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1 Introduction

Supersymmetric anti-de Sitter (AdS) vacua and their moduli spaces of gauged supergrav-

ities are of particular interest in the AdS/CFT correspondence [1]. The AdS vacua corre-

spond to conformal fixed points of the holographically dual field theories while the moduli

spaces describe the conformal manifolds near these fixed points [2, 3]. The latter encode

useful information about the exactly marginal deformations of the corresponding super-

conformal field theories (SCFTs).

AdS backgrounds of gauged supergravities and their moduli spaces have been studied

in various space-time dimensions with different numbers of supercharges. In this paper

we exclusively focus on the half-maximal gauged N = (1, 1) supergravity in six space-

time dimensions (d = 6) and their maximally supersymmetric AdS6 backgrounds.1 This

supergravity is also known as F (4) supergravity and was first constructed in [6]. It is

non-chiral and can be coupled to an arbitrary number n of vector multiplets. Each vector

multiplet contains four scalars and together with the dilaton in the gravity multiplet, they

parametrize the (4n + 1)-dimensional coset manifold R+ × SO(4, n)/SO(4) × SO(n). The

corresponding gauged supergravity was constructed in [7, 8] by extending the pure F (4)

supergravity using the geometric group manifold approach. [7, 8] also showed that for a

gauge group SU(2)R×G and G ⊂ SO(n) a maximally supersymmetric AdS6 vacuum exists

where the full SU(2)R ×G symmetry is realized at the origin of the scalar manifold. This

vacuum could be identified with the near horizon geometry of the D4-D8 brane system [9].

For the case of n = 3 vector multiplets and G = SO(3), another non-trivial AdS6 vacuum

breaking the SU(2)R × SO(3) symmetry to SO(3)diag and preserving the full N = (1, 1)

supersymmetry has been identified in [10].

In this paper we do not specify the gauge group upfront but instead follow the strategy

of [11–15] in that we first determine the general conditions on the parameters of the gauged

1In fact, the N = (1, 1) supergravity is the only gauged supergravity in d = 6 that admits maximally

supersymmetric AdS6 backgrounds [4]. This in turn is consistent with the known classification of the AdS

superalgebras given in [5].
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supergravity such that AdS6 backgrounds which preserve all supercharges can exist. In

half-maximal supergravities it is then possible to also give all possible gauge groups that

can have such vacua. Concretely we find that the gauge group has to be of the form

G′ ×G′′ ⊂ SO(4, n) where G′ ⊂ SO(3,m) and G′′ ⊂ SO(1, n−m). In the AdS6 vacua this

gauge group is broken to its maximal compact subgroup SO(3)×H ′×H ′′ whereH ′ ⊂ SO(m)

and H ′′ ⊂ SO(n −m). The SO(3) ∼ SU(2) factor precisely is the R-symmetry and it is

gauged by three of the four graviphotons. Finally, we derive the necessary conditions for

the existence of a supersymmetric moduli space near these vacua. For the case at hand

we find that no moduli space is possible which is again consistent with the fact that the

holographically dual SCFTs have no supersymmetric exactly marginal deformations.

In the AdS/CFT correspondence, AdS6 vacua are also relevant for studying strongly

coupled five-dimensional SCFTs arising from the dynamics of D4-D8 branes [9, 16]. The

interpretation in terms of AdS6 geometry in [17] inspired various studies considering grav-

ity duals of these SCFTs including a recent generalization to quiver gauge theories in [18].

Finding AdS6 solutions in type II and eleven dimensional supergravities also deserves de-

tailed investigations.2 In this paper, however, we stay in d = 6 throughout the analysis

leaving the higher dimensional origins of these vacua for future work.

The paper is organized as follow. In section 2, we set the stage for our analysis and

recall the relevant features of N = (1, 1) gauged supergravity. The conditions for the

existence of maximally supersymmetric AdS6 vacua are then derived in section 3, and the

analysis of the moduli space is carried out in section 4. We finally end the paper by giving

some conclusions and comments on the results in section 5.

2 N = (1, 1) gauged supergravity in six dimensions

In this section, we briefly review N = (1, 1) gauged supergravity coupled to n vector

multiplets in order to set up the notation for the later analysis. More details on this

gauged supergravity can be found in [7, 8]. We will follow most of the conventions in these

two references.

