (τ, z) = fσi li (τ, z), (4.14)

with respect to the unknowns xij . Since this amounts to performing a number of linear

fits, this node obviously has a learning phase, where independent unknowns, independent

equations, and zero unknowns are detected for each one of them. Notice that all the fits

can share the same evaluations of graph G, for several values of τ and fixed values of z.

An application of this algorithm is the case when the functional dependence of a result on

the subset of variables τ (which may also be the full set of variables, if z is the empty list)

can be guessed a priori by building a basis of rational functions. In this case, one may

create a graph G which contains both the result to be reconstructed and the elements of

the function basis, and a second graph with a subgraph-fit node using G as a subgraph.

This allows to reconstruct the result via a simpler functional reconstruction over the z

variables only, or via a numerical reconstruction if z is the empty list. An example of this

is given at the end of section 6.2.

4.4 Basic operations on lists and matrices

The algorithms listed in this subsection have a simple implementation and they can be

thought as utilities for combining in a flexible way outputs of other numerical algorithms

in the same graph. While they typically execute very quickly compared to others, they

– 21 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Figure 4. A node representing the matrix multiplication Cij =
∑
k Aik Bkj . The arrows represent

lists with the matrix elements Aij , Bij and Cij in row-major order. Their number of rows and

columns is defined when the node is created.

greatly enhance the possibilities of defining complex algorithms by means of the graph-

based approach described in this paper. They are:

Take. Takes any number of lists as input and returns a specified list of elements {t1, t2, . . .}
from them, where tj can be any element of any of the input lists. The same element

may also appear more than once in the output list. This is a very flexible algorithm

for rearranging the output of (combinations of) other nodes. Indeed many of the

list-manipulation algorithms below can also be implemented as special cases of this.

Chain. Takes any number of lists as input, chains them and return them as a single list.

Slice. Takes a single list as input and returns a slice (i.e. a contiguous subset of it) as

output.

Matrix multiplication. Given three positive integers N1, N2 and N3, this node takes two

lists as input, interprets them as the entries of a N1×N2 matrix and a N2×N3 matrix

(in row-major order) respectively, multiplies them and return the entries of the result-

ing N1×N3 matrix (still in row-major order). This node is depicted in figure 4. Notice

that, because different nodes of this type can interpret the same inputs as matrices of

different sizes (as long as the total number of entries is consistent), this algorithm can

also be used to contract indexes of appropriately stored tensors, multiplying lists and

scalars, and other similar operations. As an example, consider a node whose output

are the entries of a rank 3 tensor TABC with dimensions NA, NB, NC , and another

one which represents a matrix MCD with dimensions NC and ND. We can then per-

form a tensor-matrix multiplication using this node with N1 = NA ×NB, N2 = NC

and N3 = ND. Similarly, we can multiply the tensor TABC by a scalar, the latter

represented by a list of length one, by setting N1 = NA×NB ×NC , N2 = 1, N3 = 1.

Sparse matrix multiplication. Similar to the Matrix Multiplication above, but more

suited for cases where the matrices in the input are large and sparse, so that one

wants to store only their non-vanishing entries in the output of a node. This algo-

rithm is defined by the three dimensions N1, N2 and N3 as above, as well as by a list

of potentially non-vanishing columns for each row of the two input matrices. The two

inputs are then interpreted as lists containing only these potentially non-vanishing el-

– 22 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

ements. The output of this node lists, as before, the elements of the resulting N1×N3

matrix, stored in a dense representation in row-major order.

Addition. Takes any number of input lists of length L, and adds them element-wise.

Multiplication. Takes any number of input lists of length L, and multiplies them element-

wise.

Take and add. Similar to the Take algorithm above, except that it takes several lists

from its inputs {{t1j}j , {t2j}j , . . .}, where each of them might have a different length.

It then returns the sum of each of these sub-lists {
∑

j t1j ,
∑

j t2j , . . .}.

Non-zeroes. This node takes one list as input and returns only the elements which are not

identically zero. The node requires a learning step where the non-zero elements are

identified via a few numerical evaluations (two by default). Because some algorithms

have a rather sparse output (i.e. with many zeroes), it is very often useful to append

this node at the end of a graph and use it as output node. This can remarkably

improve memory usage during the reconstruction step. Given its benefits and its

minimal impact on performance, we also recommend using such an algorithm as the

output node when the sparsity of the output is not known a priori.

4.5 Laurent expansion

In physical problems, one is often interested in the leading coefficients of the Laurent ex-

pansion of a result with respect to one of its variables, which in this section we call ε. The

most notable examples in high-energy physics are scattering amplitudes in dimensional

regularization, which are expanded for small values of the dimensional regulator. Other

applications can be the expansion of a result around special kinematic limits. The coeffi-

cients of this expansion are often expected to be significantly simpler than the full result.

Hence, it is beneficial to be able to compute the Laurent expansion of a function without

having to perform its full reconstruction first.

The Laurent expansion algorithm is another algorithm whose node embeds a subgraph.

Consider a graph G representing a multi-valued (n + 1)-variate rational function in the

variables {ε, z}. The Laurent expansion node takes a list of length n as input, which

represents the variables z, and returns for each output of G the coefficients of its Laurent

expansion in the first variable ε, up to a given order in ε.

Without loss of generality, we only implement Laurent expansions around ε = 0.

Expansions around other points, including infinity, can be achieved by combining this node

with another one implementing a change of variables, which in turn can be represented by

an algorithm evaluating rational functions.

When the node is defined, we also specify the order at which we want to truncate

the expansion. We can specify a different order for each entry of the output of G. This

node has a learning phase, during which it performs two univariate reconstructions in ε

of the output of G, for fixed numerical values of the variables z. The first reconstruction

uses Thiele’s formula, and it is used to learn the total degrees in ε of the numerators and

– 23 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

the denominators of the outputs of G. Subsequent reconstructions will use the univariate

system-solving strategy discussed in section 2.2. For each output of G, any overall prefactor

εp, where p can be a positive or negative integer, is also detected and factored out to simplify

further reconstructions (notice that, after this, we can assume the denominators to have

the constant term equal to one). These prefactors also determine the starting order of

the Laurent expansion, which therefore is known after the learning phase. The second

reconstruction in the learning phase is simply used as a consistency check.

On each numerical evaluation, for given values of the inputs z, this node performs a full

univariate reconstruction in ε of the output of G and then computes its Laurent expansion

up to the desired order. Numerical evaluations of G are cached so that they can be reused

for reconstructing several entries of its output for the same values of z. The coefficients of

the Laurent expansions of each element are then chained together and returned.

4.6 Algorithms with no input

We finally point out that it is possible to define nodes and graphs with no input.

Nodes with no input correspond to algorithms whose output may only depend on

the prime field Zp. Some notable examples are nodes implementing the solution of linear

systems and linear fits (already discussed in the previous sections) in the special case where

they do not depend on any list of free parameters z. Another example is a node evaluating

a list of rational numbers over a finite field Zp. Nodes with no input have depth zero, by

definition.

A graph with no input is a graph with no input node. The nodes with the lowest

depth of such a graph are nodes with no input. The output of this graph only depends

on the prime field Zp used. These graphs thus represent purely numerical (and rational)

algorithms and no functional reconstruction is therefore needed. For these, we perform a

rational reconstruction of their output by combining Wang’s algorithm and the Chinese

remainder theorem, as explained in section 2.1.

5 Reduction of scattering amplitudes

One of the most important and phenomenologically relevant applications of the methods

described in this paper is the reduction of scattering amplitudes to a linear combination

of master integrals or special functions. This is indeed a field which, in recent years, has

received a notable boost in our technical capabilities, thanks to the usage of finite fields

and functional reconstruction techniques. In particular, the results in [14, 17, 21] have

been obtained using an in-development version of the framework presented here.

5.1 Integration-by-parts reduction to master integrals

Loop amplitudes are linear combinations of Feynman integrals. Consider an `-loop am-

plitude A, or a contribution to it, with e external momenta p1, . . . , pe. The amplitude, in

dimensional regularization, is a linear combination of integrals over the d-dimensional com-

ponents of the loop momenta k1, . . . , k`. It is convenient to write down these integrals in a

standard form. For each topology T , let {DT,j}nj=1 be a complete set of loop propagators,

– 24 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

including auxiliary propagators or irreducible scalar products, such that any scalar product

of the form ki · kj and ki · pj is a linear combination of them. In principle, there could

also be scalar products of the form ki · ωj where ωj are vectors orthogonal to the external

momenta pj , but these can be integrated out in terms of denominators DT,j an auxiliary

(see e.g. ref. [29]), hence they are not considered here. Effective methods for obtaining

this representation of an amplitude are integrand reduction (discussed in section 7) and

the decomposition into form factors (discussed in section 8). Hence, given a list of integers

~α = (α1, . . . , αn), we consider Feynman integrals with the standard form

I
(d)
T,~α =

∫ ∏
j

dkj

 1

Dα1
T,1 · · ·D

αn
T,n

. (5.1)

Notice that the exponents αj may be positive, zero, or negative.

Amplitudes may be written as linear combinations of the integrals above as

A =
∑

j∈{(T,~α)}

aj Ij , (5.2)

where the coefficients aj are rational functions of kinematic invariants, and possibly of the

dimensional regulator ε = (4 − d)/2. While the computation of the coefficients aj can

be highly non-trivial for high-multiplicity processes, in this section we assume them to be

known. Notice that they don’t need to be known analytically, but it is sufficient to have

a numerical algorithm for obtaining them. As already mentioned, popular and successful

examples of these algorithms are integrand reduction and the decomposition into form

factors, which we will talk about in sections 7 and 8.

In general, the integrals Ij appearing in eq. (5.2) are not all linearly independent.

Indeed they satisfy linear relations such as integration-by-parts (IBP) identities, Lorentz

invariance identities, symmetries, and mappings. The collection of these relations form a

large and sparse system of equations satisfied by these integrals. The most well known

and widely used method for generating such relations is the Laporta algorithm [30]. In

this case, these identities can be easily generated using popular computer algebra systems,

especially with the help of public tools (for instance, the package LiteRed [31] is very

useful for generating these relations in Mathematica). However, any other method can

be used for building this system, as long as this is provided in the form of a set of linear

relations satisfied by Feynman integrals.

As explained in section 4.2, in order to properly define this system we need to introduce

an ordering between the unknowns, in this case, the integrals Ij = IT,~α, by assigning a

weight to them [30]. The efficiency of the linear solver, as well as the number of equations

left after applying the mark-and-sweep method described in section 4.2, strongly depends

on this ordering. However, there is no unique good choice of it, and any choice can be

specified when the system is defined. An example which we found has good properties and

prefers integrals with no higher powers of denominators is provided in appendix B.

By solving this large system, which we henceforth refer to as IBP system, we reduce

the amplitude to a linear combination of a smaller set of integrals Gj , known as master

– 25 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

integrals (MIs),

Ij =
∑
k∈MIs

cjkGk, (5.3)

where the coefficients cjk are rational functions of the kinematic invariants and the dimen-

sional regulator ε. Notice that the master integrals Gk do not need to have the form in

eq. (5.1), but they can be arbitrary combinations of integrals of that form. In general, one

may have a list of preferred integrals which are defined as special linear combinations of

those in eq. (5.1) characterized by good properties, such as a simpler pole structure or a bet-

ter analytic behaviour (a convenient property to have is uniform transcendental weight [32],

see also section 6.2). In such cases, we add the definition of these integrals to the system

of equations and we assign to them a lower weight so that they are automatically chosen

as independent integrals, to the extent that this is possible, during the Gauss elimination.

