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Abs t rac t  We review some approaches to qualitative uncertainty and 
propose a new one based on the idea of Absolute Order of Magnitude. We 
show that our ideas can be useful for Knowledge Discovery by introducing 
a derivation of the Naive-Bayes classifier based on them: the Qualitative 
Bayes Classifier. This classification method keeps Naive-Bayes accuracy 
while gaining interpretability, so we think it can be useful for the Data 
Mining step of the Knowledge Discovery process. 

1 Introduct ion  

Comprehensibility is a key characteristic for algorithm results to be useful in 
Knowledge Discovery in Databases tasks. 

Bayesian reasoning has been usually criticized as hard to explain and under- 
stand, but  achieves high performance rates with simple constructs, as happens 
for instance with the Naive-Bayes classifier[5]. 

Some approaches to increasing Bayesian reasoning comprehensibility appear 
in [3, 6, 12, 14, 15]. The main idea in all these approaches was to attach linguistic 
labels as "probable" or "very unlikely" to numerical probabilities, that  is to 
absolutes degrees of belief. Bayesian reasoning works primarily with changes in 
probability values, and these approaches do not seem to give any interpretation 
of such changes, giving as result hardly understandable explanations. It has been 
accepted that ,  unlike physical parameters, absolute probabilities do not seem to 
have values (except the endpoints) that  are universally interesting [13]. 

This problem was noticed also by Elsaesser, that  in [1] proposed the use of a 
version of Polya's "shaded inductive patterns" [10] for linguistic explanation of 
Bayesian inference. Elsaesser uses Oden's model [8] to create the linguistic labels 
related to changes in probability. Elsaesser explanations are comprehensible, 
but we have no security that  reasoning with the information given by these 
explanations really bring us to coherent conclusions, this is because explanation 
and reasoning are performed at different levels, and we are not allowed to use a 
previous explanation in a future case. 

Another approach is the one followed by Neufeld [7], Wellman [13] and Par- 
sons [9], using ideas from the field of qualitative uncertainty. The idea behind 
their work is finding whether a fact A is favoured, unfavoured or not altered by 
another fact B. Quoting Parsons: 
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Whereas in probabilistic networks the main goal is to establish probabil- 
ities of hypotheses when particular observations are made in qualitative 
systems the main aim is to establish how values change. 

Our approach can be viewed as a refinement of qualitative probabilistic networks 
(QPNs) showing that  slightly modified, Elsaesser explanations can be used not 
just for explanatory purposes but  also for reasoning and prediction achieving 
results similar to those of non-qualitative probabilistic reasoning, while keeping 
intact its interpretability. 

Next section briefly introduces qualitative probabilistic networks, concretely 
Wellman and Neufeld approaches. Section 3 introduces our qualitative approach 
to influences and synergies, making use of the absolute orders of magnitude 
model. Section 4 describes our proposal to use the qualitative influences and 
synergies in a Qualitative Bayesian classifier. Finally, Section 5 describes an 
empirical comparative study based on 15 datasets and analyses the results ob- 
tained with the aim of showing the good performance of our approach in terms 
of classification accuracy. 

2 I n t r o d u c t i o n  t o  Q u a l i t a t i v e  P r o b a b i l i s t i c  N e t w o r k s  

Two main approaches have been done to the concept of QPN. We will shortly 
review both here. 

2.1 W e l l m a n  a p p r o a c h  

For Wellman, a QPN is a pair G = (V, Q), where V is the set of variables 
or vertices of the graph and Q is a set of qualitative relationships among the 
variables. He introduces two main concepts for modelling QPNs as are qualitative 
influences and qualitative synergies. 

Wellman qualitative in f luences .  Qualitative influences can be thought of as 
qualitative relations describing the sign (direction) of the relationship between 
a pair of variables. A variable can influence another positively (+), negatively 
(-), or in no way (0). We should also consider the possibility that  the sign of the 
influence is unknown to us (?). If we use 5 to denote one of {+,-,0,?} we say a 
qualitative influence of a on b in direction 5 holds in the graph G = (V, Q) if 
(a, b, 5) E Q. For formally introducing the probabilistic semanticof this concept 
the way Wellman does, we need to previously define the set of predecessors that  
influence a variable in a network. 

predG(b) = {a](a,b, 5) E Q,. forsome 5 E { + , - , ? } }  (1) 

Now we can assign probabilistic meaning to influences. We say that  an 
influence edge (a, b, +)  E Q is satisfied in a concrete domain if for all x C 
predc (b) - {a} such that  x is consistent with both a and -~a, we have 

Pr(bia, x) ~ Pr(bi~a,x)  (2) 
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The meaning of this expression can be stated as: under any circumstances 
(x) tha t  are known to affect b, the presence of a makes b more likely than its 
absence. 
Parallel definitions can be done for (a, b, - ) ,  (a, b, 0) and (a, b, ?), replacing > by 
~, =, and "no condition at all" ((a, b, ?) always holds) respectively. 

