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1 Introduction

Electroweak baryon number violation in association with a strongly first-order phase tran-

sition provides a compelling scenario for explaining the observed baryon asymmetry of the

Universe [1] (see, for example, ref. [2] for a comprehensive review). However, the robust

bound on the Higgs mass needed to ensure a first-order finite-temperature electroweak
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phase transition [3] is incompatible with the experimental value of mH ' 125 GeV.1 In ad-

dition, despite initial optimism [4–6], it is now generally believed that the Standard Model

does not provide enough CP violation to obtain the observed baryon number [7–10].

Nevertheless, the idea of electroweak baryogenesis is natural and attractive, and it is

known that new physics which couples to the Higgs sector can easily induce a first-order

transition [11–20]. Specific models for this new physics have been proposed, but there is

a very large model space and individual models are constrained by Large Hadron Collider

(LHC) data and other observables (see for instance [18, 19, 21–25]).

It would clearly be advantageous if one could go one level of abstraction higher, and

view all possible extensions of the Standard Model capable of producing the required

first-order phase transition in a unified way. Effective Field Theory (EFT) is a univer-

sal language which holds the promise of deriving just such a model-independent bound

on electroweak baryogenesis. In this approach, physics beyond the Standard Model is

parametrized through a systematic expansion in higher dimension operators that are sup-

pressed by the new energy scale. Indeed, baryogenesis in the context of effective theory

has already been explored [26–31].

Effective field theories expand low energy physics, characterized by an energy scale

E, in powers of the ratio E/Λ where Λ is the cutoff of the effective theory. Therefore,

the conclusions of any EFT analysis can only be expected to be valid when E/Λ � 1

and when the relevant physical processes are consistent with this perturbative expansion.

In the context of an EFT approach to baryogenesis, we must therefore first investigate

whether these conditions hold, taking into account that thermal effects and a change of

vacuum structure are phenomena that we must expect to play important roles.

In this paper, we investigate the validity of an effective approach to electroweak baryo-

genesis in the Standard Model augmented by dimension-six operators with cutoffs of order

a few TeV. We compare the phase transition structure in the effective model with a specific

model of new physics, namely a singlet scalar field that couples only to the Higgs field of the

Standard Model. We observe that the separation of scales is not necessarily large enough

to prevent phase transitions from occurring in which the new physics scalar makes a transi-

tion. Moreover, the domain of validity of the effective theory covers a comparatively small

fraction of the parameter space of the full singlet model (see also a recent analysis by [32]).

Consequently, the predictions of an EFT analysis of baryogenesis need to be treated with

some caution.

We have organized our paper as follows. We open in section 2 by discussing our

candidate model for physics above a few TeV: the Standard Model coupled to a single

scalar field. We integrate the singlet out and match parameters to our effective theory,

which is simply the Standard Model extended by two dimension-six operators. In section 3

we compute the one-loop finite temperature effective potential of this EFT, and identify

regions in parameter space corresponding to first and second order phase transition. In

section 4 we perform the same finite temperature analysis in the singlet-extended Standard

Model. Finally, in section 5 we compare the predictions of the effective theory and the full

1We will take the Higgs mass to be mH = 125.7 GeV below for concreteness.
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singlet model in the region of parameter space where we expect the EFT to be reliable.

We conclude in section 6. Several technical details of the calculations are relegated to the

appendices.

2 The singlet extension of the Standard Model: matching to the effective

Standard Model

We begin by discussing the singlet extension of the Standard Model with one additional

real scalar field S. The scalar is a singlet under all gauge symmetries and it couples

to the Standard Model only through the Higgs portal, where for generality all possible

renormalizable couplings are included. The relevant part of the Higgs-singlet Lagrangian

is then

L = (DµH)†DµH +
1

2
(∂µS)2 − V (H,S), (2.1)

where Dµ is the usual covariant derivative and H denotes the Standard Model Higgs

doublet. The zero-temperature potential V (H,S) can be parametrized in terms of 8 real

parameters V0,m
2, λ, δ1, δ2, κ2, κ3 and κ4:

V (H,S) = V0 +
m2

2
(H†H) +

λ

4
(H†H)2 +

δ1

2
(H†H)S +

δ2

2
(H†H)S2

+
δ1m

2

2λ
S +

κ2

2
S2 +

κ3

3
S3 +

κ4

4
S4. (2.2)

The coefficient of the term linear in S has been chosen to ensure that S has zero vacuum

expectation value at tree level. Note that this choice is not a constraint: one may always

redefine S by a finite shift to achieve this. Since we have chosen 〈S〉 = 0 in the vacuum,

the coupling δ2 does not provide any mixing at zero temperature, although it may do so at

finite temperature. Meanwhile, the parameter δ1 does not vanish in general, and the S and

Higgs particles may therefore mix at zero temperature. This phenomenon could provide

an experimental signal of the existence of such a singlet.

The theory has two mass eigenstates, one of which must, of course, correspond to the

observed state at roughly 125.7 GeV, which we denote by ξh. In view of the current success

of the Standard Model description of this state, we assume that the 125.7 GeV state is

mostly Higgs. As in ref. [18], we are mostly interested in the situation where the other

mass eigenstate, denoted by ξS (“mostly S”) is heavier than the observed Higgs particle.

If effective field theory is to be a good description for such a situation, this heavier state

must eventually decouple, leaving as its only trace higher dimensional Higgs operators

suppressed by the large mass scale. To determine how this occurs, it is useful to explicitly

diagonalise the mass matrix. We choose unitary gauge and expand the remaining single

real component of the Higgs doublet about

H(x) =
1√
2

(φ+ h(x)), (2.3)

– 3 –
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where, in the vacuum,

〈φ+ h〉 = v ≡
√
−2m2

λ
. (2.4)

The mass matrix is read off from

Vmass =
1

2

(
µ2
hh

2 + µ2
SS

2 +
µ2
hS + µ2

Sh

2
hS

)
, (2.5)

with coefficients

µ2
h =

m2

2
+

3λv2

4
= −m2 , µ2

S = κ2 +
δ2v

2

2
, µ2

hS = µ2
Sh = δ1v . (2.6)

The two mass eigenstates ξh and ξs therefore have masses given by

m2
h =

µ2
h + µ2

S

2
+
µ2
h − µ2

S

2

√
1 + x2,

m2
S =

µ2
h + µ2

S

2
−
µ2
h − µ2

S

2

√
1 + x2, (2.7)

where x ≡ µ2
hS/(µ

2
h − µ2

S) sets the strength of mixing. Following the notation of ref. [18],

we define the mixing angle θ through

ξs = cos θ s− sin θ h, (2.8)

ξh = sin θ s+ cos θ h, (2.9)

where the mixing angle is determined by

tan θ =
x

1 +
√

1 + x2
. (2.10)

Thus, as µS → ∞, for fixed µhS and µh, the mixing angle goes to zero, and the two

states decouple. As expected, this mixing is therefore not an obstacle towards performing

a large mass expansion (in 1/µS) and deriving the corresponding effective field theory.

