
Generat ion of Dis tr ibuted Parallel Java
Programs

Pascale Launay and Jean-Louis Pazat

IRISA, Campus de Beaulieu, F35042 RENNES cedex
Pascale. Launay@ irisa, fr, Jean-Louis. Pazat @irisa. fr

Abst rac t . The aim of the Do! project is to ease the standard task of
programming distributed applications using Java. This paper gives an
overview of the parallel and distributed frameworks and describes the
mechanisms developed to distribute programs with Do!.

1 I n t r o d u c t i o n

Many applications have to cope with parallelism and distribution. The main
targets of these applications are networks and clusters of workstations (Nows
and cows) which are cheaper than supercomputers. As a consequence of the
widening of parallel programming application domains, programming tools have
to cope both with task and data parallelism for distributed program generation.

The aim of the Do/project is to ease the task of programming distributed
applications using object-oriented languages (namely Java). The Do/program-
ruing model is not distributed, but is explicitly parallel. It relies on structured
parallelism and shared objects. This programming model is embedded in a frame-
work described in section 2, without any extension to the Java language. The
distributed programs use a distributed framework described in section 3. Pro-
gram distribution is expressed through the distribution of collections of tasks
and data; the code generation is described in section 4.

2 P a r a l l e l F r a m e w o r k

In this section, we give an overview of the parallel fl'amework described in [8].
The aim of this framework is to separate computations from control and syn-
chronizations between parallel tasks allowing the programmer to concentrate on
the definition of tasks. This framework provides a parallel programming model
without any extension to the Java language. It is based on active objects (tasks)
and structured parallelism (through the class PAn) that allows the execution of
tasks grouped in a collection in parallel.

The notion of active objects is introduced through task objects. A task is an
object which type extends the TASK class, that represents a model of task, and is
part of the framework class library. The task default behavior is inherited from
the behavior described in the TASK class through its run method. This behavior

730

can be re-defined to implement a specific task behavior. A task can be activated
synchronously or asynchronously.

We have extended the operators design pat tern [6] designed to express reg-
ular operations over COLLECTIONs through OPEP~ATORs, in order to write data-
parallel SPMD programs: a COLLECTION manages the storage and the accesses to
elements; an OPERATOR represents an autonomous agents processing elements.
Including the concept of active objects, we offer a parallel p rogramming model,
integrating task parallelism: active and passive objects are stored by collections;
a parallel program consists in a processing over task collections, task parameters
being grouped in da ta collections. The PAd class implements the parallel acti-
vation and synchronization of tasks, providing us with structured parallelism.
Nested parallelism can be expressed, the PAd class being a task.

Figure 1 shows an example of a simple parallel program, using collections of
type ARRAY; the class MY_TASK represents the program specific tasks; it extends
TASK, and takes an object of type PAI~AM as parameter .

i m p o r t DO.SHARED.*;

/* the task definition */I
publ ic class MY_TASK extends TASK {

public void run (Object param) {
MYA)ATA data = (MY_DATA)paFam;
data.select (criterion);
data.print(out); data.add(value); } }

/* the task parameter "1/
publ ic class MY_DATA {

public void add(...) { ... }
public void remove(. . .) { ... }
public void print(. . .) { ... }
public void select(...) { ... } }

public class SIMPLE_PARALLEL {
public static void main (String argv[]) {

/* task and data array initializations */
ARRAY tasks -= new ARRAY(N); ARRAY data ---- new ARRAY(N);
for (int i=0; i<N; i++)

{ tasks.add (new MY_TASK(), i); data.add (new PARAM0, i); }
/* parallel activation of tasks */
PAR par = new PAR (tasks,data); par.call 0; } }

Fig. 1. A simple parallel program

3 D i s t r i b u t e d F r a m e w o r k

The distributed framework [9] is used as a target of our preprocessor to dis-
t r ibute parallel programs expressed with our parallel framework. In the parallel
framework, we use collections to manage the storage and accesses to active and
passive objects. The distributed framework is based on distributed collections: a
distr ibuted collection is a collection tha t manages elements mapped on distinct
processors, the location of the elements being masked to the user: when a client
retrieves a remote element through a distributed collection, it gets a remote refer-
ence to the element, that can be invoked transparently. Distributed tasks are acti-
vated in parallel by remote asynchronous invocations. A distributed collection is