The possible supermultiplets are the gravitational multiplet and n vector multiplets

given respectively by(
eaµ, ψ

A
µ , A

α
µ, Bµν , χ

A, σ
)

and (Aµ, λA, φ
α)I . (2.1)

The bosonic fields of the supergravity multiplet are given by the graviton eaµ, the dilaton

σ, four graviphotons Aαµ, and a two-form field Bµν while each vector multiplet contains a

vector, Aµ, and four scalars, φα. Two sets of indices α, β, . . . = 0, 1, 2, 3 and I, J, . . . =

1, . . . , n label the n + 4 vector fields. Space-time and tangent space indices are denoted

respectively by µ, ν = 0, . . . , 5 and a, b = 0, . . . , 5. We will also follow the mostly minus

space-time signature (+−−−−−) of [7, 8].

The fermionic fields consist of two gravitini ψAµ , two spin-1
2 fields χA and 2n gaug-

inos λIA. All of these fields and the supersymmetry parameter εA are eight-component

2See [19–22] for recent results along this direction and references therein.
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pseudo-Majorana spinors and transform in the fundamental representation of the SU(2)R ∼
USp(2)R R-symmetry denoted by indices A,B = 1, 2.

The dilaton and the 4n scalars φαI of the vector multiplets span the coset manifold

R+ × SO(4, n)/SO(4)× SO(n) . (2.2)

The second factor can in turn be parametrized by the coset representative LΛ
Σ with

Λ,Σ, . . . = 1, 2, . . . , n + 4. It is convenient to split the indices transforming under the

compact group SO(4) × SO(n) as Λ = (α, I) and further under the SO(3)R × SO(n) as

Λ = (0, r, I) with r, s, . . . = 1, 2, 3. The SO(3)R is identified with the diagonal subgroup of

SO(3)× SO(3) ∼ SO(4). The coset representative can be accordingly decomposed as

LΛ
Σ = (LΛ

α, L
Λ
I) = (LΛ

0, L
Λ
r, L

Λ
I) . (2.3)

Furthermore, all of the n+4 vector fields will be collectively denoted by AΛ
µ = (A0

µ, A
r
µ, A

I
µ).

Being SO(4, n) matrices, the LΛ
Σ satisfy the relation

ηΛΣ = L0
ΛL

0
Σ + Li ΛL

i
Σ − LI ΛL

I
Σ (2.4)

with ηΛΣ = (1, 1, 1, 1,−1,−1, . . . ,−1).

We now turn to the gauged version of this supergravity. The most complete gauged

N = (1, 1) supergravity up to now is given in [7, 8]. As in seven dimensions, the full

SO(4, n) covariant formulation in terms of the embedding tensors has not been worked out

yet although the corresponding components of the embedding tensor have been identified

in [23] using the Kac-Moody approach. In this paper, we will restrict ourselves to the

gauged supergravity constructed in [7, 8].

Gauging is implemented by making a particular subgroup G of SO(4, n) local such that

the adjoint representation of G can be embedded in the fundamental representation, n + 4,

of SO(4, n), and ηΛΣ contains the Cartan-Killing form of the gauge group. Consistency

with supersymmetry requires that the structure constants are totally anti-symmetric, i.e.

fΛΣΠ = f Γ
ΛΣ ηΓΠ = f[ΛΣΠ]. In the embedding tensor formalism, this condition is called the

linear constraint.

The f Γ
ΛΣ appear as structure constants in the gauge algebra

[TΛ, TΣ] = f Γ
ΛΣ TΓ (2.5)

in which TΛ are gauge generators. These structure constants must satisfy the Jacobi

identity

f ∆
[ΣΓ f Π

Λ]∆ = 0 (2.6)

which in the embedding tensor formalism is the so-called quadratic constraint. In general,

this constraint comes from the requirement that the gauge generators, obtained from ap-

propriate projections of the global symmetry generators by the embedding tensor, form a

closed Lie algebra of the corresponding gauge group.