Nevertheless, in detail the mixing does introduce a few subtleties that we will describe

below.

For our purposes, it is convenient to go to the large µS region by taking κ2 large.

Provided that κ2 is the only large mass scale, we see that the physical mass (squared) of

the mostly S scalar is m2
S ' κ2 ' µ2

S . To compare with the effective theory, we expand

both the ξh mass and its cos θ mixing factor. The relevant expressions are

m2
h = µ2

h −
µ4
hs

4κ2
+
δ2v

2µ4
hs − 2µ4

hsµ
2
h

8κ2
2

+O

(
1

κ3
2

)
, (2.11)

cos θ = 1−
µ4
hs

8κ2
2

+O

(
1

κ3
2

)
. (2.12)

In the κ2 →∞ limit, the mixing angle goes to zero and m2
h → µ2

h, as expected.
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2.1 Integrating out the singlet at tree level

Let us now integrate out the S field2 and find the effective action for the H field. For

simplicity, we concentrate on the case where κ3 and κ4 vanish. The action is then quadratic

in the S, and we can integrate it out exactly. We write this S part of the Lagrangian as

LS = −1

2
S∂2S − δ1

2

(
H†H − v2

2

)
S − 1

2

(
κ2 + δ2H

†H
)
S2. (2.13)

Working at tree level, integrating out replaces the S Lagrangian with

LS →
δ2

1

8κ2

(
H†H − v2

2

)
1

1 + ∂2

κ2
+ 1

κ2
δ2H†H

(
H†H − v2

2

)
, (2.14)

where we understand the differential operator in the denominator by its perturbative ex-

pansion. Expanding to leading order in 1/κ2, and performing one partial integration, the

Lagrangian becomes

LS →
δ2

1

8κ2
2

∂µ

(
H†H

)
∂µ
(
H†H

)
−
(

δ2
1δ2

16κ2
2v

2
− δ2

1

8κ2

)(
H†H − v2

2

)2

+
δ2

1δ2

8κ2
2

(
H†H − v2

2

)3

.

(2.15)

Thus, integrating the S out (at tree level) leads to the addition of two dimension 6 operators

to the effective H Lagrangian, in addition to shifting the quartic coupling of the H. It is

straightforward to determine the effects of the terms κ3
3 S

3 + κ4
4 S

4 in the S potential; these

operators lead to additional terms in the effective action which are suppressed by higher

powers of κ2. We will take κ2 large, and discard terms throughout which are subleading

in 1/κ2.

2.2 Integrating out the singlet at one-loop order

The tree-level contributions to the effective Lagrangian, eq. (2.15), are expected to be

dominant in most situations. However, if one imposes a Z2 symmetry S → −S on the

model, then δ1 = 0. In that case, these tree contributions vanish. Since we will be interested

in the Z2 symmetric case below, we compute one-loop corrections to the effective action

in the Z2 case. To find the one-loop contribution to the operators (H†H)3 two equivalent

approaches are available: one may either compute the full Coleman-Weinberg contribution

to the effective potential and expand it to the appropriate order, or one may perform the

actual loop integral. The coefficient of ∂µ(H†H)∂µ(H†H) is also easily found using the

second option. The result can be phrased as contributions to the effective action, and reads

δΓeff =

∫
d4x

[
δ2

2

24(4π)2κ2
∂µ(H†H)∂µ(H†H)

]
−
∫
d4x

[
δ3

2

12(4π)2κ2
(H†H)3

]
. (2.16)

2.3 The dimension-6 extended Standard Model

Given the results of the previous sections, we can now map the singlet-extended Standard

Model to an effective field theory, consisting of the Standard Model augmented by any

2Note that we do not integrate out the mass eigenstate ξS , but the field S.
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higher dimension operators that are allowed by symmetry. Truncating at dimension-six

operators, we can take the Higgs field part of the effective field theory action to be

L = ∂µH
†∂µH +

δZ

v2
∂µ(H†H)∂µ(H†H)− λ4

4

(
H†H − v2

2

)2

− λ6

Λ2

(
H†H − v2

2

)3

, (2.17)

in terms of two new parameters δZ and λ6. We have chosen the coefficient of the δZ-term to

simplify the formulae in what follows. The last term, of scaling dimension six, is suppressed

by 1/Λ2 (and will be power-counted accordingly). The trade-off in scales is incorporated

into δZ. We will throughout take Λ to be 1 TeV. Of course, there are many more dimension-

six operators, but the ones shown are those relevant for the effective potential in the H-field

and those we need to analyze in order to search for phase transitions.

Comparing directly to (2.15), we find at tree level

δZ

v2
=

δ2
1

8κ2
2

,
λ6

Λ2
=
δ2

1δ2

8κ2
2

. (2.18)

Meanwhile, working at one-loop order in the Z2 symmetric case, we find using eq. (2.16)

δZ

v2
= +

δ2
2

24(4π)2κ2
,

λ6

Λ2
= +

δ3
2

12(4π)2κ2
. (2.19)

We have arranged the Lagrangian in eq. (2.17) such that the physical scalar mass is in-

dependent of λ6. We will use this fact below to determine λ4 in terms of the measured

125.7 GeV scalar mass. In a similar way, there is an implicit matching of the coefficient of

H†H, absorbed in the requirement that v should have the correct value.

These expressions allow us to relate the parameter space in the singlet model to the

parameter space in the effective model. As usual, the relation between the full singlet model

and the EFT can be thought of as a projection. For example, to the order we work at, all

values of κ3,4 are mapped to the same values of δZ and λ6, which are in turn expressions

in three parameters δ1, δ2 and κ2.

Expanding the Higgs doublet in unitary gauge we see that because of the effective

derivative term (proportional to δZ), the combination

h̃ = (1 + δZ)h, (2.20)

is the canonically normalized field, rather than h itself. Thus, there is a mixing factor

(1− δZ) at all h̃ interaction vertices. The pole mass of the h̃-field is

m̃2 =
λ4v

2

2
(1− 2δZ) ≡ m2

h, (2.21)

and this is the physical mass (125.7 GeV) of the state that is the Higgs particle. We will

use this relation to eliminate λ4 in the effective theory.

– 6 –
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Figure 1. Examples of the order parameter dependence on temperature for the effective model.