Another important fact to note is that the list of master integrals is determined after the

learning phase of the linear solver, which only requires a few numerical evaluations.

After IBP reduction, amplitudes are written as linear combinations of master integrals

A =
∑
k∈MIs

AkGk, (5.4)

where the coefficients Ak, which are rational functions of the kinematic invariants and the

dimensional regulator ε, can be obtained via a matrix multiplication between the coefficients

of the unreduced amplitude in eq. (5.2) and the ones in the IBP solutions in eq. (5.3),

Ak =
∑
j

aj cjk. (5.5)

Putting these ingredients together, it is very easy to define a simple dataflow graph

representing this calculation, which is depicted in figure 5.

• The input node of the graph represents the variables {ε, x} where ε is the dimensional

regulator and x can be any number of kinematic invariants.

• The node aj takes as input the input node {ε, x} and evaluates the coefficients of the

unreduced amplitude in eq. (5.2). If these are known analytically this can simply be

a node evaluating a list of rational functions, otherwise, it can represent something

more complex, such as one of the algorithms we will discuss later.

• The IBP node is a sparse linear solver which takes as input the input node {ε, x} and

returns the coefficients cjk obtained by numerically solving the IBP system. Because

these systems are homogeneous, we only return the homogeneous part of the solutions

(the removed constant terms are zero). After the learning phase is completed, we

strongly recommend running the mark-and-sweep algorithm to reduce the number of

equations.

• Finally, the output node, which can be defined after the learning phase of the IBP

node has been completed, is a matrix multiplication which takes as inputs the node

aj and the IBP node.

– 26 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Figure 5. Two dataflow graphs representing the reduction of a scattering amplitude to master

integrals. The graph on the right has two additional nodes chaining to the coefficients of the

IBP solutions an identity matrix, which represents the (trivial) reduction of the master integrals

themselves. These nodes are needed when the masters can also appear on the r.h.s. of the unreduced

amplitude in eq. (5.2).

The graph we just described, which is depicted on the left of figure 5, ignores a technical

subtlety. The reduction coefficients cjk returned by the IBP node express the non-master

integrals in terms of master integrals. However, depending on our choice of masters, the

master integrals themselves may also appear on the r.h.s. of the unreduced amplitude in

eq. (5.2). This creates a mismatch which does not allow to properly define the final matrix

multiplication. More explicitly, if nMIs is the number of master integrals, and nnon-MIs is

the number of non-master integrals appearing in eq. (5.2), then the IBP node returns a

nnon-MIs × nMIs matrix. However, if the nMIs masters also appear on the r.h.s. of eq. (5.2),

then the output of the aj node has length nnon-MIs+nMIs, which makes it incompatible with

the IBP solution matrix it should be multiplied with. This can, however, be easily fixed by

defining an additional node representing the reduction of the master integrals to themselves,

which is trivially given by the nMIs × nMIs identity matrix InMIs (this is a node with no

input, which evaluates a list of rational numbers, see also section 4.6). After this is chained

(see section 4.4) to the output of the IBP node, we obtain a (nnon-MIs +nMIs)×nMIs matrix

containing the reduction to master integrals of all the nnon-MIs + nMIs Feynman integrals

in eq. (5.2). Hence the final matrix multiplication is well defined. This graph is depicted

on the right of figure 5. Notice that these two extra nodes are not necessary when all the

master integrals have been separately defined and don’t appear in our representation of the

unreduced amplitude, because in this case the output of the aj node has length nnon-MIs

and can be directly multiplied with the matrix computed by the IBP node.

The dataflow graph we just described computes the coefficients of the reduction of

an amplitude to master integrals. By evaluating this graph several times, one can thus

– 27 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

reconstruct the analytic expressions of these coefficients, without the need of deriving large

and complex IBP tables. This represents a major advantage, since IBP tables for complex

processes can be extremely large, significantly more complex than the final result for the

reduced amplitude, hard to compute, and also hard to use — since they require to apply a

huge list of complex substitutions to the unreduced amplitude. On the other hand, using

the approach described here, IBP tables are always computed numerically, and only the

final result is reconstructed analytically. Hence, by building a very simple dataflow graph

consisting of only a few nodes, we are able to sidestep the bottleneck of computing and

using large, analytic IBP tables. This approach has already allowed (e.g. in ref.s [14, 21])

to perform reductions in cases where the IBP tables are known to be too large and complex

to be computed and used with reasonable computing resources.

5.2 Reduction to special functions and Laurent expansion in ε

The expansion in the dimensional regulator ε of the master integrals can often be computed

in terms of special functions, such as multiple polylogarithms or their elliptic generalization.

When this is possible, the result for the ε expansion of a scattering amplitude might be

significantly simpler than the one in terms of master integrals. For the sake of argument,

we assume to be interested in the poles and the finite part of the amplitude, but everything

we are going to discuss can be easily adapted to different requirements.

Let {fk = fk(x)} be a complete list of special functions (which may also include

numerical constants) such that every master integral Gj , expanded up to its finite part,

can be expressed in terms of these as

Gj =
∑
jk

gjk(ε, x) fk +O(ε), (5.6)

where gjk are rational functions in ε and x (typically, they will be a Laurent polynomial in

ε, but this is not important for the discussion). Recalling eq. (5.4), we can thus write the

amplitude in terms of these functions as

A =
∑
k

uk(ε, x) fk +O(ε), (5.7)

where the rational functions uk are defined as

uk(ε, x) =
∑
j

Aj(ε, x) gjk(ε, x). (5.8)

We are interested in the expansion in ε of the coefficients uk, i.e. in the coefficients u
(j)
k =

u
(j)
k (x) such that

uk(ε, x) =
0∑

j=−p
u
(j)
k (x) εj +O(ε), (5.9)

where p is such that the leading pole of the amplitude is proportional to ε−p.

Computing the coefficients u
(j)
k (x) in our framework is straightforward. We start from

the dataflow graph described in section 5.1, which computes the coefficients Aj of the mas-

ter integrals. We first extend this graph in order to get the unexpanded coefficients uk(ε, x).

– 28 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Figure 6. Two graphs which, combined, compute the ε expansion of the coefficients of scattering

amplitudes in terms of special functions. In the first graph G1, Aj represents the calculation of the

coefficients of the master integrals presented in section 5.1 and figure 5. The graph G2 then takes

the graph G1 as subgraph in one of its nodes, which computes its Laurent expansion in ε.

This is simply done by adding a node gjk, which evaluates the rational functions gjk(ε, x) de-

fined in eq. (5.6), and a matrix multiplication node between the node Aj (which was the out-

put node in the previous case) and gjk, as one can see from eq. (5.8). Let us call this dataflow

graph G1. We then create a new graph G2 with input variables x. Inside the latter, we cre-

ate a Laurent expansion node, which takes as its subgraph G1. The output of this node will

be the coefficients u
(j)
k of the Laurent expansion in eq. (5.9). This is depicted in figure 6.

Because the coefficients u
(j)
k (x) might not be all linearly independent, we also recom-

mend running the subgraph fit algorithm described in section 4.3 in order to find linear

relations between them. In particular, this can be used to rewrite the most complex coef-

ficients as linear combinations of simpler ones, yielding thus a more compact form of the

result, which is also easier to reconstruct.

We finally point out that one can further elaborate the graph G1 in order to include

renormalization, subtraction of infrared poles, and more. This is done by rewriting these

subtractions, which are typically known analytically since they depend on lower-loop re-

sults, in terms of the same list of functions {fk} as the amplitude. After doing so, the

coefficients of the subtraction terms multiplying the functions fk are added to the graph

as nodes evaluating rational functions and summed to the output using the Addition node

described in section 4.4. This may thus simplify the output of the Laurent expansion

computed in the graph G2, which will, therefore, be easier to reconstruct.

It goes without saying that, even if we focused on scattering amplitudes, the same

strategy can be applied to other objects in quantum field theory which have similar prop-

erties, such as correlation functions and form factors.

– 29 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

6 Differential equations for master integrals

Integration-by-parts identities are not only useful to reduce amplitudes to linear combi-

nations of a minimal set of independent master integrals, but they are also helpful for

the calculation of the master integrals themselves via the method of differential equa-

tions [33, 34]. Indeed the master integrals Gj satisfy systems of coupled partial differential

equations with respect to the invariants x,

∂

∂x
Gj =

∑
A

(x)
jk (ε, x)Gk. (6.1)

Solving these systems of differential equations is one of the most effective and successful

methods for computing the master integrals.

6.1 Reconstructing differential equations

The differential equation matrices can be easily computed within our framework, using a

strategy which is completely analogous to the one described in section 5.1 for the reduction

of scattering amplitudes to master integrals.

We first determine the master integrals by solving the IBP system numerically over

finite fields. For this, we need to specify a list of needed integrals, i.e. a list of needed

unknowns for which the system solver is asked to provide a solution since in general one

cannot reduce to master integrals all the integrals appearing in an IBP system. We then

make a conservative choice which is likely to be a superset of all the integrals which need

to be reduced for computing the differential equations.

Then, the derivatives of master integrals with respect to kinematic invariants can be

easily computed analytically,
∂

∂x
Gj =

∑
k∈(T,~a)

a
(x)
jk Ik, (6.2)

where the integrals Ij have the standard form defined in eq. (5.1), and a
(x)
jk are rational

functions of the invariants x. At this stage, we may reset the list of needed unknowns of

the IBP system to include only the ones appearing on the r.h.s. of eq. (6.2). After that,

we also strongly suggest running the mark-and-sweep algorithm for removing unneeded

equations.

By solving the IBP system, we reduce the integrals Ij to master integrals. This defines

the coefficients cjk of the reduction, as in eq. (5.3). The differential equation matrices A
(x)
jk

are thus obtained via the matrix multiplication

A
(x)
jk =

∑
l

a
(x)
jl clk. (6.3)

A dataflow graph representing this calculation can, therefore, be almost identical to the

one described in section 5.1, and it is depicted on the left side of figure 7. In particular, it

has an input node representing the variables {ε, x}, a node evaluating the rational functions

a
(x)
ij appearing in the unreduced derivatives of eq. (6.2), a node with the IBP system, and

an output node with the final matrix multiplication in eq. (6.3). Similarly to the case of

– 30 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Figure 7. On the left, a dataflow graph representing the calculation of differential equations

satisfied by master integrals. It is similar to the one depicted in figure 5 for the reduction of

amplitudes to master integrals. On the right, a dataflow graph computing the differential equation

matrices divided by ε. As explained in section 6.2 we can verify the ε-form of the differential

equations by checking numerically that the output of the latter graph does not depend on ε.

the amplitudes, if the master integrals are chosen such that they can also appear on the

r.h.s. of the unreduced derivatives in eq. (6.2), then we also add an identity matrix node,

and a node chaining this to the IBP node (see section 5.1 and figure 5 for more details).