The bosonic Lagrangian with only the metric and scalars non-vanishing reads

e−1L = −1

4
R+ ∂µσ∂

µσ +
1

4
(P I0µ PµI0 + P Irµ PµIr)− V , (2.7)

– 3 –
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where the scalar kinetic term is written in terms of the Maurer-Cartan one-forms

P I0 = (L−1)IΛ(dLΛ
0 + fΛ

ΓΠA
ΓLΠ

0), P Ir = (L−1)IΛ(dLΛ
r + fΛ

ΓΠA
ΓLΠ

r) . (2.8)

The scalar potential V is given by

V = −5

[
1

144
(Aeσ + 6me−3σL00)2 +

1

16
(Bie

σ − 2me−3σL0i)
2

]
+

1

144
(Aeσ − 18me−3σL00)2 +

1

16
(Bie

σ + 6me−3σL0i)
2

+
1

4
(CItCIt + 4DI

tDIt)e
2σ −m2e−6σL0IL

0I

(2.9)

where m is the mass of the two-form in the gravitational multiplet and we abbreviated

A = εrstKrst , Bi = εijkKjk0 ,

C t
I = εtrsKrIs , DIt = K0It ,

(2.10)

with the “dressed” structure constants given by

Krst = fΛΣΠL
Λ
r(L
−1) Σ

s LΠ
t, Krs0 = fΛΣΠL

Λ
r(L
−1) Σ

s LΠ
0,

KrIt = fΛΣΠL
Λ
r(L
−1) Σ

I LΠ
t, K0It = fΛΣΠL

Λ
0(L−1) Σ

I LΠ
t .

(2.11)

The supersymmetry transformations of the fermions which will play an important role

in the following analysis are given by

δψAµ = DµεA + SABγµε
B,

δχA =
i

2
γµ∂µσεA +NABε

B,

δλIA = −iP IriσrAB∂µφiγµεB + iP I0iε
AB∂µφ

iγ7γµεB +M I
ABε

B,

(2.12)

where the fermion-shift matrices are defined as

SAB =
i

24

[
Aeσ + 6me−3σ(L−1)00

]
εAB −

i

8

[
Bte

σ − 2me−3σ(L−1)t0
]
γ7σtAB,

NAB =
1

24

[
Aeσ − 18me−3σ(L−1)00

]
εAB +

1

8

[
Bte

σ + 6me−3σ(L−1)t0
]
γ7σtAB,

M I
AB = (−CIt + 2iγ7DI

t)e
σσtAB − 2me−3σ(L−1)I0γ

7εAB .

(2.13)

In the present convention, the anti-symmetric matrix εAB = −εBA is taken to be ε12 =

ε12 = 1. The σtAB matrices are related to the usual Pauli matrices σtAB by the relation3

σtAB = σtCBεCA . (2.14)

Finally, the chirality matrix γ7 is defined by

γ7 = iγ0γ1γ2γ3γ4γ5 (2.15)

with γ2
7 = −I and γT7 = −γ7.

3Note that σt
AB = σt

(AB).
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3 Maximally supersymmetric AdS6 vacua

We now determine the maximally supersymmetric AdS6 vacua preserving all sixteen su-

percharges. In order to do so, we impose that the following conditions vanish for all

supercharges in the background

〈δψµA〉 = 0 , 〈δχA〉 = 0 , 〈δλIA〉 = 0 . (3.1)

Due to the symmetries of σtAB = σt(AB) and εAB = ε[AB], the linear independence of γ7 and

I and by using (2.12) and (2.13) we infer that the second and third equations imply

〈Aeσ − 18me−3σ(L−1)00〉 = 0, (3.2)

〈e−3σ(L−1)I0〉 = 0, (3.3)

〈Bteσ + 6me−3σ(L−1)t0〉 = 0, (3.4)

〈CIt〉 = 〈DI
t〉 = 0 . (3.5)

From (2.10) we learn that the first condition in (3.5) is equivalent to

εtrsKrIs = 0 . (3.6)

The second condition in (3.5) yields K0It = 0 so that together we have

KrIs = K0It = 0 . (3.7)

Using (2.10) we can rewrite condition (3.2) as

εrstKrst = 18me−4〈σ〉〈(L−1)00〉 (3.8)

which is solved by

Krst = gεrst (3.9)

for an arbitrary SU(2)R gauge coupling g. We can accordingly determine the background

value of the dilaton by inserting (3.9) into (3.8)

e−4〈σ〉〈(L−1)00〉 =
g

3m
. (3.10)

The remaining conditions (3.3) and (3.4) give

〈(L−1)I0〉 = 0, 〈Bt〉 = −6me−4〈σ〉〈(L−1)t0〉 . (3.11)