W e l l m a n  qualitative synergies. Qualitative synergies describe the qualita- 
tive interaction among influences. The idea behind them is that  two variables 
synergically influence a third if their joint influence is greater than separate, 
statistically independent, influences. The formalisation of this idea can be seen 
in [13], and will be skipped here. 

2.2 Neufeld approach 

Neufeld formalises the idea of qualitative influence by means of the concept of 
favouring. He says a favours b if Prob(bla ) > Prob(a). He includes four types of 
edges in what he calls inference graphs: 

- De/easible links. Given a, b is more likely to happen. 
a ~ b if i > Pvob(bla ) > P'cob(b) (3) 

- Logical links. Given a, b will surely happen. 
a ==~ b i f  1 = Prob(bla ) > Prob(b) (4) 

- Negative defeasible links. Given a, b is less likely to happen. 
a -/+ b i f  1 > Prob(~bla ) > Prob(~b) (5) 

- Negative logical links. Given a, b will not happen. 
a :2~ b i f  1 = Prob(~b[a) > Prob(~b) (6) 

Once introduced these concepts Neufeld uses them to do common sense reason- 
ing. For more details on his approach to qualitative uncertainty see [7]. 

3 I n f l u e n c e s  a n d  s y n e r g i e s  r e v i s i t e d  

Neufeld and Wellman ideas are useful for common sense reasoning, planning 
under uncertainty and when qualitative differential equations are not applicable. 
Our idea is to adapt them in order to make them useful for classification and 
characterization of sets. 

The qualitative model used by both approaches is the signs model, composed 
of three categories +,-,0 and ? for representing the unknown. More sophisticated 
models have risen from the field of qualitative reasoning. One of these models 
is the absolute orders of magnitude model [11], that  considers a finer parti t ion 
of the real line than the one given by the signs, allowing also distinctions in 
quantities of the same sign. This model qualifies quantities into seven classes, 
from Negative Large to Positive Large, including Zero. Quantities of the same sign 
are divided into three classes( Large, Medium and Smal 0 that  are very natural  in 
human reasoning. We have discretized influences into this new model, in a way 
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coherent with Neufeld works. Neufeld states a f a v o u r s  b if Prob(b la  ) > Prob(b)  
Prob(bla) 

tha t  is, if Prob(b) > 1. This quotient was also used by Elaesser, in his work trying 
to explain bayesian reasoning, to denote the shift in belief tha t  a produces in b. 
We will define influence of a in b as: 

Prob(bla ) 
Influence(a, b) -- - -  (7) 

Prob(b) 

We note that:  
In f luence (a ,  b) = In f luence(b ,  a) (S) 

Once we have a definition for influence, we make use of the absolut order of 
magnitudes model to make influences comprehensible. By discretizing influences 
into the seven classes seen in Figure 1, we perform a process similar to that  of 
Elsaesser assigning linguistic labels as "much more likely", '% little less likely", 
and so on. The boundary  values established in Figure 1 were selected over a set 
of alternatives because they performed bet ter  than the rest in the classification 
experiments described in Section 5. 

much less somewhat less a little less equally a little more somewhat more much more 

I I I I f I I I 
0 0.33 0.67 0.95 1 1.05 1.5 3 infinity 

F igure l .  Influence discretization scale 

We have given an expression for influences and a scale for their discretization. 
Wha t  about  synergies?. Synergies can be seen as the difference in influence 
between two facts that  happen together with respect to these two facts happening 
separately. We can give the following expression for synergies of two variables: 

Synergy ( {a l ,  a 2 } ,  b) = In f luence(a1  N a2, b) (9) 
In f luence(a1 ,  b) * In f luence(a2 ,  b) 