By defining this graph, we can reconstruct the differential equations of the master

integrals directly, without the need of computing IBP tables analytically, similarly to the

case of the reduction of amplitudes. This usually yields a substantial simplification of the

calculation.

6.2 Differential equations in ε-form

It has been observed in ref. [32] that the differential equation method becomes more pow-

erful and effective if the master integrals are chosen such that they are pure functions of

uniform transcendental weight, henceforth UT functions for brevity (we refer to ref. [32]

for a definition). Remarkably, as pointed out in ref. [32], one can build a list of integrals

having this property without doing any reduction at all, by using some effective rules or

by analyzing the leading singularities of Feynman integrals. A systematic algorithm which

implements this analysis of leading singularities was developed and described in [35], and

recently extended in ref. [36]. Once a (possibly over-complete) list of UT integrals has

been found, their definitions can be added as additional equations to the IBP system. By

assigning a lower weight to these integrals, they will be automatically chosen as preferred

master integrals by the system solver.

– 31 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

If {Gk} represents a basis of UT master integrals, the differential equation matrices

take the form [32]

A
(x)
ij (ε, x) = εA

(x)
ij (x), (6.4)

i.e. their ε dependence is simply an ε prefactor. This greatly simplifies the process of solving

the system perturbatively in ε. When this happens, the system of differential equations is

said to be in ε-form or in canonical form.

If a list of UT candidates is known, as we said, we may add their definition to the

IBP system, and then we divide the final result for the matrices by ε. This is done by

modifying the dataflow graph defined before, with the addition of a node which evaluates

the rational function 1/ε, and a new output node which multiplies the 1/ε node with the

older output node. As mentioned in section 4.4, the multiplication can be accomplished

using a matrix multiplication node, which interprets 1/ε as a 1× 1 matrix and its second

input node as a matrix with only one row. This modified graph is depicted on the right

side of figure 7. Once the graph is defined, we can evaluate it numerically for several values

of ε while keeping x fixed, in order to check that the system is indeed in ε-form.

Differential systems in ε-form for UT integrals are typically much easier to reconstruct

since they have a particularly simple functional structure. Hence they benefit even more

from the functional reconstruction methods described in this paper, which allow to re-

construct this result directly without dealing with the significantly more complex analytic

intermediate expressions one would have in a traditional calculation.

A large class of Feynman integrals can be written as linear combinations of iterated

integrals of the form (using the notation in [37])∫
d logw1 ◦ d logw2 ◦ · · · ◦ d logwn (6.5)

where the d log arguments wk are commonly called letters. A complete set of letters is

called alphabet. While the alphabet of a multi-loop topology is often inferred from the

differential equations for the master integrals, there are some cases where this can instead

be guessed a priori. In such cases, finding differential equations for UT master integrals can

be even simpler, since the calculation can be reduced to a numerical linear fit [38]. Indeed,

it is well known that differential equations matrices for UT master integrals, aside from

their ε prefactor, are expected to be linear combinations of first derivatives of logarithms

of letters, with rational numerical coefficients. More explicitly, if W = {w1, w2, . . .}, with

wk = wk(x), is the alphabet of a topology, the differential equation matrices for a set of

UT master integrals take the form

A
(x)
ij (x) =

∑
k

∂ log(wk)

∂x
C

(x,k)
ij , (6.6)

where C
(x,k)
ij are rational numbers. Hence, rather than employing multivariate functional

reconstruction methods, in this case, we can compute the differential equation matrices

just with a linear fit. For this purpose, we can apply the subgraph multi-fit algorithm

described in section 4.3. More explicitly, we create a graph G1 whose output contains both

– 32 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

the derivatives ∂ logwk/∂x of the letters and the (non-vanishing) matrix elements A
(x)
ij .

We then build a second graph G2, with a subgraph multi-fit node containing G1, which

performs a fit of each matrix element with respect to the basis of functions {∂ logwk/∂x},
as described in section 4.3. Notice that G2 has no input node, and therefore we run a

numerical reconstruction of its output over Q using Wang’s algorithm and the Chinese

remainder theorem, as already explained in section 4.6.

6.3 Differential equations with square roots

In our discussion of differential equations for UT integrals, we have so far neglected the

potential issue of the presence of square roots in their definition. Indeed, there are cases

where, in order to define UT integrals, one needs to take rational linear combinations of

integrals of the form of eq. (5.1) and multiply them by a prefactor equal to the square

root of a rational function of the invariants x. Even in cases where these square roots may

be removed via a suitable change of variables, one may still wish to compute differential

equations in terms of the original kinematic invariants, at least as a first step. While square

roots may be accommodated in our framework by considering finite fields which are more

general than Zp, we would like to point out in this section that this is not necessary for

computing differential equations.

Let us rewrite the master integrals Gj as

Gj = Rj G
r.f.
j , (6.7)

where Rj is either equal to one or to the square root of a rational function of the invariants

x, and {Gr.f.
j } are a set of root-free master integrals, which can be written as rational linear

combinations of standard Feynman integrals of the form of eq. (5.1). We first observe that

the quantity
1

Rj

∂

∂x
Gj =

(
1

Rj

∂Rj
∂x

)
Gr.f.
j +

∂

∂x
Gr.f.
j , (6.8)

which can be easily computed analytically, is also a rational combination of standard Feyn-

man integrals. This is indeed manifest on the r.h.s. of the equation, since if R is the square

root of a rational function then R′/R is rational. This implies that, via IBP identities, we

can reduce the root-free quantity in eq. (6.8) to the root-free master integrals and obtain

1

Rj

∂

∂x
Gj =

∑
k

Ã
(x)
jk G

r.f.
k , (6.9)

where the matrix Ã
(x)
jk is also rational since the IBP reduction itself cannot introduce any

non-rational factor. One can finally show that the matrix Ã
(x)
jk is related to the differential

equation matrix A
(x)
jk we wish to compute by

A
(x)
jk =

Rj
Rk

Ã
(x)
jk , (6.10)

i.e. simply by rescaling each matrix element by a prefactor. We can, therefore, apply the

methods described above to the quantity in eq. (6.8) (rather than to the simple derivatives

– 33 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

of the master integrals), use it to reconstruct the rational matrix Ã
(x)
jk , and finally recover

A
(x)
jk by introducing the appropriate prefactors. Notice also that A

(x)
jk is in ε-form if and

only if Ã
(x)
jk is in ε-form.

7 Integrand reduction

In section 5, we explained how to compute the reduction of a scattering amplitude, either to

a linear combination of master integrals or to a combination of special functions expanded

in the dimensional regulator. One of the ingredients of the algorithm discussed there was

a representation of the unreduced amplitude (cfr. with eq. (5.2)) as a linear combination

of Feynman integrals cast in a standard form, such as the one in eq. (5.1). In particular,

within the FiniteFlow framework, we need a numerical algorithm capable of computing

the coefficients aj of such a linear combination. This is trivial if an analytic expression is

known for the aj . However, this is not always the case. Indeed, for complex processes,

casting the amplitude in such a form is a very challenging problem. In this section, we

discuss integrand reduction methods [3–8, 29], which are an efficient way of obtaining this

representation of the amplitude and are suitable for complex processes.

7.1 Integrand reduction via linear fits

Amplitudes are linear combinations of integrals of the form

A =

∫ ∏
j

dkj

 N (k1, . . . , k`)

Dα1
1 · · ·D

αn
n

, αj > 0, (7.1)

where N is a polynomial numerator in the loop components, and Dj are denominators of

loop propagators. For simplicity, we consider only one topology, identified by a set of loop

denominators, but we understand that the approach discussed here should be applied to

all the topologies contributing to the amplitude we wish to compute.

Integrand reduction methods rewrite the integrand as a linear combination of functions

belonging to an integrand basis

N (kj)

Dα1
1 · · ·D

αn
n

=
∑

βj |0≤βj≤αj

∆β1···βn

Dβ1
1 · · ·D

βn
n

, (7.2)

where ∆~β
≡ ∆β1···βn has the form

∆~β
=
∑
j

c~β,jm~β,j
(k1, . . . , k`). (7.3)

In the previous equations, the functions m~β,j
are a complete set of irreducible numera-

tors, i.e. numerators which, at the integrand level, cannot be written in terms of the loop

propagators they are sitting on. In other words, the terms

m~β,j
(k1, . . . , k`)

Dβ1
1 · · ·D

βn
n

with 0 ≤ β1 ≤ α1, . . . , 0 ≤ βn ≤ αn, (7.4)

– 34 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

must form a complete basis of rational functions in the loop components, for the loop

integrand we are interested in. The coefficients c~β,j , which do not depend on the loop

momenta but only on the kinematic invariants, are unknowns which parametrize an in-

tegrand in terms of the chosen basis. The functions ∆~β
, also known in the literature as

residues or on-shell integrands, collect the elements of the integrand basis which share the

same loop-denominator structure. The integrand basis can be chosen a priori solely based

on the loop topology, and independently of the process or the particle content of the loop

diagrams (see below for a few examples). The parametric coefficients c~β,j in eq. (7.3) are

instead process dependent and represent the unknowns of this representation.

Once an integrand basis has been chosen, the unknown coefficients c~β,j can be deter-

mined via a linear fit. For this purpose, we can use the algorithm described in section 4.3,

using kinematic invariants as the free parameters z, loop variables as the additional set

of variables τ , and c~β,j as the unknowns of the system. In particular, in a dimensional

regularization scheme where the external states are four-dimensional (such as the t’Hooft-

Veltman [39] and Four-Dimensional-Helicity [40] schemes), the integrand depends on

4 `+
`(`+ 1)

2

loop variables. These can be chosen, for instance, as the four-dimensional components of

the loop momenta with respect to a basis of four-dimensional vectors, plus the independent

scalar products between the extra-dimensional projections of the loop momenta

µij = −k[−2ε]i · k[−2ε]j . (7.5)

While performing a global fit of all the coefficients at the same time is theoretically possible,

in practice it is extremely inefficient and impractical, because it involves solving a dense

system of linear equations of the same size as the number of the unknown coefficients. One

can however greatly simplify the problem by splitting it into several smaller linear fits, using

the so-call fit-on-the-cut approach [3]. This consists of evaluating the integrand on multiple

cuts, i.e. values of the loop momenta such that a subset of loop propagators vanish (we

also understand that vanishing denominators should be removed from the integrand when

applying a cut). On each cut, we also have fewer independent loop variables τ , namely

those which are not fixed by the cut conditions. This method is best used in a top-down

approach. We first cut (i.e. set to zero) as many propagators as possible, and use linear

fits on maximal cuts for determining a first set of coefficients. We then proceed with linear

fits on cuts involving fewer and fewer propagators. When performing a fit on a multiple

cut, on-shell integrands which have already been fixed on previous cuts are first subtracted

from the integrand. These subtractions are sometimes referred to as subtractions at the

integrand level. If an integrand has all denominator powers αj equal to one, with this

approach we determine the coefficients of one and only one on-shell integrand ∆~β
on each

cut. If higher powers of propagators are present, more than one off-shell integrand must

be determined at the same time on some cuts, but this doesn’t qualitatively change the

algorithm for the linear fit (this point is discussed more in detail in ref.s [41, 42]).