Using the component-(0I) and -(0i) of the relation (2.4) and the identity L−1 = ηLT η, we

find that L0I = 0 implies L0i = 0 and thus

〈Bt〉 = 0 . (3.12)

Using the definition of Bt given in (2.10) we thus arrive at

Kjk0 = 0 . (3.13)

– 5 –
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By taking the (00)-component of the relation (2.4), we find that L0I = L0i = 0 also implies

L00 = 1. Inserting the results obtained so far into (2.9) we conclude that the background

value of the scalar potential (related to the cosmological constant) in an AdS6 vacuum is

given by

〈V 〉 = −20m2
( g

3m

) 3
2
. (3.14)

We see that AdS vacua do not exist for m = 0 as already pointed out in [7, 8].4 This is very

similar to AdS backgrounds of half-maximal supergravities in seven dimensions [13, 24, 25].

Note also that by shifting the value of 〈σ〉 we can choose g = 3m as in [7, 8].

In order to continue let us recall that we are left with the unconstrained structure

constants

Krst , KrIJ , K0IJ , KIJK , (3.15)

whose choice specify the particular supergravity at hand. We can now use the quadratic

constraint to determine the corresponding gauge groups. These are the gauge groups which

can occur in the supergravities that admit maximally supersymmetric AdS6 vacua. For the

case at hand the quadratic constraint reduces to the usual Jacobi identity given in (2.6).

As a warm up let us first consider the simple situation where KrIJ = K0IJ = KIJK = 0

and we only have Krst non-zero. In this case, equation (2.6) reduces to the Jacobi identity

of an SO(3) algebra with the structure constants Krst = gεrst. We then simply recover the

pure F (4) gauged supergravity with an SU(2) ∼ SO(3) gauge group constructed in [6].

For KrIJ = K0IJ = 0 but KIJK 6= 0, the condition (2.6) gives rise to two separate

Jacobi identities for Krst and KIJK which correspond to two commuting compact groups.

The gauge group is accordingly SO(3) × H with H ⊂ SO(n) and compact. This gauge

group and the resulting AdS6 vacuum together with the dual five-dimensional SCFT have

already been studied in [7, 8].

As a next step let us also take KrIJ 6= 0 but still have K0IJ = 0. In this case the

SO(3)-singlet graviphoton A0 decouples from all other gauge bosons. This is very similar

to the seven-dimensional case studied in [13] where the gauge groups are embedded in

SO(3, n) ⊂ SO(4, n). If one additionally assumes that the gauge group is semi-simple

one can in fact list all possibilities. The Cartan-Killing form of these gauge groups must

be embeddable in the SO(3, n) invariant tensor η = (δrs,−δIJ) which imposes a strong

constraint. Furthermore, the existence of supersymmetric AdS6 vacua requires that the

gauge groups must contain SO(3) as a subgroup. The only possible semisimple gauge

groups are then given by

G̃×H (3.16)

where G̃ = SO(3), SO(3, 1) or SL(3,R) and H ⊂ SO(n+ 3− dim G̃) is a compact group.

We finally consider the most general case with all structure constants in (3.15) non-

zero. Follow a similar analysis in [14] we introduce the gauge generators embedded in

SO(4, n) as

(TΛ) Π
Γ = f Σ∆

Λ (tΣ∆) Π
Γ = f Π

ΛΓ (3.17)

4Recall that m is the mass parameter of the two-form in the gravitational multiplet.
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where (tΣ∆) Π
Γ = δΠ

[Ση∆]Γ are SO(4, n) generators in the vector representation. Splitting

the indies Λ = (0, i, I) decomposes the gauge generators as

(T0) Π
Γ = f Π

0Γ , (Ti)
Π

Γ = f Π
iΓ , (TI)

Π
Γ = f Π

IΓ , (3.18)

which couple to the vector fields A0, Ai and AI , respectively.