On the left, a second order transition (Tc ' 160 GeV). On the right a first order transition (Tc '
105 GeV).

3 The phase diagram of the effective theory

The Higgs potential at finite temperature can be written:

VAll(T ) = V + VCW + Vct + VT (T ), (3.1)

where V is the tree-level (classical) potential, VCW is the Coleman-Weinberg potential

encoding the zero-temperature radiative corrections, Vct are the finite parts of the coun-

terterms that renormalize the theory, and VT are the corrections due to finite-temperature

effects. Appendix A contains more explicit expressions for these objects.

We fix the finite counterterms of Vct in such a way that at T = 0, the minimum of the

potential and the mass in the minimum agree with the tree-level values,

∂(Vct + VCW)

∂H†

∣∣∣∣
v

= 0,
∂2(Vct + VCW)

∂H∂H†

∣∣∣∣
v

= 0. (3.2)

Hence, choosing a set of parameters mh, v (or λ, m2) and δZ, λ6, the complete potential

at T = 0 has the physical vacuum expectation value and physical Higgs mass. Note that

no counterterms for δZ and λ6 are required at this loop order.

For a given such set of parameters, the task is then to compute the global minimum of

the effective finite temperature potential. This defines the finite temperature ground state,

and hence the value of the expectation value v(T ), which we take to be the order parameter

of the phase transition. In figure 1 (right) we see an example where v(T ) changes from

v = 0 at high temperature to v = 246 GeV at zero temperature. The curve is continuous

but not differentiable at a point, characteristic of a second order phase transition. The

critical temperature Tc is defined to be at this cusp. In figure 1 (left), we see an example

of a discontinuous temperature dependence, and hence a first order phase transition. The

specific parameters of these examples are

δZ = 0.1, λ6 = 0.5, (Second order), (3.3)

δZ = 0.1, λ6 = 3.0, (First order). (3.4)

– 7 –
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Figure 2. Scan of the effective model parameter space (δZ, λ6), identifying 1st order (red) and

2nd order (blue) regions.

If the discontinuous “jump” ∆v at the critical temperature Tc satisfies

∆v

Tc
> 0.5, (3.5)

we define the transition to be “strong enough” to provide for baryogenesis [33–35]. This

is the case for the first order example in the figure, for which this ratio is roughy 1.85.

Clearly, such an extension of the Standard Model with effective operators does provide

strong transitions, even when fixing the Higgs mass to the physical value.

In figure 2 we show a scan of a broad parameter range of the effective model. Blue

points correspond to second order transitions. Red points are first order transitions. We

see that there is a well-defined wedge-shaped region of first order transitions, which is

clearly separated from the pure Standard Model point at (0, 0) (which is blue). For values

of δZ less than −0.5 and larger than 0.5, pathological behaviour sets in, corresponding to

couplings becoming negative (see for instance eq. (2.21)). There seems to be no reason to

proceed to sample further negative values of λ6. It is possible to proceed to larger values

of δZ, but then the dimension six term is no longer a perturbation to the Standard Model.

A similar argument applies to larger values of λ6.

We have tested relaxing the criterion of strength of the phase transition to 0.3 and

even down to 0.1, leading to only a small shift in the phase boundary. Having determined

the region in this effective field theory where first order phase transitions can take place,

let us move on to address the same questions in the context of the full singlet model.

– 8 –
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4 The phase diagram of the singlet model

In a completely analogous way, we now proceed to calculate the finite-temperature effective

potential in what we take to be the fundamental (UV) theory: the singlet-extended Stan-

dard Model. The singlet only couples to the Higgs field and itself as already described in

section 2. Going to unitary gauge and writing H = 1√
2
(φ+ h) and trivially setting S = s,

we have

V = V0 +
1

4
m2(φ+ h)2 +

1

16
λ(φ+ h)4 +

1

4
δ1(φ+ h)2s+

1

4
δ2(φ+ h)2s2

+
δ1m

2

2λ
s+

1

2
κ2s

2 +
1

3
κ3s

3 +
1

4
κ4s

4. (4.1)

We again introduce the vacuum expectation values

〈φ+ h〉 = v ≡
√
−2m2

λ
, 〈s〉 = 0, (4.2)

where the second equation follows from our definition of s. At zero temperature,

dV

dφ
|v,0 =

dV

ds
|v,0 = 0. (4.3)

The mass matrix in that minimum reads

Mmin =

(
d2V
dh2

d2V
dhds

d2V
dsdh

d2V
ds2

)∣∣∣∣∣
v,0

=

 µ2
h

µ2Sh
2

µ2hS
2 µ2

S

 =

(
−m2 δ1

2 v
δ1
2 v κ2 + δ2

2 v
2

)
, (4.4)

as in (2.5). The eigenvalues m2
h and m2

S of this mass matrix correspond to the mostly

Higgs and mostly singlet mass eigenstates. This defines an 7-dimensional parameter space

{v, µ2
h, µ

2
Sh, µ

2
S , δ2, κ3, κ4}; (4.5)

these determine values for λ,m2, κ2 and δ1. Since we know one of the mass eigenvalues

and the Higgs vacuum expectation value, let us instead use the equivalent parameters

{v,mS , θ,mh, δ2, κ3, κ4}, (4.6)

where θ is the mixing angle. From experiment, we set

mh = 125.7 GeV, v = 246 GeV, (4.7)

leaving

{mS , θ, δ2, κ3, κ4} (4.8)

to be scanned over.

The scalar field potential at finite temperature reads

V (T ) = V + VCW + Vct + VT (T ), (4.9)

– 9 –
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Figure 3. Examples of the order parameter dependence on temperature for the singlet extended

model with Z2 symmetry. On the left, a second order transition (Tc ' 168 GeV). On the right a

first order transition (Tc ' 155 GeV).

where the three remaining components VCW, Vct and VT are written out explicitly in

appendix B. We fix the finite parts of the counterterms so that all first, second, third and

fourth derivatives of the effective potential in the zero temperature minimum match the

tree-level potential. For simplicity, we will restrict our sweep to the parameter ranges

0 < {mS , κ3} < 4 TeV, 0 < sin θ < 1, 0 < {δ2, κ4} < 2π. (4.10)

In particular, we can specialize to a Z2 symmetric potential (S ↔ −S is a symmetry),

in which case sin θ = κ3 = 0 (δ1 = 0), leaving only mS , δ2 and κ4. Note that we do not

allow for spontaneous symmetry breaking of S, hence 〈S〉 = 0 always when Z2 symmetry

is imposed, even at finite temperature.