– 35 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Subtractions at the integrand level can be implemented using the linear fit algorithm

described in eq. (4.10). In particular, we define a dataflow graph where each multiple cut

corresponds to a different node, whose output is the list of coefficients c~β,j determined by

a linear fit. Each node takes as input, besides the kinematic variables z, the output of all

the higher-point cuts with non-vanishing subtractions on the current cut. The coefficients

returned by the input nodes will be used as weights wj (cfr. with eq. (4.10)) for the

subtractions, while the integrand will typically have weight one. Notice that the linear fit

described in eq. (4.10) also allows to define a set of auxiliary functions, in terms of which

we can express both the integrand and the integrand basis. This is very convenient since it

allows to express these objects in terms of scalar products, spinor chains, or other auxiliary

functions which may yield a simple representation. Hence, we only have to explicitly

substitute the cut solutions inside these functions, which are then evaluated numerically.

In particular, we don’t need to substitute the cut solutions inside the full integrand or the

full set of integrand basis elements appearing in the subtraction terms, which may yield

complicated expressions in some cases.

We also note that, when using the loop variables described above, finding a rational

parametrization of the cut solutions is a simple problem of linear algebra. As already

explained in [29] one can proceed by splitting the cut denominators into categories, such

that denominators in the same category depend on the same subset of loop momenta.

For each category, we choose a representative, and we take differences between all the

other denominators and this representative. This gives a linear system of equations for the

four-dimensional components of the loop momenta which live in the space spanned by the

external legs. Next, we complete this solution by setting to zero the representatives of each

category. This gives a system of equations which is linear in the variables µij . Notice that

this is only true when we work in d dimensions.

If neither the integrand nor the integrand basis depends on the dimensional regulator

ε, it is convenient to embed the integrand reduction nodes in a memoized subgraph, as

described at the end of section 3.3. During the Laurent expansion, this avoids repeating

the integrand reduction for several values of ε and fixed values of the kinematic invariants.

If the integrand has a polynomial dependence on ε, as it happens for amplitudes in the

t’Hooft-Veltman regularization scheme, we can still implement this improvement by using

several memoized subgraphs, i.e. one for each power of ε in the numerator.

The algorithm we described allows to define a dataflow graph implementing a full multi-

loop integrand reduction over finite fields, starting from a known integrand and an integrand

basis. This is particularly convenient when using FiniteFlow from a computer algebra

system. The output of all these nodes can then be collected, using either a Chain or a Take

algorithm (see section 4.4), and used as input for subsequent stages of the reduction, such

as IBP reduction, and the decomposition in terms of known special functions, as described

in section 5. In our experience, this strategy is very efficient, even on complex multi-loop

integrands, especially if compared with the more time-consuming IBP reduction step.

It is also worth mentioning that integrand reduction is often used in combination with

generalized unitarity [4, 9–12]. On multiple cuts the integrand factorizes as a product of

tree-level amplitudes, which in turn may be evaluated efficiently, over a numerical field, us-

– 36 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

ing Berends-Giele recursion [43]. We refer to ref. [2] for a complete description of an imple-

mentation of generalized unitarity over finite fields. It should be noted that, while general-

ized unitarity is an extremely powerful method which can substantially reduce the complex-

ity of the calculation, it also has some limitations. For instance, one needs to find rational

finite-dimensional parametrizations for the internal states of the loop on the cut solutions,

which is not always easy. Moreover, in its current state, it cannot be easily applied to pro-

cesses with massive internal propagators. These difficulties and limitations are not present

when applying integrand reduction to a diagrammatic representation of the amplitude.

7.2 Choice of an integrand basis

It is worth making some observations on possible choices for an integrand basis. In the one-

loop case, one can choose a basis which yields a linear combination of known integrals [3, 4].

With this choice, IBP reduction is not needed. At higher loops, this is not the case, and

one should therefore take into account that the elements of an integrand basis should be

later reduced via IBP identities.

A particularly simple but effective choice, especially at the multi-loop level, consists

of writing any on-shell integrand ∆~β
in terms of the denominators and auxiliaries {DT,j}

of its parent topology T such that βj = 0, i.e. excluding the ones that ∆~β
is sitting on. In

processes with fewer than five external legs, one must also include scalar products of the

form ki ·ωj where {ωj} are a complete set of four-dimensional vectors orthogonal to all the

external momenta p1, . . . , pe. Hence, ∆~β
can be parametrized as the most general polyno-

mial in this set of variables, whose total degree is compatible with the theory. For instance,

a renormalizable theory allows at most one power of loop momenta per vertex, in the sub-

topology defined by the denominators of ∆~β
. After integrand reduction, the scalar products

of the form ki ·ωj can be integrated out in terms of denominators and auxiliaries DT,j . As

explained e.g. in [29], this can be easily done via a tensor decomposition in the (d− e+ 1)-

dimensional subspace orthogonal to the e external momenta. Notice that this is very simple

even for complex processes since it only involves the orthogonal projection of the metric

tensor gµν[d−e+1] and no external momentum. Alternatively, one can achieve the same result

via an angular loop integration over the orthogonal space, which can be made even simpler

using Gegenbauer polynomials [29]. This choice of integrand basis directly yields, after

orthogonal integration, a linear combination of integrals which are suitable for applying

standard IBP identities. Given also its simplicity, it is a recommended choice in most cases.

Other choices can be made for the sake of having either a simpler integrand repre-

sentation or a larger set of elements of the integrand basis which integrate to zero. One

can, for instance, choose to replace monomials in an on-shell integrand with monomials

involving also the extra-dimensional scalar products µij . Because monomials with µij can

be rewritten as linear combinations of the other ones, one can easily obtain a system of

equations relating these two types of monomials. By solving this system, assigning a lower

weight to monomials involving µij , one can maximize the presence of integrands which

vanish in the four-dimensional limit. Since we are only interested in a list of independent

monomials, it is sufficient to solve the system numerically (possibly over finite fields). This

is heuristically found to yield simpler integrand representations. However, it also makes

– 37 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

IBP reduction harder to use, since integrands with µij then need to be converted to the

ones in a standard form. If only the finite part of the amplitude is needed, one may however

choose some integrands involving µij which are O(ε) after integration and then drop them

before the IBP reduction step. This may result in notable simplifications. As an example,

at one loop, no on-shell integrand with more than four denominators contributes to the

finite part of an amplitude, if µ11 is chosen to be the numerator of the five-denominator

integrands in the integrand basis.

Another popular choice is the usage of scalar products involving momenta which, for

an on-shell integrand ∆~β
, are orthogonal to the external momenta of the topology defined

by its own denominators (as opposed to the ones of the parent topology). One can indeed

build suitable combinations of these scalar products which vanish upon integration. Their

coefficients can then be dropped after the integrand reduction.

Another very successful strategy is the usage, for each on-shell integrand ∆~β
, of a

complete set of surface terms, i.e. terms which vanish upon integration and are compatible

with multiple cuts [44–47]. These are chosen to be an independent set of IBP equations

without higher powers of denominators. These define suitable polynomial numerators for

∆~β
which vanish upon integration. When this approach is used, IBP reduction is embedded

in the integrand reduction and therefore it is not needed as a separate step. A possible

disadvantage is that it makes the integrand reduction more complicated, since these surface

terms are typically more complex than the elements of other integrand bases, and they

introduce a dependence on the dimensional regulator which is otherwise not present in

the integrand reduction stage. Another disadvantage is that, in the form it is usually

formulated, this strategy can yield incomplete reductions for some processes.4

We finally point out that, if there is no one-to-one correspondence between elements

of the integrand basis and Feynman integrals to be reduced via IBPs, one needs to convert

between the two. This step may also include the transverse integration, if needed. The

conversion, as in many other cases, can be implemented via a matrix multiplication. For

this purpose, we recommend using either the Take And Add algorithm or the Sparse Matrix

Multiplication algorithm described in section 4.4.

7.3 Writing the integrand

When using integrand reduction together with Feynman diagrams, one would typically

provide the integrands in eq. (7.1) analytically. Even if several methods exist for generating

integrands numerically at one loop, with the notable exception of generalized unitarity

(which is however not based on Feynman diagrams and has the limitations mentioned

above) they have not been generalized to higher loops. When integrands are provided in

4Indeed, one can see that, in the references above, these surface terms are effectively chosen to be linear

combinations of IBP identities whose seed integrals do not have higher powers of denominators than the ones

in the diagrams which need to be reduced. Hence, whenever identities using seed integrals with higher powers

of denominators, or seed integrals with more propagators, are needed to fully reduce a given sector, the

method above will not yield a complete reduction to a minimal basis of master integrals. Examples where we

explicitly checked that additional seed integrals are needed are several two-loop topologies involving massive

internal propagators (e.g. topologies for amplitudes with two fermion pairs having different masses), and

some massless four-loop topologies (including most of those reduced in ref. [17]).

– 38 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

some analytic form, they will also depend on external polarization vectors, spinor chains,

and possibly other objects describing the external states. On one hand, this means that

we need to provide a rational parametrization for these objects. On the other, we may

use the algorithms described above in order to keep these rational expressions as compact

as possible. This is done by performing the substitutions which would yield complex

expressions only numerically over finite fields.

A rational parametrization for four-dimensional spinors, polarization vectors, external

momenta, as well as higher-spin polarization states, can be obtained, in terms of a minimal

set of invariants, by means of the so-called momentum twistor parametrization [48–50].

The independent kinematic invariants are called in this case momentum twistor variables.

A comprehensive description of the usage of this parametrization for describing external

states in the context of numerical calculations over finite fields is given in ref. [2] and will

not be repeated here.

In amplitudes with only scalars and spin-one external particles, the only additional

loop-dependent objects appearing in the integrand, besides the loop denominators and

auxiliaries, are scalar products between loop momenta and polarization vectors. If external

fermions are present, one also has spinor chains involving loop momenta. These can be dealt

with by splitting the loop momenta in a four-dimensional and a (−2ε)-dimensional part

kµj = k
[4]µ
j + k

[−2ε]µ
j , (7.6)

and performing the t’Hooft algebra on the extra-dimensional components in order to ex-

plicitly convert all the dependence on k
[−2ε]
j into the extra-dimensional scalar products µij

defined in eq. (7.5).

The four-dimensional part of the loop momenta is often decomposed into a four-

dimensional basis. Given a generic loop momentum k and three massless momenta

p1, p2, p3, we can use the decomposition, in spinor notation,

k[4]µ = y1 p
µ
1 + y2 p

µ
2 + y3

〈2 3〉
〈1 3〉

〈1σµ 2]

2
+ y4

〈1 3〉
〈2 3〉

〈2σµ 1]

2
. (7.7)

The massless momenta can be chosen depending on the cut, but it is also possible, and often

easier, to define a global basis of momenta and therefore use the same set of loop variables

yj and µij everywhere. If there aren’t enough massless external legs, one may use massless

projections of massive ones or arbitrary massless reference vectors. In some cases, it is

convenient to make the substitution in eq. (7.7) directly in the analytic integrand, since

it provides simplifications for explicit choices of external helicity states. In other cases,

one may instead make a list of all the loop-dependent objects (scalar products, spinor

chains, etc. . .) appearing in the integrand and express them individually as functions of

the variables yj and µij . This defines a list of substitutions which can instead be done

numerically inside the linear fit procedure, through the definition of the auxiliary functions

a appearing in eq. (4.10), while keeping the integrand written as a rational function of

objects which yield a more compact expression for it.