It is more convenient to write down the various independent components of the Jacobi

identity. They read

K l
[ij K

m
k]l = 0 , (3.19)

K I
iJ K j

IK +K I
Ki K

j
IJ +K r

JK K j
ri = 0 , (3.20)

K I
iJ K L

IK +K I
Ki K

L
IJ +K I

JK K L
Ii = 0 , (3.21)

K J
0I K K

Jj +K J
Ij K K

J0 = 0 , (3.22)

K K
IJ K L

K0 +K K
0I K L

KJ +K K
J0 K L

KI = 0 , (3.23)

K 0
[IJ K

M
K]0 +K r

[IJ K
M

K]r +K L
[IJ K

M
K]L = 0 . (3.24)

The first two relations (3.19), (3.20) imply that the SO(3) generators Ti have non-vanishing

elements in both SO(3) and SO(n) blocks. We therefore split the indices I, J,K, . . . into

two sets Î , Ĵ , K̂ = 1, . . . ,m and Ĩ , J̃ , K̃ = 1, . . . n −m such that only the Î , Ĵ , K̂ indices

mix with r, s, t indices. Or, in other word, we have KrÎĴ 6= 0 and KrĨJ̃ = 0. With this

convention the SO(3) generators take the form

Ti =


0

K k
ij

K K̂
iĴ

0n−m

 , (3.25)

where 0n indicates an n× n zero matrix.

The relation (3.22) corresponds to [Ti, T0] = 0 and thus T0 and Ti cannot have common

I, J,K indices or equivalently K0Î Ĵ = K0Ĩ Ĵ = 0. This determines the T0 generator to be

T0 =


0

03

0m

K K̃
0J̃

 . (3.26)

Equation (3.21) and the (Î , Ĵ , K̂, M̂) components of relation (3.24) imply that the TÎ
generators are given by

TÎ =


0

03 K K̂
Îr

K r
ÎĴ

K K̂
ÎĴ

0n−m

 . (3.27)

Therefore, the (Ti, TÎ) generators together form a non-compact group G′⊂SO(3,m), m≤n.

– 7 –
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Finally, the relation (3.23) and the (Ĩ , J̃ , K̃, M̃) components of relation (3.24) deter-

mine the structure of TĨ to be

TĨ =


0 K K̃

Ĩ0

03

0m

K 0
Ĩ J̃

K K̃
ĨJ̃

 . (3.28)

These generators together with T0 form another non-compact group G′′ ⊂ SO(1, n −m).

We then conclude that the general gauge group admitting maximally supersymmetric AdS6

vacua take the form

G′ ×G′′ (3.29)

where G′ ⊂ SO(3,m) and G′′ ⊂ SO(1, n −m). In an AdS6 background, the gauge group

is broken to its maximal compact subgroup SO(3) ×H ′ ×H ′′ in which H ′ ⊂ SO(m) and

H ′′ ⊂ SO(n−m).

To confirm this, we inspect the massive vector fields arising from the above symmetry

breaking. Defining AÎ = (L−1)ÎΛA
Λ and AĨ = (L−1)ĨΛA

Λ, we find that various compo-

nents of the Maurer-Cartan one-form P Iα are given by

P Î0 = (L−1)ÎΛdL
Λ

0, P Îr = (L−1)ÎΛdL
Λ
r +K Î

Ĵr
AĴ ,

P Ĩ0 = (L−1)ĨΛdL
Λ

0 +K Ĩ
J̃0
AJ̃ , P Ĩr = (L−1)ĨΛdL

Λ
r . (3.30)

By computing the scalar kinetic terms, we can indeed see that there is precisely one massive

vector field corresponding to each non-compact generators K r
ÎĴ

and K 0
Ĩ J̃

. These massive

vectors correspond to the broken non-compact generators of the full gauge group.

4 Moduli space of supersymmetric AdS6 vacua

In this section, we determine the flat directions of the scalar potential V which preserve

all 16 supercharges. These are the moduli of the AdS6 backgrounds corresponding to

supersymmetric marginal deformations of the five-dimensional superconformal field theories

dual to the AdS6 vacua identified in the previous section.

Similar to the analysis of [12–14], a necessary condition for the existence of these

moduli can be determined by considering possible deformations of the supersymmetry

conditions (3.1) near the AdS6 vacua. By varying the conditions in (3.5), we find

δ(e4σA) = 4〈A〉δσ + e4〈σ〉δA = 0 , (4.1)

δCIt = δDI
t = δBt = 0 . (4.2)

We now introduce a parametization of the variation of the coset representative with respect

to the 4n scalars φαI

δLΛ
α = 〈LΛ

I〉δφαI , δLΛ
I = 〈LΛ

α〉δφαI (4.3)

– 8 –



J
H
E
P
0
1
(
2
0
1
7
)
0
6
9

and their inverse

δ(L−1)Λ
α = −〈(L−1)Λ

I〉δφαI , δ(L−1)Λ
I = −〈(L−1)Λ

α〉δφαI . (4.4)