4.1 Identifying first and second order transitions in the singlet-extended

model

In the Z2 symmetric case, the order parameter is the Higgs expectation value, and the phase

transition may be identified exactly as in the EFT case. Figure 3 shows again examples

of first and second order transitions in terms of the temperature dependence of the Higgs

expectation value v(T ). The specific parameters of these example points are

mS = 2544 GeV, δ2 = 6.06, κ4 = 3.04, (Second order), (4.11)

mS = 378 GeV, δ2 = 5.36, κ4 = 4.95, (First order). (4.12)

The first order transition has v(Tc)
Tc

= 0.75, so we consider the transition to be strong enough

that this point is a candidate for baryogenesis.

When not imposing Z2 symmetry, the singlet field also picks up an expectation value

s(T ) at finite temperature, as shown in figure 4. A single order parameter could be chosen

to be the combination
√
s2(T ) + v2(T ), but we will simply consider the two separately and

retain only those phase transitions for which the discontinuity in the Higgs-only potential

satisfies ∆v
Tc

> 0.5.

It turns out that quite a number of parameter sets, although they do have a local

minimum at 〈s〉 = 0, 〈φ + h〉 = v as specified by the renormalisation conditions, in fact

– 10 –



J
H
E
P
0
2
(
2
0
1
6
)
1
0
7

0 50 100 150 200 250
T�GeV0

50

100

150

200

250

300

v HTL�GeV

0 50 100 150 200 250
T�GeV0

50

100

150

200

250

300

v HTL�GeV

50 100 150 200 250
T�GeV

-100

- 50

0

50

100

v HTL�GeV

50 100 150 200 250
T�GeV

-100

- 50

0

50

100

v HTL�GeV

Figure 4. Examples of the Higgs (top) and singlet (bottom) finite temperature expectation value

for the singlet extended model. On the left, a second order transition (Tc ' 163 GeV). On the right,

a first order transition (Tc ' 165 GeV).

have a global minimum at 〈φ + h〉 = 0, 〈s〉 = ω 6= 0. As discussed previously, one may

always shift the field s so that the singlet vacuum expectation value vanishes, but not

that of the Higgs field (shifting the singlet s → ω + s̄ changes the parameters in such

way that the coefficient of H†H is positive around the global minimum). Since the global

minimum has no Higgs vacuum expectation value, we take the corresponding parameter

set to be unphysical (or rather, ruled out by the experimental observation of a non-zero

Higgs vacuum expectation value).

In figure 4 we see examples of first and second order transitions for general parame-

ter sets

mS = 1084 GeV, δ2 = 1.68, θ = 0.092, κ3 = 454 GeV, κ4 = 1.95, (Second order),

mS = 2063 GeV, δ2 = 4.63, θ = 0.146, κ3 = 1847 GeV, κ4 = 3.08, (First order).

(4.13)

Again, since the first order transition has v(Tc)
Tc

= 0.96, we take it to be strong enough for

baryogenesis. Therefore, adding a singlet to the Standard Model may provide a strong first

order transition, with or without Z2-symmetry.

Several parameters are required for fully specifying a point in the singlet-model param-

eter space. This makes a description of the region which admits strongly first-order phase

transitions somewhat involved. For simplicity, we show the region in figure 5 by projecting

onto the values of the singlet mass and the factor sin θ which measures how strongly the

singlet couples to the Standard Model. We sample homogeneously in mS , δ2, κ3, κ4, and

θ, but note that we actually plot versus sin θ, not θ itself.
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Figure 5. The two classes of phase transitions in the full singlet model. First order phase transitions

are shown with red points, while second order transitions correspond to blue points.

Some features of figure 5 are worth discussing. First, for large singlet masses (larger

than about 1500 GeV) and intermediate values of sin θ, there is clearly a large region (the

white region on the right) completely devoid of physical parameter sets. This was also

observed in [18]. In that region, there are (at least) two minima, and the Standard Model

minimum is not the global one. For smaller mixing angles (sin θ < 0.4), there is a clear

band of red first-order points running along the lower edge of the white region. In this case,

there are again two minima, and the Standard Model one is the global minimum at zero

temperature. As the temperature increases, the relative heights of the minima change and

there is a first-order phase transition. For convenience, we will call this region of first order

phase transitions the “arm”. Below this band is a region of blue second order transition

points, where the potential may or may not have more than one minimum, but the global

minimum at zero temperature is the Standard Model vacuum.

The “arm” of strongly first-order phase transitions, also observed in [18], seems sur-

prising at first. It seems to stretch to arbitrarily large mS , violating the expectation that

for large enough mS the behaviour of the singlet model should be the same as the Standard

Model, so that there should only be second order phase transitions. To understand this

phenomenon in more detail, we now compare the singlet model more carefully with the

effective theory.

5 Comparing singlet and effective models

Our interest now focuses on the following question: to what extent does the effective the-

ory calculation give the correct determination of the order and strength of the transition

in the singlet-extended model? That is, under what circumstances does the effective the-

ory provide a reliable estimate of the physics of the phase transition in the singlet model

which we take to be the UV completion? To investigate this question, we take a param-

eter set in the singlet model, and match it to onto the associated effective model using
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eqs. (2.18), (2.19). Then we read off from figure 2 whether this parameter set is expected

to be first or second order, and compare this to the “correct” results from the computations

in the UV-completed theory, the singlet-extended model.

5.1 Z2 symmetry not present

First, we examine the situation where there is no S → −S Z2 symmetry. To do so, we

must first restrict to points in the singlet model which admit the effective theory: that is,

they must have the property that κ2 is the only large mass scale in the theory so that our

matching relations are valid. We wish to be generous about our choice of region in which we

expect the EFT to be valid to gain as broad a coverage as possible, although the cost will

be to allow some points in the singlet model parameter space which are somewhat outside

the precise scope of the effective theory. Thus, we allow for a violation of the matching

relations by a factor of 2:

1

2
< 2 |δZ| /θ2 < 2, (5.1)

1

m2
h

[
m2
h −

(
µ2
h −

µ4
hs

4κ2
+
δ2v

2µ4
hs − 2µ4

hsµ
2
h

8κ2
2

)]
<

1

2
. (5.2)

Further, we require that the quantum mechanical (one loop) corrections to the matching

relations are not too large. To achieve this, it is sufficient to impose

δ2
1

8κ2
2

>
1

2

δ2
2

12(4π)2κ2
. (5.3)

The final condition we impose is designed to ensure decoupling between the heavy, mostly S

state, and the lighter Higgs-like particle. Decoupling requires that interactions between the

heavy and light degrees of freedom do not scale with mass of the heavier particle. Again,

to be conservative in our choice we allow coupling constants in the Lagrangian which carry

dimension of mass to be smaller than 2κ
1/2
2 .