As we explained, on a multiple cut, the variables yj and µij are no longer all indepen-

dent, but a subset of them can be written as rational functions of the others. Once again,

– 39 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

we note that one does not need to perform these substitutions explicitly in the integrand,

but only numerically using the auxiliary functions a as before.

We finally remark that it is often a good idea to group together diagrams which share

the same denominator structure or can be put under the same set of denominators as one of

the parent topologies of the process. Thanks to the fact that, in the linear fit algorithm we

defined in eq. (4.10), we allow an arbitrary sum of contributions on the r.h.s., this grouping

can be easily performed by including each diagram in this list of contributions (which, we

recall, here includes the integrand and the subtraction terms), without having to explicitly

sum them up analytically.

8 Decomposition of amplitudes into form factors

In this section, we briefly discuss the possibility of using the FiniteFlow framework for

an alternative and widely used method for expressing amplitudes as linear combinations of

standard Feynman integrals.

The method consists of considering an amplitude stripped of all the external polariza-

tion states. This amplitude will have a set of free indexes λ1 . . . , λe, which may be Lorentz

indexes, spinor indexes, or other indexes representing higher-spin states. One can thus

write down the most general linear combination of tensors T λ1···λej having these indexes,

compatible with the known properties of the amplitude, such as gauge invariance and other

constraints. More explicitly

Aλ1···λe =
∑
j

Fj T
λ1···λe
j . (8.1)

The form factors Fj are rational functions of the kinematic invariants, which can be com-

puted by contracting the amplitude on the l.h.s. with suitable projectors P λ1···λe

Fj = Pj ·A, (8.2)

where

P λ1···λej =
∑
k

T−1jk T λ1···λek (8.3)

with

Tij ≡ Ti · Tj . (8.4)

In the previous equations, a dot product between two tensors is a short-hand for a full

contraction between their indexes.

There are at least two bottlenecks in this approach for which the FiniteFlow frame-

work can be highly beneficial. The first is the inversion of the matrix defined in eq. (8.4).

This inversion can be obviously computed using one of the linear solvers described in sec-

tion 4.2 — typically the dense solver if the tensors Tj do not have special properties of

orthogonality. The inversion can also be performed numerically, since it is only required in

an intermediate stage of the calculation, and can be represented by a node in the dataflow

graph. We find that, even in cases where the inverse matrix is very complicated, its

numerical inversion takes a negligible amount of time compared with other parts of the

– 40 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

calculation (e.g. IBP reduction). The other bottleneck which can be significantly mitigated

by our framework is the difficulty of computing the contraction on the r.h.s. of eq. (8.2), in

cases where the projectors are particularly complicated. Indeed, by substituting eq. (8.3)

into eq. (8.2) we get

Fj =
∑
k

T−1jk (Tk ·A). (8.5)

This means that we can compute the contractions Tk · A instead, which are usually sig-

nificantly simpler, and multiply them (numerically) by the matrix T−1jk at a later stage.

This allows to reconstruct the form factors directly without ever needing explicit analytic

expressions for the projectors. One can further elaborate the algorithm by contracting the

free indexes of eq. (8.1) with explicit polarization states, for the direct reconstruction of

helicity amplitudes rather than the form factors themselves.

9 Finding integrable symbols from a known alphabet

As we already stated, many Feynman integrals can be cast as iterated integrals in the form

of eq. (6.5). It is customary to associate to these integrals an object called symbol [37, 51].

For the purposes of this paper, we define the symbol as

S
(∫

d logw1 ◦ d logw2 ◦ · · ·
)
≡ w1 ⊗ w2 ⊗ · · · , (9.1)

where, as already mentioned in section 6.2, wk are called letters, and a complete set of letters

W = {wk} is called alphabet. Because the symbol does not depend on the integration path

and the boundary terms, it contains less information than the full iterated integral, but

it is still a very interesting object to study for determining the analytic structure of an

amplitude. More information on symbols, their properties, and their relations to multiple

polylogarithms can be found in [51].

Given a known alphabet W , one can build symbols of weight n as linear combinations

of those defined in eq. (9.1), namely

S =
∑

j1,...,jn

cj1···jn wj1 ⊗ · · · ⊗ wjn . (9.2)

However, in general, such a linear combination is not integrable, i.e. it does not integrate to

a function which is independent of the integration path. As pointed out in [52], a necessary

and sufficient condition for the symbol in eq. (9.2) to be integrable is∑
j1,...,jn

cj1···jn

(
∂ logwjk
∂zl

∂ logwjk+1

∂zm
− (l↔ m)

)
wj1⊗· · ·⊗ŵjk⊗ŵjk+1

⊗· · ·⊗wjn = 0, (9.3)

for all k = 1, . . . , n − 1 and all pairs (zl, zm), where z = {zj} are the kinematic variables

the letters depend on. In the previous equation, ŵk indicates the omission of the letter

wk. By solving these integrability conditions, which amounts to solve a linear system for

the coefficients cj1···jn , one can build a complete list of integrable symbols of weight n. It

is worth mentioning that there are additional conditions one can impose to restrict the

– 41 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

number of terms in the ansatz of eq. (9.2), namely additional conditions on the allowed

entries of a symbol. For instance, the first entry, which is related to the discontinuity of

the function, may be restricted to contain only letters associated to physical branch points

of an amplitude.

Here we discuss a simple method5 for finding all integrable symbols from a known al-

phabet, up to a specified weight n, exploiting the algorithms of the framework we presented

in this paper.

We first observe that the only dependence of eq. (9.3) on the explicit analytic expres-

sions of the letters is via the crossed derivatives

d
(lm)
ij ≡ ∂ logwi

∂zl

∂ logwj
∂zm

− (l↔ m) . (9.4)

In order to simplify the notation, let us define a multi-index J = (i, j, l,m) such that

dJ ≡ d(lm)
ij . (9.5)

The only relevant information about these derivatives which is needed for the purpose of

solving eq. (9.3) are possible linear relations which may exist between different elements

dJ . These relations only depend on the alphabet, and not on the weight of the symbols

which need to be considered. Once all these linear relations have been found for a given

alphabet, the integrability conditions can be solved at any weight using a numeric linear

system over Q, and without using the analytic expressions of the letters again.

In order to find these linear relations, we first compute analytic expressions for all the

functions dJ , which can usually be done in seconds even for complex alphabets. If the

functions dJ have no square root in them, we simply solve the linear-fit problem∑
J

xJdJ = 0, (9.6)

where the unknowns xJ are Q-numbers, while the functions dJ depend on the variables

z. This equation is solved with respect to the unknowns xJ using the (numerical version

of the) linear fit algorithm already described in this paper. Linear relations between the

unknowns xJ are thus easily translated into relations between the functions dJ (notice that

independent unknowns multiply dependent functions, and the other way around). In order

to simplify the linear fit, it is convenient to extract a priori some obvious relations, such

as relations of the form dJ = 0 or dJ1 = ±dJ2 , which are more easily identifiable from the

analytic expressions.

If the functions dJ depend on a set of (independent) square roots, we first rewrite each

of them in a canonical form, such that each function is multi-linear in the square roots.

This can be easily done, one square root at the time, by replacing a given square root
√
f

with an auxiliary variable, say r, and computing the remainder of dJ = dJ(r) with respect

to r2 − f , via a univariate polynomial division with respect to r (note that univariate

5This method has been independently developed by the author and used in several unpublished tests

and checks (see e.g. ref. [53]). It shares some similarities with the one implemented in [54].

– 42 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

polynomial remainders are easily generalized to apply to rational functions6). The result

will be linear in r. If all the square roots are chosen to be independent, after putting

the functions dJ in this canonical form, one can simply solve the linear fit in eq. (9.6) by

replacing each square root with a new independent variable. This works because, if eq. (9.6)

holds and the dJ are put in this canonical form, then the terms multiplying independent

monomials in the square roots must vanish separately. This is effectively equivalent to

performing a linear fit where each square root is treated as an independent variable. We

find that, even in cases where square roots are rationalizable, this approach is often more

efficient than using a change of variables which rationalizes the square roots.

Once a complete set of linear relations between the crossed derivatives dJ has been

found, one can use this information alone to solve the integrability conditions. This is best

done recursively from lower to higher weights. As already stated, we understand that other

conditions may still restrict the ansatz at any weight and therefore the list of integrable

symbols.

At weight n = 1, every letter trivially defines an integrable symbol. At higher weights,

it is customary to exploit the lower weight information in order to build a smaller ansatz

than the one in eq. (9.2). If {S(n−1)
j }j is a complete set of integrable symbols at weight

n− 1, we find the integrable symbols S
(n)
j at weight n as follows. We write our ansatz as

S =
∑
jk

cjk S
(n−1)
j ⊗ wk. (9.7)

Because the symbols S
(n−1)
j are already integrable, we only need to impose the integrability

condition on the last two entries. Hence, for all possible pairs of variables (zl, zm) we make

the substitution

wj1 ⊗ · · · ⊗ wjn → (wj1 ⊗ · · · ⊗ wjn−2) d
(lm)
jn−1jn

(9.8)

into eq. (9.7), while d
(lm)
jn−1jn

are left as arbitrary variables (i.e. without explicitly substituting

their expressions, which are no longer relevant at this stage). Then we substitute the

linear relations satisfied by the d
(lm)
jn−1jn

such that our ansatz is written in terms of linearly

independent functions (still represented by independent variables in the formulas), and

we impose that the coefficient of each independent structure with the form of the r.h.s.

of (9.8) vanishes. This strategy builds a numeric sparse linear system of equations for the

coefficients cjk in eq. (9.7), which can be solved with the algorithm already discussed in

this paper. Linear relations between the coefficients cjk are then easily translated into a

set of linearly independent symbols at weight n satisfying the integrability conditions.

10 Proof-of-concept implementation

With this paper, we also publicly release a proof-of-concept implementation of the Finite-

Flow framework. The code is available here

https://github.com/peraro/finiteflow

6For instance, one can use the built-in Mathematica procedure PolynomialRemainder, which applies

to rational functions as well.

– 43 –

https://github.com/peraro/finiteflow

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

and can be installed and used following the instructions given at that URL. This code is the

result of experimentation and trial and error, and should not be regarded as an example of

high coding standards or as a final implementation of this framework. Despite this, it has

already been used for obtaining several cutting-edge research results in high energy physics,

and we believe its public release can be highly beneficial to the community. It also includes

the FiniteFlow package for Mathematica, which provides a high-level interface to the

routines of the library.

We also release a collection of packages and examples using the Mathematica inter-

face to this code, at the URL

https://github.com/peraro/finiteflow-mathtools

which includes several applications described in this paper. In particular, it contains the

following packages:

FFUtils. Utilities implementing simple general purpose algorithms, such as algorithms

for finding linear relations between functions.

LiteMomentum. Utilities for momenta in Quantum Field Theory. It does not use

FiniteFlow, but it is used by other packages and examples in the same reposi-

tory.

LiteIBP. Utilities and tools for generating IBP systems of equations and differential equa-

tions for Feynman integrals, to be used together with the LiteRed [31] package.

Symbols. Scripts for building integrable symbols from known alphabets.