4 A n  a p p l i c a t i o n  o f  q u a l i t a t i v e  i n f l u e n c e s  a n d  s y n e r g i e s :  

T h e  Q u a l i t a t i v e  B a y e s i a n  C l a s s i f i e r  

In this section we will show tha t  qualitative influences and synergies can be used 
for reasoning and, more concretely, for classification tasks, giving high classi- 
fication rates. We will use them to get a qualitative version of a well known 
classification method,  the Bayesian classifier. 
The  Naive-Bayes classifier [5] is a classification method based on Bayesian rea- 
soning. Given a test  example e from a probabilistic viewpoint we must  choose the 
class i tha t  maximizes P ( C  -- i lE -- e). Developing this conditional probabil i ty 
according to the Bayes rule we have: 

P(C =ilE = e) = P(C = i) * P(E = elC ---- i) (10) 
P(E = e) 

If  the at t r ibutes  are independent given the class, it holds: 
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N 

P ( E  = elC = i) = H P ( E j  = e j lC  = i) (11) 

where N is the number of features ~ f  the example. Since P ( E  = e) is inde- 
pendent of the class, Naive-Bayes tells us to choose the class which maximizes: 

N 

P ( C  = i) * I I  P ( E j  = ej[C = i) (12) 

An interpretation of this formula can be that  P ( C  = i) is our initial belief in 
the fact tha t  i is the class of our example, and each one of the factors P ( E j  = 
e j lC  = i) can be seen as shifts that  modify this belief. We will adapt  these shifts 
in belief to coincide with our previously defined influences. 
Returning to Equation 10, and assuming statistical independence between the 
at tr ibutes,  we are allowed to develop the denominator the same way we have 
done with the numerator:  

N 

P ( E  = e) = H P ( E j  ---= ej)  (13) 

j = l  
and substi tuting in 10 we have: 

f i  P ( E j  = ej[C = i) 

j = l  (14) P ( C  = i I E =  e) = P ( C  = i) * N 

I]  P(Ej = e~) 
j=l  

tha t  in terms of influences can be expressed as 
N 

P ( C  = i l E  = e) = P ( C  -= i) * H I n f l u e n c e ( E j  = ej ,  C = i) (15) 

Now we can apply this rule with quJ~]tative influences and analyze the dif- 
ferences in accuracy between applying the Naive-Bayes classifier where shifts in 
belief vary continuously from 0 to 1 and our qualitative influences framework, 
where shifts only can have the seven values we have previously seen. 

Before doing this, we want to introduce the idea of synergy in our classifier, 
because we have made two independence assumptions and synergy can improve 
the performance when the classification problem at hand does not fulfill this 
assumptions,  because synergies precisely t ry  to express interat t r ibute dependen- 
cies with respect to the class. Our first idea was to calculate all the synergies 
between all pairs of variables and apply them. The problem with this approach 
is tha t  it is not an approximation of the Bayes formula, and hence is not theoret-  
ically well founded and empirically does not perform correctly. In fact, applying 
synergies tha t  way made accuracy get worse. The reason is tha t  synergies can be 
seen as corrections of the approximation to the probabilities given by influences. 
I t  is not correct to apply a synergy correction for two variables Ei and Ej  and 
also apply it to Ej  and Ek, because we are correcting Ej  influence twice. Tha t  
is why we will follow the next schema: 

We first classify the set of synergies that  affect to our example into Large, 
Medium and Small synergies, no mat te r  if they are positive or negative. Then 
we t ry  to apply as many Large synergies as possible. Once this has been done 
we repeat  the same process for medium and finally for small synergies. 
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Algorithmically, it can be expressed as shown in Figure 2. The operations in the 
algorithm are calculated by using a representative for each interval. We tested 
two approaches, one taking as representative a value in the center of each interval 
and the other taking the value of the class tha t  is nearer to equality. Using the 
discretization values of 1, our first method will give as representative of "much 
less" 0.165, as representative of "somewhat less" 0.5 and so on, while for the 
same values, the second method will choose 0.33 as representative of "much 
less", 0.67 for "somewhat less ' and  so on. The second approach performed bet ter  
empirically, consequently it is the one we will use from now on. 