Points in singlet model parameter space which pass these tests will have perturbative

effective field theories which are weakly coupled and can be truncated at dimension 6 to a

reasonable approximation. Phase transitions in such singlet models are shown in figure 6.

We project again onto the mS-sin θ-plane, corresponding to the two quantities most likely

to be experimentally accessible.

Only three points in our scan of singlet model parameter space satisfy our inequalities

while generating strongly first-order phase transitions; these are the red points in figure 6.

As one would expect, these points have relatively light mS . 1 TeV. These points also have

a strong coupling between the lighter Higgs sector of the theory and the S, with mixing

angles such that sin θ & 0.3. Indeed, if we require that massive couplings in the scalar theory

satisfy the more stringent requirement that they are smaller than κ
1/2
2 (rather than 2κ

1/2
2 )

these points are removed. This confirms the expectation that one requires strong coupling

and/or a light new scalar state to change the nature of the Standard Model electroweak

phase transition. The “arm” we observed in our scan of the full scalar parameter space,

figure 5, corresponds to very large values of the coupling between the Higgs and the S,
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Figure 6. The two classes of phase transitions in the full singlet model, looking only at points

where the SM extended by the two dimension 6 operators is a valid description of low-energy physics.

First order phase transitions are shown with red points. Second order transitions correspond to

the purple and orange points. The EFT correctly identifies the phase-transition order of the purple

points while it incorrectly identifies the order of the phase transition of the orange points.

in particular large values of δ1. Indeed, one needs such large values of δ1 such that the

mixing angle between the Higgs and the S remains comparatively large sin θ ' 0.2 on

the “arm” for mS = 4 TeV. Although nothing prohibits such large dimensionful couplings

that scale with the mass of the heavy state, one can view these cases (and hence the

entire “arm” of figure 5) as a region of rather fine-tuned parameters. We have probed the

region beyond mS = 4 TeV and seen the “arm” continue; we take 4 TeV to approximately

represent the likely range of the LHC. We note that sin θ is already strongly constrained

(see for instance [18]).

The three strongly-first order points which pass our inequalities defining the region

where the EFT is approximately valid have the property that both the full singlet theory

and its EFT truncation agree on the nature of the phase transition. That is, these points are

known to have strongly first-order transitions from an analysis of the full theory. One can

construct an EFT for each of these three points, using the matching relations, eq. (2.18).

Then it is straightforward for us to determine the order of the phase transition predicted by

the EFT, using our analysis of the EFT phase transition structure as described in section 3.

We find that the EFT predicts all three points have strongly first-order phase transitions,

in agreement with the full singlet model.

Agreement between the effective and full analyses is not guaranteed in our analysis

because we have been generous with our definition of the region of validity of the EFT (so

that complete agreement is not to be expected). In particular, thermal corrections due to

the heavy new physics are taken into account in the full singlet model, while in the EFT,

they are not. By being generous about the region of validity of the EFT, we are including

regions where the hierarchy of scales defining the EFT is not particularly large, and where

coupling are comparatively strong. So deviations are to be expected. Indeed, we find that

the two theories disagree on the nature of the phase transition of a selection of points which

the full theory determines have second order phase transitions. Therefore, in figure 6, we

color-code points which have second order phase transitions such that purple points have

second order transitions according to both the effective and full analyses (agreement).
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Figure 7. Same as figure 6, except we have reduced the allowed values of dimensionful couplings

so that they are less than κ
1/2
2 (rather than 2κ

1/2
2 ). Notice that only second order phase transitions

exists in this region, and furthermore there is more full agreement between the singlet model and

the EFT.

Meanwhile, the EFT disagrees with the full analysis in the case of the orange points in

parameter space. Disagreement between the EFT and the full theory (orange points) occur

in the region mS . 2 TeV and are associated with larger couplings between the heavier

and lighter states as evidenced by the substantial mixing angles of orange points. More

insight into this region of disagreement can be obtained by strengthening our restriction

on values of dimensionful couplings so that they are now smaller than κ
1/2
2 rather than

2κ
1/2
2 (figure 7). As the figure shows, we obtain more detailed agreement between the EFT

and the full singlet model in this region, at the expense of completely cutting out strongly

first-order phase transitions. Meanwhile, examination of figures 6 and 7 shows that there

is full agreement between the full singlet model and the effective theory for small mixing

and large scalar mass, as we would expect.

In view of the fact that the first-order phase transitions which we find within our EFT

region of validity are at the boundary of this region, and are surrounded by points where

the full and effective models disagree, we interpret these points as being outside the strict

region of validity of the EFT. The agreement between the full and effective theories for

these points is presumably coincidental.

Finally, to further establish the region of validity of the EFT treatment, we repeat

the analysis with dimensionful couplings up to 4κ
1/2
2 , shown in figure 8. We show the

points identified as second order by the singlet model in the left-hand plot, and the points

identified as first order in the right-hand plot. Relaxing the cut to 4κ
1/2
2 is clearly beyond

where we expect EFT to be reliable, and we indeed see that many additional second order

points are now orange (and therefore incorrectly identified by EFT). We also see that a

large portion of the “arm” of first order points is now included, and is also badly reproduced

by EFT. This is as expected, since as we argued the “arm” and the white region beyond

correspond to the emergence of a more complicated vacuum structure, as well as large

values of dimensionful couplings.

Thus we learn that our effective analysis is only reliable when there is a large separation

of scales (including dimensionful couplings). If one relaxes these requirements, then a richer

set of possibilities is present, but a detailed understanding of the physics requires use of
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Figure 8. As for figures 6, 7 but only restricting dimensionful couplings to be smaller than 4κ1/2

(way beyond the expected validity of EFT). On the left, the points identified as second order in the

singlet model; on the right, the points identified as first order in the singlet model. Purple points

again refer to where EFT identifies the order correctly. Orange points where it does not. We see

the first order “arm” appearing, which clearly is beyond reach of the EFT treatment.
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Figure 9. The singlet extended model parameter sets, when imposing Z2-symmetry. We find that

the red points in parameter space have first order phase transitions, while the blue points have

second order transitions.

the full theory. The effective analysis opens a window only on a relatively small part of the

singlet model’s parameter space; it is also a region of singlet model parameter space which is

less interesting from the point of view of baryogenesis. In particular, the “arm” of strongly

first-order phase transitions is associated with a large coupling with mass dimension 1.

Allowing such a large coupling may seem unnatural, but in view of the fine tuning which is

apparently already present in the Standard Model, one should be cautious about a priori

discarding such cases.