We note that these packages should be regarded as a set of utilities rather the implementa-

tion of fully automated solutions for specific tasks. They are also meant as examples of how

to build packages on top of the Mathematica interface to the code. The same repository

also contains several examples of usage of the FiniteFlow package. While these examples

have been chosen to be simple enough to run in a few minutes on a modern laptop, they can

be used as templates to be adapted to significantly more complex problems. We therefore

recommend reading the documentation which comes with them and the comments inside

their source as an introduction to the usage of this code for the applications described in

this paper.

In this section, we give some details on some aspects and features of our implementation

of the FiniteFlow framework and provide some observations about possible improvements

for the future.

The code is implemented in C++ and we provide a high-level Mathematica interface.

At the time of writing, the Mathematica interface is the easiest and more flexible way

of using FiniteFlow, since it allows to combine the features of our framework with the

ones of a full computer algebra system. Interfaces to other high-level languages, such as

Python, and computer algebra systems are likely to be added in the future.

This implementation uses finite fields Zp where p are 63-bit integers. We have explic-

itly hard-coded a list of primes satisfying 263 > p > 262 — namely the 201 largest primes

– 44 –

https://github.com/peraro/finiteflow-mathtools

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

with this property — which define all the finite fields we use. In particular, by making

the assumption that all the primes we use belong to that range, we are able to perform

a few optimizations in basic arithmetic operations. We use a few routines and macros of

the Flint library for basic operations of modular arithmetic (we also optionally provide a

heavily stripped down version of Flint with only the parts which are needed for Finite-

Flow, with fewer dependencies, as well as an easier and faster installation), such as the

calculation of multiplicative inverses and modular multiplication using extended precision

and precomputed reciprocals [55].

We use several representations of polynomials and rational functions, depending on

the task. As already explained in section 4.1, if we need to repeatedly evaluate polyno-

mials and rational functions, we store the data representing them as a contiguous array

of integers and evaluate them by means of the Horner scheme. For polynomials in New-

ton’s representation, we store an array with the sequence {yj} and another one with the

coefficients aj . The latter is an array of integers in the univariate case (see eq. (2.5)) and

an array of Newton polynomials in fewer variables in the multivariate case (see eq. (2.9)).

Univariate rational functions in Thiele’s representation (given in eq. (2.8)) are stored sim-

ilarly to univariate Newton polynomials. For every other task, we use a sparse polynomial

representation which consists of a list of non-vanishing monomials. Each monomial is,

in turn, a numerical coefficient (in Zp or Q) and an associated list of exponents for the

variables. This representation is used for most algebraic operations on polynomials, e.g.

when converting Newton’s polynomials in a canonical form, or when shifting variables (we

recall that a shift of variables is typically required by the functional reconstruction algo-

rithm we use). It is also the most convenient representation for communicating polynomial

expressions between FiniteFlow and other programs such as computer algebra systems.

Our system for dataflow graphs distinguishes several types of objects, namely sessions,

graphs, nodes and algorithms.

Sessions are objects which contain a list of graphs and are responsible for doing most

operations using them, such as evaluating them while handling parallelization, and running

functional reconstruction algorithms. Since a session can contain any number of dataflow

graphs, for most applications there is no reason for using more than one session in the

same program, although it is obviously possible. The concept of a session is not (explicitly)

present in the Mathematica interface since the latter only uses one global session. Graphs

in the same session, as well as nodes in a graph, are associated with a non-negative integer

ID. In the Mathematica interface, these IDs can instead be any expression, which is

seamlessly mapped to the correct integer ID when communicating with the C++ code.

Graphs, as already explained, are collections of nodes. Nodes are implemented as wrappers

around algorithms and contain a list of IDs corresponding to their inputs. When building

a new node for a graph, the program checks that the expected lengths of its input lists

are consistent with the ones of the output lists of its input nodes. Algorithms are the

lowest-level objects responsible for the numerical evaluations, and they have associated

procedures for it. Algorithms might also have a procedure for their learning phase and, in

that case, they also specify how many times this should be called (with different inputs).

– 45 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

Because an algorithm might have to run in parallel for different input values, it is made

of two types of data. The first type is read-only data, i.e. data which is not specific to

an evaluation point and can be shared across several threads during parallelization. This

might also include data which is mutable only during the learning phase. The second

type of data can instead be modified during any numerical evaluation. In multi-threaded

applications, mutable data needs to be cloned across all the threads in order to avoid data

races. Algorithm objects thus have associated routines for cloning mutable data.

In the future, we might further split mutable data into two types. The first is mutable

data which only depends on the finite field Zp. This data only needs to be copied a number

of times equal to the maximum number of fields used at the same time in a parallel

evaluation, which is typically no larger than two. The second is data which can depend on

both the prime p and the variables z which are the input of a given graph. Only for the

latter one needs to make a copy for each thread. Therefore, even though it is not currently

implemented, this further split can improve memory usage by significantly reducing the

amount of cloned data. As an example, consider a linear system with parametric entries

depending on variables z. The rational functions defining the entries of the system as

rational functions over Q, as well as the list of independent unknowns and equations, are

immutable data. The same functions mapped with over Zp depend on the prime p but

not on the points z. Finally, the numerical system, obtained by evaluating such functions

numerically for specific inputs z, depends on both the prime field and the evaluation point.

We point out that the usage of dataflow graphs also greatly simplifies multi-threading.

It is indeed sufficient that each type of basic algorithm has an associated procedure for

cloning its non-mutable data. From these, the framework is able to automatically clone the

mutable data of any complex graph, and correctly use it for the purpose of performing multi-

threaded evaluations. A similar potential advantage regards serialization of algorithms,

although this feature is not implemented at the time of writing. In principle, each basic

algorithm may have an associated procedure for serializing and deserializing its data. From

these, one would be able to serialize complete graphs representing arbitrarily complex calcu-

lations. This could be useful for both sharing graphs and loading them up more quickly, to-

gether with the information about the learning phases which have already been completed.

We now turn to the caching system used to store the evaluations of a graph. We

recall that, in the multivariate case, we start by performing some preliminary univariate

reconstructions, which determine (among other things) a list of evaluation points needed to

reconstruct the output of a graph. In principle, for each evaluation point, we may need to

store the input variables, the whole output list of the graph, and the prime p which defines

the finite field. Unfortunately, when the output of a graph is a long list and a large num-

ber of evaluation points is needed, this straightforward strategy can yield issues related to

memory usage. This can be true even when a Non-Zeros node is appended to a graph (see

section 4.4), as we have already recommended. Hence, we adopt a slightly more refined

strategy which works well in realistic scenarios. Heuristically, we observe that, when the

output of a graph is a long list, the complexity of the elements of the list can vary sig-

nificantly. In particular, many elements correspond to relatively simple rational functions

while, usually, only a few of them have high complexity. Simpler rational functions obvi-

– 46 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

ously need fewer evaluation points in order to be reconstructed. Hence, one could improve

this strategy by storing a shorter output list containing, for each evaluation point, only

the elements of the output which need that point for their reconstruction. In practice, we

proceed as follows. Once a complete list of evaluation points has been determined, for each

element of the output we tag all the points needed for its reconstruction. In our implemen-

tation, this tagging requires one bit of memory for each output element. If an evaluation

point is never tagged, it is removed from the list. Then, after a graph is evaluated on a

given point, we only store the entries of the output for which that point is needed. This

typically allows to store a much shorter output list on most evaluation points, therefore

yielding a major improvement in memory usage. When combined with Non-Zeros nodes,

we find that with this strategy the caching of the evaluations is hardly ever a bottleneck in

terms of memory usage, especially when the code is run on high-memory machines available

in clusters and other computing facilities often used for intensive scientific computations.

We also point out that, as explained more in detail in section 10.1, one can generate

lists of needed evaluation points and separately evaluate subsets of them, either sequentially

or in parallel. On top of being a powerful option for parallelization, this feature also allows

to split long calculations into smaller batches and save intermediate results to disk, such

that they are not lost in case of system crashes or other errors which may prevent the

evaluations to successfully complete.

The FiniteFlow library implements the basic numerical algorithms described in this

paper, the functional reconstruction methods we discussed, as well as the framework based

on dataflow graphs. When the latter is used, one can easily define complex numerical

algorithms without any low-level coding. This can be done even more easily from the

Mathematica interface. The latter also offers some convenient wrappers for common

tasks, such as solving analytic or numeric linear systems or linear fits. These wrappers

hide the dataflow-based implementation. However, as discussed in this paper, the approach

based on dataflow graphs offers a flexibility which greatly enhances the scope of possible

applications of this framework.

The approach based on dataflow graphs is the preferred way of defining algorithms

with the library, especially when using the Mathematica interface. However, the library

can also be enhanced by custom numerical algorithms written in C++. For instance, the

results presented in [14, 42] used a custom C++ extension of the linear fit algorithm which

computes generalized unitarity cuts via Berends-Giele currents, as explained in ref. [2] (this

extension is not included in the public code).

It should also be clear that the FiniteFlow framework is not designed to solve one

specific problem, but as a method to implement solutions for a large variety of algebraic

problems. By building on top of this public code, one can, of course, implement higher-level

and easier-to-use solutions for more specific tasks.

10.1 Parallel execution

As discussed in section 2.3, one of the main advantages of functional reconstruction algo-

rithms is that they can be massively parallelized. In our current implementation, we offer

two strategies for parallelization, which can also be used together.

– 47 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

The first and easier-to-use strategy is multi-threading. This is handled completely

automatically by the code when the dataflow-based approach is used. Data which cannot

be shared among threads is cloned as needed and parallelization is achieved by splitting

the calculation over an appropriate number of threads, as explained in section 2.3. The

number of threads which is used can either be specified manually or chosen automatically

based on the hardware configuration. We recommend specifying it manually when using

the code on clusters or machines shared among several users, since the automatic choice

might not be the most appropriate one in such cases.

The second method allows to further enhance parallelization possibilities by using

several nodes of a cluster, or even several (possibly unrelated) machines, for the evaluations

of the function to be reconstructed. In order to use this method, after defining a numerical

algorithm, we compute and store the total and partial degrees of its output. As explained,

this is done via univariate reconstructions which are much quicker than a full multivariate

one. From this information, we also build and store a list of inputs for the evaluations.

For this, we need to make a guess of how many prime fields will be needed. One can,

however, start by assuming only one prime field is needed, and add more points at a later

time if this is not the case. The stored list of needed evaluation points can be shared

across several nodes or several machines, where any subset of them can be computed

and saved independently. Of course, these evaluations can (and will, by default) be further

parallelized using multi-threading, as discussed above. Finally, the evaluations are collected

on one machine where the reconstruction is performed. Should the reconstruction fail due

to the need of more prime fields, we increase our guess on the number of primes needed and

create a complementary list of evaluation points. We then proceed with the evaluation of

these additional points, across several nodes or machines as for the previous one, and collect

them for the reconstruction. We proceed this way until the reconstruction is successful.

This method greatly increases the potential parallelization options, at the price of being

less automated, since the lists of evaluations need to be generated and copied around by

hand.7 This option can be very beneficial for reconstructing particularly complex functions,

or functions whose numerical evaluation is very time-consuming. As already mentioned,

it also provides a method splitting up long calculations in smaller batches and saving

intermediate results on disk.