When our Qualitative Bayesian Classifier (QBC) is restricted to influences we 
call it First Order QBC (FOQBC),  when synergies of two variables are applied 
we call it Second Order QBC (SOQBC). The development for order greater  
than  second is not trivial because different developments of the greater  order 
approximations are possible. 

program SOQBC; 
foreach class i 

N 
C l a s s P r o b [ i ]  = P(Cffi i)  * l-I l n f l u e n c e ( E j  = e j , C  = i) 

j=l  
InfluencesCorrected[i] ffi $; 

ApplySynergies (LargeSynergies (class i)) ; 
ApplySynergies (MediumSynergies (class i)); 
ApplySynergies (SmallSynergies (class i)) ; 

end 
Select the class i with highest ClassProb[i]; 

end 
procedure ApplySynergles (SynargySet) 

W h | l e  SynergySet ~ $ 
Randomly choose a Synergy (namely {Ej = e j ,Ek  = ek}) 

and delete it from SynergySet 
|f ({Ej = ej,Ek = ek}N InfluencesCorrected) -- 

ClassProb[i] = ClassProb[i] * Synergy({Ej = ej,Ek = ek},C=i) 
InflCorrected [i] = InflCorracted[i] U{Ej = ej, Ek = ek} 

Figure2.  Synergies application strategy 

5 E m p i r i c a l  c o m p a r i s o n  

We have evaluated the classification accuracy for First and Second Order QBC 
and compared it with the Naive-Bayes classifier, as well as with other widely used 
machine learning algorithms. Our experiment consists in evaluating the average 
accuracy of each classifier, as well as its s tandard deviation for 15 datasets  from 
the Irvine repository. Some information regarding these datasets can be seen 
in 1 For each dataset  and classification method we performed 50 runs, keeping 
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the 70% of the dataset as training set and the remaining 30% as test set. We 
included our algorithms in the A4s  [4] library, and used the facilities this 
library provides for machine learning experimentation. We compared the First 
and Second Order QBC with the well known machine learning algorithms CN2, 
Naive-Bayes classifier, IBL, and ID3. The results are summarized in Table 2. 

~ r t h e r m o r e ,  in table 3 we show how many times each classification algorithm 
ranked in the position indicated by the column identifier. In this table "1" means 
the algorithm ranked once in the position specified by the column under which 
it appears, "22" that  it ranked twice , "333" that  it ranked three times and so 
o n .  

Datase t  
B R E A S T - C A N C E R  9 
B R E A S T  1 0  

CRX 15 
GLASS2 I0 
H E A R T  1 3  

H Y P O T H Y R O I D  2 5  

I R I S  4 
M O N K 1  6 

M O N K 2  6 

M O N K 3  6 

P A R I T Y  5 - ~ - 5  1 0  

S O Y B E A N - L A R G E  3 5  

S O Y B E A N - S M A L L  3 5  

V O T E S  1 6  

W A V E F O R M -  2 1  2 1  

Attr ibutes  I Instances  I Classes[Missing]  

286 2 none  
699 2 16 
690 2 ~ w  
214 2 none  
270 2 none  

3162 2 some 
150 3 none  
432 2 none  
432 2 none  
432 2 5% 
100 2 none  
316 19 some 
47 4 none  

435 2 few 
5000 3 none  

T a b l e l .  D a t a s e t s  informat ion 

[Dataset [ CN2 

BREAST-CANCER 73.82 4- 0.39 
BREAST 05.88 4- 0.15 
CRX 86.86 4- 0 .29 
GLASS2 78.92 4- 0 .79 
HEART 79.70 4- 0 .62 
HYPOTHYROID 98.9 4- 0 .04  
IRIS 95.24 4- 0 .42 
MONK1 9 1 . 6 3  4- 0 . 9 5  
MONK2 7 2 . 7 7  4- 0.59 
MONK3 90.04 4- 0.63 
PARITY 5~5 64.26 4- 0.71 
SOYBEAN-LARGE 89.52 4- 0.28 
SOYBEAN-SMALL 90.93 4- 1.36 
VOTES 94.89 4- 0.2 
WAVEFORM-21 74.33 4- 0.43 

Buyes IBL 

77.01 4- 0.54 

ID3 [ FOQBC } SOQBC 

74.04 4- 0 .52 69.98 4- 0 .52 71.69 4- 0 .49 
96.2 4- 0 .15 97.42 4- 0.11 97.35 4- 0.11 

86.97 4- 0 .23 86.22 4- 0.2 8 7 . 7 5  4- 0 . 1 0  
80.89 4- 0 .83 76.72 4- 0.76 76.95 ::[: 0 .73 
80.76 4- 0.52 81.34 4- 0.48 82.25 4- 0.5 