5.2 Z2-symmetric theory

Having discussed the more generic situation, let us return to the case where we impose a

Z2 S → −S symmetry on the full singlet theory. In this situation, we choose a slightly

different presentation of the parameter space in view of the fact that the mixing angle

is exactly zero. In figure 9, we project the singlet parameter space {δ2,mS , κ4} onto the

{δ2,mS}-plane.3 Points in figure 9 which are coloured red have strongly first-order phase

transitions, while the points coloured blue have second order phase transitions. Notice that

the region in parameter space with first-order transitions occurs for fairly small values of

3The matching relations are independent of κ4 to our order of approximation.
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Figure 10. The singlet extended model parameter sets, when imposing Z2-symmetry. On the left,

transitions in the singlet model, restricting to the approximate region in parameter space where the

effective theory is valid. On the right, we colour the same points according to whether the EFT

theory predicts first order (red) or second order (blue) phase transitions.

mS , below around 500 GeV with larger values of mS available for large values of δ2. This

suggests that the region will be outside the domain of validity of our effective analysis,

which requires κ2 � m2
h. Furthermore, our truncation to the first order of perturbation

theory requires not too large values of δ2. (Notice that we do not impose an analogue of

eq. (5.3) on the Z2 symmetric theory.)

To compare the full and effective theories in more detail, we restrict the parameter

space by requiring κ
1/2
2 > 500 GeV, so that there is a reasonable hierarchy between the

light and heavy mass scales. Again, this is a generous definition of the region of validity of

the EFT. We then determine the nature of the phase transition predicted by the effective

theory. Our result is shown in figure 10. In the left-hand plot, we show the parameter

sets that give rise to second order transitions (blue points) and the ones that give rise to

first order transitions (red points). In the right-hand plot, we show the same parameter

sets, but now we color-code them according to whether their matching EFT parameter set

predicts a second order transition (blue points) or a first order transition (red points).

In the region where we expect the effective theory to be a good description of the

physics, the full singlet model predicts only second order phase transitions. In a small

corner of the parameter space, at the lower range of κ2 and larger δ2, the effective theory

predicts first order phase transitions. In view of the location of this region, we interpret this

as a signal that higher order corrections in the EFT have become important. Therefore,

once again, we see that the EFT and full singlet models agree, except on the boundary of

the region where we expect the EFT to be valid. Moreover, in the core region where the

EFT is a good description of the physics, only second-order phase transitions are present.

6 Conclusions

It is very tempting to apply EFT to understand the nature of the electroweak phase tran-

sition in the context of physics beyond the Standard Model. In this way, one would remain

agnostic about the underlying theory but acquire knowledge systematically order-by-order

of what this underlying theory could be. To test this approach, we performed a direct
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comparison between phase transitions in the singlet model and an effective description of

the model. This is an important issue since it can teach us the extent to which we can

trust EFT predictions regarding electroweak baryogenesis.

One difficulty with the effective approach is the comparatively slow decoupling of

thermal effects due to the modest hierarchy between the electroweak scale and the relevant

range of singlet scalar masses. This phenomenon occurs for example in our analysis of

second order phase transitions, shown in figure 6. For 500 GeV . mS . 2000 GeV and

mixing angles θ & 0.1, our EFT description of the phase transition structure is incorrect,

in that there is a mismatch with the phase transition structure of the full singlet model.

This is surprising at first, since the separation between physical states is almost an order

of magnitude. However, couplings in this region are fairly large, and the exponential

Boltzmann suppression does not yet dominate.

For larger masses mS > 2 TeV or smaller mixing angles, there is a match between the

effective and singlet models. This is the decoupling region in accordance with expectation.

However, the full singlet model has a much richer structure of phase transitions which are

associated with stronger couplings between the light (mostly Higgs) sector and the heavy

new physics sector as seen in figure 5. While the coupling between Higgs and S is quite

large, for example on the “arm” of strongly first-order phase transitions, it does not appear

to be ruled out by any issue of principle. The singlet theory itself is still perturbatively

coupled in this region. But there is no decoupling between the light and heavy modes

due to a large dimensionful coupling. Therefore, the effective analysis is limited to a fairly

small region of singlet model parameter space, which also happens to be a region which is

less interesting from the point of view of baryogenesis. We have discussed the extent to

which this particular region of parameter space can be dismissed as fine-tuned.

We further investigated imposing a Z2 symmetry on the model. In this case, we find

that within the domain of validity of the EFT there is broad agreement between the full

and effective analysis of the phase transitions. In this region, phase transitions are second

order. One needs to couple the new physics more strongly to the Higgs sector in order to

generate strongly first-order phase transitions.

Thus we conclude that an effective analysis of baryogenesis must be treated with some

caution. A modest hierarchy of scales can lead to situations in which an EFT analysis

disagrees with a more detailed analysis in the full UV completion. Moreover, detailed

UV theories can easily contain strongly first-order phase transitions which are far away in

parameter space from the region covered by effective theory.
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A Effective potential contributions, effective theory

A.1 EFT: tree-level potential V

The classical potential of the EFT model is

V (H) = −λ4

4

(
H†H − v2

2

)2

− λ6

Λ2

(
H†H − v2

2

)3

. (A.1)

Keeping in mind the presence of the kinetic dimension 6 operator, we write again

H = 1√
2
(φ + h), where φ is a constant background field and h the fluctuations around φ,

we define hn = h̃n(1− nδZ). Then h̃ is canonically normalized.

We have

V (φ, h̃) = V (φ) + Vh̃(φ, h̃) =

−
(
λ4v

2

8
− 3v4λ6

8Λ2

)
φ2 +

(
λ4

16
− 3λ6v

2

8Λ2

)
φ4 +

λ6

8Λ2
φ6

+(1− δZ)

(
λ4

4
(φ3 − v2φ) +

3λ6

4Λ2
(φ5 + v4φ− 2v2φ3)

)
h̃

+(1− 2δZ)

(
λ4

8
(3φ2 − v2) +

λ6

8Λ2
(15φ4 + 3v2 − 18v2φ2)

)
h̃

2

+(1− 3δZ)

(
λ4

4
φ+

λ6

2Λ2
(5φ2 − 3v2)φ

)
h̃

3

+(1− 4δZ)

(
λ4

16
+

3λ6

8Λ2
(5φ2 − v2)

)
h̃4

+(1− 5δZ)
3λ6φ

4Λ2
h̃5 + (1− 6δZ)

λ6

8Λ2
h̃6 +

λ4

16
v4 − λ6v

6

8Λ2
, (A.2)

where the first line is the classical potential V and the last two terms are constants that

have no consequence for the location for the potential minimum. By differentiation with

respect to φ, we find that v is the minimum of the potential, as required. By differentiation

with respect to h̃ twice, we identify the pole mass at φ = v for the degree of freedom h̃ to

be m̃2 = (1− 2δZ)λ4v
2

2 (see also eq. (2.21)). From higher derivatives with respect to h̃ we

find the 3-, 4-, 5-, and 6-point vertices to be

v3

3!
= (1− 3δZ)