Using these relations and the decomposition of indices α = (0, r), we find

δLΛ
0 = 〈LΛ

I〉δφ0I , δLΛ
i = 〈LΛ

I〉δφiI , δLΛ
I = 〈LΛ

0〉δφ0I + 〈LΛ
r〉δφrI (4.5)

and

δ(L−1)Λ
0 = −〈(L−1)Λ

I〉δφ0I , δ(L−1)Λ
i = −〈(L−1)Λ

I〉δφiI ,
δ(L−1)Λ

I = −〈(L−1)Λ
0〉δφ0I − 〈(L−1)Λ

r〉δφrI .
(4.6)

With the help of these relations, we can rewrite the conditions (4.1) and (4.2) as

0 = δ(e4σA) = 4e4〈σ〉〈A〉δσ + 3e4〈σ〉〈CIr〉δφrI , (4.7)

0 = δBt = 〈CIt〉δφ0I + 2εrtk〈DIk〉δφrI , (4.8)

0 = δCIt = 2εtrsK[rIJδφs]J − εtrsKr0sδφ
0I − εtrsKrisδφ

iI , (4.9)

0 = δDI
t = K0Itδφ

0I +K0IJδφ
tJ −K0rtδφ

rI (4.10)

where

K0IJ = fΛΣΠL
Λ
0(L−1) Σ

I LΠ
J , KrIJ = fΛΣΠL

Λ
r(L
−1) Σ

I LΠ
J . (4.11)

Using the AdS6 conditions (3.5), (3.7) and (3.13) obtained in the previous section, we find

δσ = 0, K0Ĩ J̃δφtJ̃ = 0, KrstδφtĨ = 0, 2εrstK[rÎĴδφs]Ĵ +KrstδφtÎ = 0 . (4.12)

From these conditions, we immediately obtain δφtĨ = 0 for Krst 6= 0.

The last equation in (4.12) is similar to the one considered in [12, 13], and it has been

shown in [12] that this equation has general solutions of the form

δφsÎ = KsÎĴλ
Ĵ . (4.13)

The remaining scalars that are not fixed by the above conditions are δφ0Ĩ . We can readily

recognize that δφsÎ and δφ0Ĩ correspond to Goldstone bosons of the symmetry breaking

G′×G′′ → SO(3)×H ′×H ′′, with H ′ ⊂ SO(m) and H ′′ ⊂ SO(n−m) in the AdS6 vacuum.

These massless scalars are eaten by the massive gauge fields mentioned in the previous

section. Thus, all of the flat directions correspond to Goldstone bosons and no moduli

exist. This in turn is consistent with the fact that there are no marginal deformations

preserving all supersymmetry in the dual five-dimensional SCFTs.

5 Conclusions

In this paper, we have analyzed the general conditions for the existence of maximally

supersymmetric AdS6 vacua in the N = (1, 1) half-maximal gauged supergravities in six

dimensions. We have found that three of the graviphotons have to gauge an SU(2)R
R-symmetry while the forth one can be used to gauge a commuting non-compact group.

– 9 –
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The fact that the SU(2)R R-symmetry must be gauged is similar to the results in d = 4, 6, 7.

This is in general a necessary condition for the existence of AdS vacua as shown in [4]. It

is also consistent with the important role played by the corresponding R-symmetry in the

dual field theories [16]. Furthermore, all vacua we have identified have no flat directions

which preserve all supercharges corresponding to the absence of supersymmetric exactly

marginal deformations in the dual five-dimensional SCFTs.

We end the paper by briefly giving some comments on the R+ × SO(4, n) covariant

formulation in term of the embedding tensor. As shown in [23], there are two components

of the embedding tensor given by ξΛ and fΛΣΓ as well as a massive deformation of the

two-form field. The ξΛ is involved in gauging of the R+ factor. Due to many similarities

between the six-dimensional N = (1, 1) gauged supergravity considered here and the N = 2

gauged supergravity in seven dimensions, we expect that the R+ gauging and the massive

deformation could not be turned on simultaneously. Therefore, the existence of maximally

supersymmetric AdS6 vacua would require ξΛ = 0 as shown in [13] for the seven-dimensional

case. It would be of particular interest to explore this issue in particular to construct the

complete gauging of N = (1, 1) supergravity in the embedding tensor formulation.
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