0 8 . 9 4  4- 0 . 0 3  98.56 -4- 0.05 98 ,44  4- 0 ,05  
9 6 . 9 0  4- 0 , 8 7  94.69 4- 0.4 : 94 .92 4- 0 .36 
83.76 + 0.98 71.66 4- 0.66 88.73 4- 0 .62 
69.2 4- 0 .73 60 .94  4- 0 .47 61.37 4- 0 .54 

91.60 4- 0.39 91.82 4- 0.51 91.46 4- 0 .4  
64.14 4- 0.75 51.71 4- 0 .64 50.67 4- 0 .66 
91.44 4- 0.25 88.04 4- 0.2 86.33 4- 0 .39 
93.76 4- 1.11 99.01 4- 0 .78 99.02 4- 0 .77  

9 5 . 0 9  4- 0 . 1 8  88.17 4- 0 .28 91.61 4- 0 .26 
78.31 4- 0.39 79.98 4- 0.4 8 3 , 0 7  4- 0 . 4  

69.56 4- 0.5 
0 7 . 5  4- 0 . 1 1  
86.51 4- 0.21 
77.89 • 0 .75 
82.11 4- 0 .42 
98.43 4- 0 .05 
94.99 i 0 .35 
74.67 0.61 
57.41 4- 0 .53 

9 2 . 2 5  4- 0 . 8 0  
50.45 4- 0.76 
90.66 4- 0.22 

9 0 . 1 4  4- 0 . 7 7  
89.74 4- 0.25 
82.81 4- 0.35 

97.09 4- 0.11 
87.17 4- 0.23 

8 8 . 2 8  4- 0 . 5 9  
79.90 4- 0.49 
97.7 4- 0.05 

96.52 4- 0.33 
81.68 4- 0 .47 
70.01 4- 0.51 
85.83 4- 0.53 
0 5 . 4 3  4- 0 . 7  
9 2 . 5 9  4- 0 . 2  
98.55 4- 0.81 
93.99 4- 0.23 
82.16 4- 0.41 

T a b l e 2 .  Average  accuracies  and their s tandard dev iat ions  
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I ] First I SecondlThirdl FourthlFifth I Sixth] 
ID3 333 333 55555 1 333 
IBL 4444 333 22 333 1 22 
SOQBC 333 22 1 55555 333 1 
CN2 22 333 333 22 1 4444 
BAYES 333 22 1 22 4444 333 
FOQBC 22 333 22 333 55555 

Table3.  Ranking table 

5.1 R e s u l t  a n a l y s i s  a n d  j u s t i f i c a t i o n  

Table 3 shows tha t  the SOQBC has an accuracy in the level of the best classifiers 
being the best one in 3 out of 15 times, so it can be considered as a valuable 
al ternative to these methods. Our method has an accuracy at least as good as the 
one provided by Naive-Bayes and offers the advantage of a common classification- 
explanation space. Tha t  is, we are not keeping two separate representations, one 
for reasoning and the other for explanation. Tha t  allows the user to actually 
apply the discovered knowledge in his own decisions with a greater  confidence, 
because we have shown tha t  reasoning with it gives acceptable accuracy results. 

On the other hand, we consider the FOQBC results good enough considering 
the simplicity of the classifier induced. Its results are not too far from the ones 
given by continuous Bayes (surprisingly four times FOQBC outperforms Bayes 
as shown in Table 2). This can be seen as a confirmation of the idea exposed by 
Friedman in [2]: 

Good probability estimates are not necessary ]or good classification; 
similarly, low classification rates does not imply that the corresponding 
class probabilities are being estimated (even remotely) accurately. 

FOQBC makes a extremely inexact estimation of the probabilities, but has clas- 
sification results only slightly worse than the ones given by more complex clas- 
sifiers. Our intuition is that  the difference in performance between FOQBC and 
Naive-Bayes will increase when the number of examples in the dataset  increases 
but  we have not tested it yet. 

6 C o n c l u s i o n s  

We have introduced qualitative influences and synergies based on the absolute 
orders of magnitude model. We have developed a competit ive learning algorithm 
(SOQBC) based on these ideas, tha t  offers a good balance between the accuracy 
of its predictions and its understandability. These facts make us believe that  
bo th  the ideas of qualitative influences and synergies and the classifier can be 
useful to the Knowledge Discovery community. 
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