(
λv

4
+ λ6

v3

Λ2

)
, (A.3)

v4

4!
= (1− 4δZ)

(
λ

16
+

3λ6

2

v2

Λ2

)
, (A.4)

v5

5!
= (1− 5δZ)

3λ6v

4Λ2
, (A.5)

v6

6!
= (1− 6δZ)

λ6Λ2

8
. (A.6)
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A.2 EFT: the Coleman-Weinberg potential VCW

After divergences have been subtracted, the zero-temperature contribution at one-loop

order to the effective potential has the form

VCW =
∑
i

1

64π2
NiM

4
i (φ)

[
log

M2
i (φ)

µ2
− Ci

]
, (A.7)

where µ is an arbitrary scale, i sums over particle species in the Standard Model and

Nt,c,u,d,s,b = −12, NW = 6, NZ = 3, (A.8)

Nh = 1, NG = 3, Ne,µ,τ,νe,νµ,ντ = −4.

We have ignored the photon and the gluons, since they do not couple directly to the Higgs

field. Their contribution would therefore only be a constant as a function of φ, and hence is

irrelevant to the location of the minimum. We have split the four Higgs degrees of freedom

into the massive mode h and the three massless modes G. Ci is 5/6 for gauge bosons, 3/2

for the rest. µ is a renormalization scale which we take to be mt.

The zero temperature masses as a function of the Higgs and singlet fields are:

Mt,c,u,d,s,b,W,Z,e,µ,τ,νe,νµ,ντ (φ) = mt,c,u,d,s,b,W,Z,e,µ,τ,νe,νµ,ντ

φ

v
. (A.9)

The φ-dependent mass eigenvalue of the Higgs field fluctuations is the second derivative of

V (φ, h̃) with respect to h̃:

M2
h(φ) = (1− 2δZ)

(
λ4

4
(3φ2 − v2) +

3λ6

4Λ2
(5φ4 + v2 − 6v2φ2)

)
. (A.10)

The φ-dependent mass of the massless modes follows from inserting the doublet of fluctu-

ations

H →

(
χ1 + iχ2

1√
2
(φ+ h) + iχ3

)
, (A.11)

canonically normalized into the Lagrangian. The φ-dependent mass is now given by the

second derivative with respect to χ̃1,2,3. These are all the same and read

M2
G(φ) = (1− 2δZ)

(
λ4

4
(φ2 − v2) +

3λ6

4Λ2
(φ2 − v2)2

)
. (A.12)

The mass of transverse (Goldstone) modes vanishes in the zero temperature vacuum φ = v,

as it must.

A.3 EFT: counterterms Vct

In order to make the one-loop contribution finite, we introduce counterterms,

Vct = δV0 +
1

2
δm2H†H +

1

4
δλ(H†H)2. (A.13)
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These cancel all divergences and we fix their finite parts by imposing three renormalization

conditions.

(Vct + VCW)|v = 0,
∂(Vct + VCW)

∂H†

∣∣∣∣
v

= 0,
∂2(Vct + VCW)

∂H∂H†

∣∣∣∣
v

= 0. (A.14)

The renormalization conditions amount to enforcing that the position and depth of the

minimum and the mass at one-loop order are the same as they are at tree-level. In the

renormalisation procedure, we have ignored the “Goldstone” contributions, as their deriva-

tives are badly behaved. Since the contribution to the potential vanishes in the vacuum

(their mass is zero) and is small near the minimum, computing the counter terms without,

and then computing the potential with, amounts to a very small error [37].

A.4 EFT: finite-temperature contribution VT

At one-loop order we write the finite-temperature contribution as

VT (φ, T ) = V 1
T (φ, T ) + V ring

T (φ, T ). (A.15)

The first component is the one-loop expression

V 1
T (φ, T ) =

T 4

2π2
Ni

∫ ∞
0

dxx2 log

[
1± e−

√
x2+

M2
i
(φ)

T2

]
, (A.16)

where Ni is as above and Mi(φ) is the zero-temperature field-dependent mass. The ± refers

to fermions and bosons respectively. Expanding this for small Mi
T yields [38]:

const. +
1

24
NiM

2
i (φ)T 2 −Ni

T

12π
M3
i (φ) +O(M4

i ), (bosons) (A.17)

const. +
1

48
NiM

2
i (φ)T 2 +O(M4

i ), (fermions). (A.18)

There are now two procedures for including thermal corrections to the effective masses.

One is to follow [39] by simply replacing

M2
i (φ)→M2

i (φ, T ), (A.19)

in (A.16). The other follows [38, 40] and involves making the exchange

M3
i (φ)→M3

i (φ, T ), (A.20)

in (A.17). This amounts to the daisy resummation, and only involves bosonic degrees of

freedom. To leading order, we have

V ring
T (φ, T ) =

∑
i

T

12π
NiTr

[
M3
i (φ)−M3

i (φ, T )

]
. (A.21)

Note that this effectively swaps the cubic mass term from the above expansion with a

thermally dependent one. For either implementation, we need the thermally corrected
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masses Mi(φ, T ) for each bosonic degree of freedom. Here both the Higgs and Goldstone

(the 3 Higgs-field modes orthogonal to φ) modes contribute, and we have a contribution

from the gauge-bosons. We have for Goldstone modes

M2
G(φ, T ) = M2

G(φ) +

 3

16
g2 +

1

16
g′2 +

1

4

∑
quarks

Y 2
i +

1

12

∑
leptons

Y 2
j +

1

2
λ

T 2 . (A.22)

Note that at v = 0 the first term vanishes and at T = 0 the second term vanishes. This

reflects that the Goldstone modes acquire mass from two separate mechanisms. One cor-

responds to the Higgs field taking expectation values other than the electroweak minimum

and the other from thermal corrections. For the massive Higgs mode

M2
h(φ, T ) = M2

h(φ) +

 3

16
g2 +

1

16
g′2 +

1

4

∑
quarks

Y 2
i +

1

12

∑
leptons

Y 2
j +

1

2
λ

T 2, (A.23)

where we have defined the Yukawa coupling constants as:∑
quarks

Y 2
i = Y 2

t + Y 2
b + Y 2

c + Y 2
s + Y 2

d + Y 2
u , (A.24)

∑
leptons

Y 2
j = Y 2

e + Y 2
µ + Y 2

τ + Y 2
νe + Y 2

νµ + Y 2
ντ .