11 Conclusions

We presented the FiniteFlow framework, which establishes a novel and effective way

of defining and implementing complex algebraic calculations. The framework comprises

an efficient low-level implementation of basic numerical algorithms over finite fields, a

system for easily combining these basic algorithms into computational graphs — known as

7In the future, we might consider implementing other approaches, such as the use of the standard

Message Passing Interface (MPI) to offer a more automated way of parallelizing the evaluations across

several nodes of the same cluster. However, the latter approach would end up being more limiting than the

one we already implemented, since MPI does not support parallelization over several unrelated machines.

– 48 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

dataflow graphs — representing arbitrarily complex algorithms, and multivariate functional

reconstruction techniques for obtaining analytic results of out these numerical evaluations.

Within this framework, complex calculations can be easily implemented using high-

level languages and computer algebra systems, without being concerned with the low-level

details of the implementation. It also offers a highly automated way of parallelizing the

calculation, thus fully exploiting available computing resources.

The framework is easy to use, efficient, and extremely flexible. It can be employed

for the solution of a huge variety of algebraic problems, in several fields. It allows to

directly reconstruct analytic expressions for the final results of algebraic calculations, thus

sidestepping the appearance of large intermediate expressions, which are typically a major

bottleneck.

In this paper, we have shown several applications of this framework to highly relevant

problems in high-energy physics, in particular concerning the calculation of multi-loop

scattering amplitude.

We also release a proof-of-concept implementation of this framework. This implemen-

tation has already been successfully applied to several state-of-the-art problems, some of

which proved to be beyond the reach of traditional computer algebra, using reasonable

computing resources. Notable examples are recent results for two-loop five-gluon helicity

amplitudes in Yang-Mills theory [14, 21] and the reduction of four-loop form factors to

master integrals [17]. We point out that these two types of examples are complex for very

different reasons. In the former, a large part of the complexity is due to the high number

of scales, while in the latter, which only has one scale, it is due to the huge size of the IBP

systems one needs to solve. Quite remarkably, the techniques described in this paper have

been able to tackle both these cases, showing that they are capable of dealing with a wide

spectrum of complex problems.

We believe the algorithms presented in this paper, and their publicly released proof-of-

concept implementation, will contribute to pushing the limits of what is possible in terms

of algebraic calculations. Due to their efficiency and flexibility, they will be useful in the

future for obtaining more scientific results concerning a wide range of problems.

Acknowledgments

I thank Simon Badger, Johannes Henn, Pierpaolo Mastrolia, and Lorenzo Tancredi for

many discussions, comments, and for their collaboration on topics which motivated the

development of the methods presented in this paper. I am also grateful to Simon Badger,

Christian Brønnum-Hansen, Heribertus Bayu Hartanto, and William Torres Bobadilla for

testing various features of the proof-of-concept implementation of these methods and pro-

viding valuable feedback. This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant

agreement 746223.

– 49 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

A Mutability of graphs and nodes

In this appendix we discuss a technical aspect of our implementation of dataflow graphs,

namely the mutability of graphs and nodes. In general, mutating nodes or graphs which

have already been defined can lead to inconsistencies between the implemented algorithms

and their expected inputs. However, depending on the use case, it may be convenient to

have the ability of performing such mutations, to the extent that the defined graphs are

always consistent.

Let us first discuss the mutability of nodes. Mutating a node can mean either deleting

it, replacing it, or modifying its metadata in a way that changes its output (e.g. changing

the list of needed unknowns in a linear system). We find it is convenient to allow such

mutations, as long as a node is not used as input in any other node of a graph. Once a

node N1 is specified as input of another node N2, the input node N1 becomes immutable,

i.e. the mutations described above are no longer allowed. This is done in order to prevent

changes of the length of the output of node N1 which can make the evaluation of node

N2 impossible (note that in principle we may allow swapping two nodes which have the

same lengths for the input and output lists, but this is currently not implemented). As a

conveniency, we allow to make node N1 mutable again, after node N2 and all other nodes

using N1 as input have been deleted.

We now turn to the mutability of graphs. In particular, this is relevant when using

subgraph nodes. Mutating a graph may involve adding, deleting, or mutating its nodes, and

changing its output node. Once a graph G1 is specified as subgraph of a node N in another

graph G2, then the graph G1 becomes immutable. If this was not the case, mutations to the

graph G1 may modify its output and make node N , and therefore graph G2, impossible to

evaluate. For the same reason, the output node of G1 is also made immutable in such cases.

Once all the nodes using G1 as subgraph are deleted, graph G1 becomes mutable again.

B Further observations on IBP identities

In this appendix we collect some observations about IBP identities which complement the

discussion in section 5.1.

We already observed that, in order to solve any linear system, we must sort the un-

knowns by weight. Whenever we solve an equation, higher weight unknowns are expressed

in terms of lower weight unknowns. The complexity of the Gauss elimination algorithm for

a sparse system can strongly depend on this choice of weight. Therefore, even if any choice

of weight can be specified when defining a system, it is worth giving an example which we

found works well for IBP systems.

In the case of an IBP system, the unknowns are Feynman integrals. For the purpose

of assigning a weight to them, it is customary to associate to each integral in eq. (5.1) the

following numbers:

• t is the number of exponents αj such that αj > 0

– 50 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

• r is the sum of the positive exponents

r =
∑
j|αj>0

αj (B.1)

• s is minus the sum of the negative exponents

s = −
∑
j|αj<0

αj ≥ 0. (B.2)

It is generally understood that the higher these numbers are, the more complex an integral

should be considered [30]. It is also customary to use the notion of sector of an integral,

which is identified by the list of indexes j such that the exponents αj are positive, i.e.

{j|αj > 0}. In other words, two integrals belonging to the same sector depend on the

same list of denominators, possibly raised to different powers, and possibly with a different

numerator. As an example, a definition of weight for Feynman integral can be determined,

by the following criteria, in order of importance:

• the positive integer r − t, where a higher number means higher weight

• the positive integer t, where a higher number means higher weight

• the positive integer r, where a higher number means higher weight

• the positive integer s, where a higher number means higher weight

• integrals in a topology T1 are considered to be of higher weight if they belong to a

sector mapped to a different topology T2

• integrals in a sector of a topology T are considered to be of higher weight if they

belong to a sector mapped to another sector of the same topology

• the positive integer max({−αj}j|αj<0), where a higher integer means higher weight.

If the criteria above are not sufficient to uniquely sort two different integrals, we fall back

to any other criterion which defines a total ordering, such as the intrinsic ordering built in a

computer algebra system to sort expressions. The choice above prefers integrals with powers

of denominators no higher than one — indeed, this is used as the very first criterion for

determining the weight of a Feynman integrals. We found that this choice is particularly

effective when combined with the mark-and-sweep algorithm for filtering out unneeded

equations, since it often yields a smaller set of needed equations than other choices. We

however stress again that, of course, many other definitions of weight are possible and can

be specified instead of the one suggested here.

We make a few more observations about the generation of IBP systems. These equa-

tions — which include IBPs, Lorentz invariance identities, symmetries among integrals of

the same sectors, and mappings between integrals of different sectors — are typically first

generated for generic Feynman integrals of the form of eq. (5.1) with arbitrary symbolic

– 51 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

exponents. These are sometimes called template equations. The IBP system is thus gen-

erated by writing down these template equations for specific Feynman integrals (i.e. for

specific values of the exponents), which in this context are known as seed integrals. It is

interesting to understand how many and which seed integrals must be chosen in order to

successfully reduce a given set of needed integrals to master integrals. To the best of our

knowledge, there is no way of determining a priori a minimal choice which works, but com-

mon choices which are expected to work in most cases (despite not being minimal) exist.

A popular choice which usually works is selecting a range for the integers s and r of the

seed integrals, based on the choice one must make for the top-level sectors. However, we

find that it is often more convenient to specify a range in s and r− t instead. In particular,

for most topologies one only needs to select seed integrals for which the value of r − t

is either the same or one unity higher that the maximal one between the integrals which

need to be reduced. We however also point out that, while an over-conservative choice

of seed integrals will result in a slowdown of the learning phase, the equations generated

from unneeded seed integrals may be all successfully filtered out by the mark-and-sweep

algorithm, hence reducing the system to the same one would have obtained with a more

optimal choice. However, we also point out that this may or may not happen depending on

the chosen ordering for the Feynman integrals. We have empirically observed that it does

happen for the choice of ordering based on the definition of weight we suggested above.

We conclude this appendix with an observation about sector mappings which we

haven’t found elsewhere in the literature. This concerns kinematic configurations which

have symmetries with respect to permutations of external legs, i.e. permutations of external

momenta which preserve all the kinematic invariants. Notable examples are three-point

kinematics with two massless legs, and four-point fully massless kinematics. For these kine-

matic configurations we can distinguish two types of sector mappings. The first one, which

we call here normal mappings, simply consists of shifts of the loop momenta which map a

sector into a different one. The second one, which we call generalized mappings, consists of

a permutation of external legs which preserves the kinematic invariants, optionally followed

by a shift of the loop momenta. The most typical approach to deal with these mappings

does not distinguish between the two types. In particular, for all mapped sectors, only

sector mappings are generated in the system of equations, and no IBP identity, Lorentz

identity or sector symmetry. The rationale is that one would expect the other identities

to be automatically covered by combining sector mappings with identities generated for

the unique (unmapped) sectors. However, we explicitly verified that this is not always the

case for generalized mappings. In other words, given a set of seed integrals for a general-

ized mapped sector, there are some identities which are independent of the ones generated

by combining sector mappings for the same set of seed integrals, and identities for the

unique sectors. The missing identities can be recovered by adding more seed integrals to

the mapped sectors and to the unique sectors, at the price of obtaining a more complex

system of equations. Notice that this is similar to what happens for Lorentz invariance

identities, which in principle can be replaced by IBP identities only, at the price of using

more seed integrals and making the system more complex. A simple example of this is

the two-loop massless double box. We indeed found that this topology can be reduced

– 52 –

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

to master integrals, for any range in s, by considering only seed integrals with r − t = 0,

as long as IBPs and Lorentz invariance identities are generated also for sectors satisfying

generalized mappings. When these additional identities are not included, we need to add

seed integrals with r − t = 1 in order to successfully perform the reduction. We therefore

recommend to generate, alongside generalized mappings, also IBPs, Lorentz identities and

symmetries for sectors which satisfy them. This is even more convenient when using the

mark-and-sweep algorithm for simplifying the system, since the simpler equations with

lower r − t are automatically selected if available. This can eventually yield a smaller

system with easier equations to solve. For similar reasons, we recommend to always add

Lorentz invariance identities, regardless of the topology.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction,

Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

[2] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction,

JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

[3] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar

integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

[4] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes,

JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].

[5] P. Mastrolia and G. Ossola, On the integrand-reduction method for two-loop scattering

amplitudes, JHEP 11 (2011) 014 [arXiv:1107.6041] [INSPIRE].

[6] S. Badger, H. Frellesvig and Y. Zhang, Hepta-cuts of two-loop scattering amplitudes, JHEP

04 (2012) 055 [arXiv:1202.2019] [INSPIRE].