For the gauge bosons we revert to the original gauge field basis, and write the mass matrix

M2(φ,T )=M2(φ)+M2
T (T )

=


g2φ2/4 0 0 0

0 g2φ2/4 0 0

0 0 g2φ2/4 −gg′φ2/4

0 0 −gg′φ2/4 g′2φ2/4

+


11
6 g

2T 2 0 0 0

0 11
6 g

2T 2 0 0

0 0 11
6 g

2T 2 0

0 0 0 11
6 g

′2T 2

,
(A.25)

and here the trace in (A.21) becomes relevant

Tr[M3(φ)−M(φ, T )3] = Tr[M3(φ)]− Tr[M3(φ, T )]

= Tr[D3
M(φ)]− Tr[D3

M(φ,T )]. (A.26)

Note that diagonalizing D3
M(φ) is the same as in the Standard Model, but when diagonal-

izing D3
M(φ,T ), the Z and γ mixes because of the photons thermal mass. This correction

makes the longitudinal parts of the gauge-boson fields temperature dependent. It does not

correct the transverse parts.

B Effective potential contributions, singlet extended model

B.1 Singlet model: Coleman-Weinberg potential VCW

When including the singlet field the one-loop zero-temperature contributions are similar

VCW =
∑
i

1

64π2
NiM

4
i (φ, s)

[
log

M2
i (φ, s)

µ2
− Ci

]
, (B.1)
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where, again, µ is an arbitrary scale while i now sums over particle species in the Standard

Model plus the singlet, and

Nt,c,u,d,s,b = −12, NW = 6, NZ = 3, (B.2)

Ns,h = 1, NG = 3, Ne,µ,τ,νe,νµ,ντ = −4,

and we have once more ignored the photon and the gluons. We have split the four Higgs

degrees of freedom into the massive mode h and the three Goldstone modes G. Ci is 5/6

for gauge bosons, 3/2 for the rest. Q is a renormalization scale which we take to be mt.

The zero temperature masses as a function of the Higgs and singlet fields are

Mt,c,u,d,s,b,W,Z,e,µ,τ,νe,νµ,ντ (φ, s) = mt,c,u,d,s,b,W,Z,e,µ,τ,νe,νµ,ντ

φ

v
, (B.3)

and the field dependent eigenvalues of the Higgs-singlet mass matrix

M2(φ, s) =

(
m2

2 + 3λ
4 φ

2 + δ1
2 s+ δ2

2 s
2 δ1

2 φ+ δ2sφ
δ1
2 φ+ δ2sφ κ2 + δ2

2 φ
2 + 2κ3s+ 3κ4s

2

)
,

and the Goldstone modes

M2
G(φ) =

m2

2
+
λ

4
φ2 +

δ1

2
s+

δ2

2
s2. (B.4)

B.2 Singlet model: counterterms Vct

In order to make the one-loop contribution finite, we introduce a set of counterterms.

Vct = δV0 +
1

2
δm2H†H +

1

4
δλ(H†H)2 +

1

4
δδ1SH

†H +
1

2
δκ2S

2

+
1

4
δδ2S

2H†H + δκ1S +
1

3
δκ3S

3 +
1

4
δκ4S

4, (B.5)

and we may again insert H = 1√
2
(φ + h). These counterterms cancel all divergences and

we fix their finite parts by imposing a set of 9 renormalization conditions. We again ignore

the contributions to VCW from the Goldstone modes.

(VCW + Vct)v,0 =
∂(VCW + Vct)

∂φ v,0

=
∂(VCW + Vct)

∂s v,0
= 0, (B.6)

∂2(VCW + Vct)

∂h2 v,0
=
∂2(VCW + Vct)

∂s2 v,0
=
∂2(VCW + Vct)

∂h∂s v,0
= 0, (B.7)

∂4(VCW + Vct)

∂s2∂φ2
v,0

=
∂3(VCW + Vct)

∂s3 v,0
=
∂4(VCW + Vct)

∂s4 v,0
= 0. (B.8)

We note that this is explicitly different from the approach in [18, 36], where the renormal-

isation conditions are a mixture of constraints in the broken and symmetric phase. This

leads to either divergent counterterms in the Z2-symmetric limit, or an explicit breaking of

Z2 symmetry through the renormalisation conditions, even when sin θ = κ3 = κ1 = δ1 = 0.

hence our renormalised theory is quite different form the one presented there.
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B.3 Singlet model: finite temperature contribution VT

The finite temperature contribution are

VT (φ, s, T ) = V 1
T (φ, s, T ) + V ring

T (φ, s, T ). (B.9)

The first component is the one-loop expression

V 1
T (φ, s, T ) =

T 4

2π2
Ni

∫ ∞
0

dxx2 log
[
1± e−

√
x2+M2

i (φ,s)/T 2
]
. (B.10)

where Mi(φ, s) is the zero-temperature masses already defined. The sign ± refers to

fermions and bosons respectively.

Again we have the daisy resummation:

V ring
T (φ, s, T ) =

∑
i

T

12π
NiTr

[
M3
i (φ, s)−M3

i (φ, s, T )
]
, (B.11)

where M2
i (φ, s, T ) refers to the thermally corrected masses, for the 3 Goldstone modes,

M2
G(φ, s, T ) = M2

G(φ)+

 3

16
g2 +

1

16
g′2 +

1

4

∑
quarks

Y 2
i +

1

12

∑
leptons

Y 2
j +

1

2
λ

T 2, (B.12)

and for the Higgs and singlet modes

M2(φ,s,T ) = M2(φ,s) (B.13)

+

([
3
16g

2+ 1
16g
′2+
(

1
4

∑
quarksY

2
i + 1

12

∑
leptonsY

2
j +1

2λ
)]
T 2 0

0 (8λm+12λs)T
2

)
,

where we have defined the Yukawa coupling constants as:∑
quarks

Y 2
i = Y 2

t + Y 2
b + Y 2

c + Y 2
s + Y 2

d + Y 2
u , (B.14)

∑
leptons

Y 2
j = Y 2

e + Y 2
µ + Y 2

τ + Y 2
νe + Y 2

νµ + Y 2
ντ .

There is also a contribution to V ring
T from the gauge bosons, and for this we have to revert

to the original gauge field basis, and write the mass matrix

M2(φ,s,T )=


g2φ2/4 0 0 0

0 g2φ2/4 0 0

0 0 g2φ2/4 −gg′φ2/4

0 0 gg′φ2/4 g′2φ2/4

+



11
6 g

2T 2 0 0 0

0 11
6 g

2T 2 0 0

0 0 11
6 g

2T 2 0

0 0 0 11
6 g

′2T 2

,
(B.15)

and here the trace in (B.11) becomes relevant.
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