[7] Y. Zhang, Integrand-level reduction of loop amplitudes by computational algebraic geometry

methods, JHEP 09 (2012) 042 [arXiv:1205.5707] [INSPIRE].

[8] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate

polynomial division, Phys. Lett. B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].

[9] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory

amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]

[INSPIRE].

[10] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes

into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

[11] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4

super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

[12] R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating

one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].

– 53 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4513
https://doi.org/10.1007/JHEP12(2016)030
https://arxiv.org/abs/1608.01902
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01902
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://arxiv.org/abs/hep-ph/0609007
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0609007
https://doi.org/10.1088/1126-6708/2008/04/049
https://arxiv.org/abs/0801.2237
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2237
https://doi.org/10.1007/JHEP11(2011)014
https://arxiv.org/abs/1107.6041
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.6041
https://doi.org/10.1007/JHEP04(2012)055
https://doi.org/10.1007/JHEP04(2012)055
https://arxiv.org/abs/1202.2019
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2019
https://doi.org/10.1007/JHEP09(2012)042
https://arxiv.org/abs/1205.5707
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5707
https://doi.org/10.1016/j.physletb.2012.09.053
https://arxiv.org/abs/1205.7087
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.7087
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9403226
https://doi.org/10.1016/0550-3213(94)00488-Z
https://arxiv.org/abs/hep-ph/9409265
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9409265
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://arxiv.org/abs/hep-th/0412103
https://inspirehep.net/search?p=find+EPRINT+hep-th/0412103
https://doi.org/10.1088/1126-6708/2008/03/003
https://arxiv.org/abs/0708.2398
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.2398

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

[13] A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors to four-loop order in

QCD: the N3
f contributions, Phys. Rev. D 95 (2017) 034030 [arXiv:1611.00795] [INSPIRE].

[14] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes

for two-loop five-gluon scattering: the single-minus case, JHEP 01 (2019) 186

[arXiv:1811.11699] [INSPIRE].

[15] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic form of planar

two-loop five-gluon scattering amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002

[arXiv:1812.04586] [INSPIRE].

[16] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark form factor with

quartic fundamental colour factor, JHEP 02 (2019) 172 [arXiv:1901.02898] [INSPIRE].

[17] J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp

anomalous dimension, Phys. Rev. Lett. 122 (2019) 201602 [arXiv:1901.03693] [INSPIRE].

[18] A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors in four loop QCD:

the N2
f and NqγNf contributions, Phys. Rev. D 99 (2019) 094014 [arXiv:1902.08208]

[INSPIRE].

[19] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic form of

the planar two-loop five-parton scattering amplitudes in QCD, JHEP 05 (2019) 084

[arXiv:1904.00945] [INSPIRE].

[20] A. von Manteuffel and R.M. Schabinger, Planar master integrals for four-loop form factors,

JHEP 05 (2019) 073 [arXiv:1903.06171] [INSPIRE].

[21] S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude,

arXiv:1905.03733 [INSPIRE].

[22] J. Klappert and F. Lange, Reconstructing rational functions with FireFly,

arXiv:1904.00009 [INSPIRE].

[23] M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous systems

software, https://www.tensorflow.org/, (2015).

[24] P.S. Wang, A p-adic algorithm for univariate partial fractions, in Proceedings of the fourth

ACM symposium on Symbolic and algebraic computation — SYMSAC ′81, ACM Press,

U.S.A. (1981).

[25] P.S. Wang, M.J.T. Guy and J.H. Davenport, P -adic reconstruction of rational numbers,

ACM SIGSAM Bull. 16 (1982) 2.

[26] M. Abramowitz and I. Stegun, Handbook of mathematical functions: with formulas, graphs

and mathematical tables, Dover Publications, U.S.A. (1964).

[27] A. Cuyt and W. Shin Lee, Sparse interpolation of multivariate rational functions, Theor.

Comput. Sci. 412 (2011) 1445.

[28] P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — a Feynman integral reduction program,

Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

[29] P. Mastrolia, T. Peraro and A. Primo, Adaptive integrand decomposition in parallel and

orthogonal space, JHEP 08 (2016) 164 [arXiv:1605.03157] [INSPIRE].

[30] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations,

Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

– 54 –

https://doi.org/10.1103/PhysRevD.95.034030
https://arxiv.org/abs/1611.00795
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.00795
https://doi.org/10.1007/JHEP01(2019)186
https://arxiv.org/abs/1811.11699
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.11699
https://doi.org/10.1103/PhysRevLett.122.082002
https://arxiv.org/abs/1812.04586
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.04586
https://doi.org/10.1007/JHEP02(2019)172
https://arxiv.org/abs/1901.02898
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.02898
https://doi.org/10.1103/PhysRevLett.122.201602
https://arxiv.org/abs/1901.03693
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.03693
https://doi.org/10.1103/PhysRevD.99.094014
https://arxiv.org/abs/1902.08208
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.08208
https://doi.org/10.1007/JHEP05(2019)084
https://arxiv.org/abs/1904.00945
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.00945
https://doi.org/10.1007/JHEP05(2019)073
https://arxiv.org/abs/1903.06171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.06171
https://arxiv.org/abs/1905.03733
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.03733
https://arxiv.org/abs/1904.00009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.00009
https://www.tensorflow.org/
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/1089292.1089293
https://doi.org/10.1016/j.tcs.2010.11.050
https://doi.org/10.1016/j.tcs.2010.11.050
https://doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1705.05610
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05610
https://doi.org/10.1007/JHEP08(2016)164
https://arxiv.org/abs/1605.03157
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.03157
https://doi.org/10.1016/S0217-751X(00)00215-7
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0102033

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

[31] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685

[INSPIRE].

[32] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.

110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[33] A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams

calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[34] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl.

Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[35] P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, M.Sc. thesis,

Johannes Gutenberg-Universität Mainz, Mainz, Germany (2016).

[36] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All master

integrals for three-jet production at NNLO, arXiv:1812.11160 [INSPIRE].

[37] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for

amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703]

[INSPIRE].

[38] S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar

hexa-box integrals, JHEP 01 (2019) 006 [arXiv:1807.11522] [INSPIRE].

[39] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl.

Phys. B 44 (1972) 189 [INSPIRE].

[40] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop

QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271]

[INSPIRE].

[41] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier and B. Page, Subleading poles in the

numerical unitarity method at two loops, Phys. Rev. D 95 (2017) 096011

[arXiv:1703.05255] [INSPIRE].

[42] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop

five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229]

[INSPIRE].

[43] F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys.

B 306 (1988) 759 [INSPIRE].

[44] J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys.

Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].

[45] H. Ita, Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev.

D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].

[46] K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic

geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

[47] S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar two-loop five-gluon

amplitudes from numerical unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946]

[INSPIRE].

[48] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013)

135 [arXiv:0905.1473] [INSPIRE].

– 55 –

https://arxiv.org/abs/1212.2685
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2685
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1806
https://doi.org/10.1016/0370-2693(91)90413-K
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B254,158%22
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9912329
https://publications.ub.uni-mainz.de/theses/frontdoor.php?sourceopus=100001967
https://arxiv.org/abs/1812.11160
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.11160
https://doi.org/10.1103/PhysRevLett.105.151605
https://arxiv.org/abs/1006.5703
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5703
https://doi.org/10.1007/JHEP01(2019)006
https://arxiv.org/abs/1807.11522
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.11522
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B44,189%22
https://doi.org/10.1103/PhysRevD.66.085002
https://arxiv.org/abs/hep-ph/0202271
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0202271
https://doi.org/10.1103/PhysRevD.95.096011
https://arxiv.org/abs/1703.05255
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05255
https://doi.org/10.1103/PhysRevLett.120.092001
https://arxiv.org/abs/1712.02229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.02229
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/0550-3213(88)90442-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B306,759%22
https://doi.org/10.1103/PhysRevD.83.045012
https://doi.org/10.1103/PhysRevD.83.045012
https://arxiv.org/abs/1009.0472
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.0472
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevD.94.116015
https://arxiv.org/abs/1510.05626
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.05626
https://doi.org/10.1103/PhysRevD.93.041701
https://arxiv.org/abs/1511.01071
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01071
https://doi.org/10.1103/PhysRevD.97.116014
https://arxiv.org/abs/1712.03946
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.03946
https://doi.org/10.1007/JHEP05(2013)135
https://doi.org/10.1007/JHEP05(2013)135
https://arxiv.org/abs/0905.1473
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1473

J
H
E
P
0
7
(
2
0
1
9
)
0
3
1

[49] S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD,

JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

[50] S. Badger, Automating QCD amplitudes with on-shell methods, J. Phys. Conf. Ser. 762

(2016) 012057 [arXiv:1605.02172] [INSPIRE].

[51] C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic

functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

[52] F.C.S. Brown, Multiple zeta values and periods of moduli spaces M0,n(R), Annales Sci. École

Norm. Sup. 42 (2009) 371 [math.AG/0606419] [INSPIRE].

[53] In collaboration, Conformal symmetry and Feynman integrals, PoS(LL2018)037 (2018)

[arXiv:1807.06020] [INSPIRE].

[54] V. Mitev and Y. Zhang, SymBuild: a package for the computation of integrable symbols in

scattering amplitudes, arXiv:1809.05101 [INSPIRE].

[55] N. Möller and T. Granlund, Improved division by invariant integers, IEEE Trans. Comput.

60 (2011) 165.

– 56 –

https://doi.org/10.1007/JHEP12(2013)045
https://arxiv.org/abs/1310.1051
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1051
https://doi.org/10.1088/1742-6596/762/1/012057
https://doi.org/10.1088/1742-6596/762/1/012057
https://arxiv.org/abs/1605.02172
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.02172
https://doi.org/10.1007/JHEP10(2012)075
https://arxiv.org/abs/1110.0458
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0458
https://arxiv.org/abs/math.AG/0606419
https://inspirehep.net/search?p=find+J+%22Annales Sci.Ecole Norm.Sup.,42,371%22
https://doi.org/10.22323/1.303.0037
https://arxiv.org/abs/1807.06020
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.06020
https://arxiv.org/abs/1809.05101
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.05101
https://doi.org/10.1109/tc.2010.143
https://doi.org/10.1109/tc.2010.143

	Introduction
	Finite fields and functional reconstruction
	Finite fields and rational functions
	Multivariate functional reconstruction
	Parallelization

	Dataflow graphs
	Graphs as numerical procedures
	Learning nodes
	Subgraphs

	Numerical algorithms over finite fields
	Evaluation of rational functions
	Dense and sparse linear solvers
	Linear fit
	Basic operations on lists and matrices
	Laurent expansion
	Algorithms with no input

	Reduction of scattering amplitudes
	Integration-by-parts reduction to master integrals
	Reduction to special functions and Laurent expansion in epsilon

	Differential equations for master integrals
	Reconstructing differential equations
	Differential equations in epsilon-form
	Differential equations with square roots

	Integrand reduction
	Integrand reduction via linear fits
	Choice of an integrand basis
	Writing the integrand

	Decomposition of amplitudes into form factors
	Finding integrable symbols from a known alphabet
	Proof-of-concept implementation
	Parallel execution

	Conclusions
	Mutability of graphs and nodes
	Further observations on IBP identities