731

composed of fragments mapped on distinct processors, each f ragment managing
the local subset of the collection elements. A local fragment is a non distr ibuted
collection; the distributed collection processes an access to a distr ibuted element
by remote invocation to the fragment owning this element (local to this element).
To access an element of a distributed collection, a client identifies this element
with a global identifier (relative to the whole set of elements). The distr ibuted
collection has to identify the fragment owning the element and t ransform the
global identifier into a local identifier relevant to the local fragment. The task of
converting a global identifier into the corresponding local identifier and the owner
identifier devolves on a LAYOUT_MANAGER object. Different distribution policies
are provided by different types of layout_managers. The program distribution is
guided by the user choice of a specific layouLmanager implementat ion.

Nevertheless the distributed framework does not manage the remote creations
and accesses. They are handled by a specific runtime, and require to t ransform
objects of the program (section 4).

4 D i s t r i b u t e d C o d e G e n e r a t i o n

We have developed a preprocessor to t ransform parallel programs expressed with
our parallel framework into distributed programs, using our distr ibuted frame-
work. The parallel and distributed frameworks have the same interface, so the
framework replacement is obtained by changing the imports in the program. De-
spite this, we have to transform some objects of the program: the objects stored
in the distributed collections are distributed upon processors and need to have
access to other objects. So, we have to:

- create (map) objects of the program on processors: when an object is located
on a processor, its at tr ibutes are managed by the local memory and its
methods run on this processor;

- have a mechanism allowing objects to be accessed remotely without any
change from the caller point of view.

We have extended the object creation semantics to take into account remote
creations of objects. Servers running on each host as separate threads are re-
sponsible for remote object creations. This extension is implemented using the
s tandard Java reflection mechanism. To allow the transparent accesses to remote
objects, the Do! preprocessor transforms a class into two classes:

-- the implementetion clcss contains the source methods implementat ions. An
implementa t ion object is not replicated and is located where the source ob-
ject has been created (mapped). It is shared between all proxy objects.

- the proxy cless has the same name and interface as the source class, but the
method bodies consist in remote invocations of the corresponding methods
in the implementat ion class. The proxy object handles a remote reference on
the implementat ion object; it catches the invocations to the source object
and redirects them to the right host. The proxy object state is never modified,
so it can be replicated on each processor getting a reference on the source
object.

732

5 R e l a t e d W o r k

Many research projects have appeared around the Java language, aiming at fill-
ing the gaps of parallelism and distribution in Java. Some of them are presented
in [1]. Some projects are based on parallel extensions to the Java language:
tools [2, 4] produce Java parallel (multi-threaded) programs, relying on a stan-
dard Java runt ime system using thread libraries and synchronization primitives;
they do not generate distributed programs; others [7, 10] are based on distr ibuted
objects and remote method invocations. Other projects use the Java language
without any extension: some environments [5] rely on a data-paral lel program-
ruing model and a SPMD execution model; as in the Do/project, parallelism may
be introduced through the notion of active objects [3].

6 C o n c l u s i o n

In this paper, we have presented an overview of the Do/ project, that aims
at au tomat ic generation of distributed programs from parallel programs using
the Java language. We use the Java RMI as run-t ime for remote accesses; a
foreseen extension of this work is to use CORBA for objects communications.
Ongoing work consists in extending the parallel and distributed frameworks to
handle dynamic creation of tasks, through dynamic collections (e.g. lists) and
distributed scheduling.

R e f e r e n c e s

1. ACM 1997 Workshop on Java for Science and Engineering Computation. Concur-
rency: Practice and Experience, 9(6):413-674, June 1997.

2. A. J. C. Bik and D. B. Gannon. Exploiting implicit parallelism in Java. Concur-
rency, Practice and Experience, 9(6):579-619, 1997.

3. D. Caromel. Towards a method of object-oriented concurrent programming. Com-
munications of the ACM, 36(9):90-102, September 1993.

4. Y. Ichisugi and Y. Roudier. Integrating data-parallel and reactive constructs into
Java. In OBPDC'97, France, October 1997.

5. V. Ivannikov, S. Gaissaryan, M. Domrachev, V. Etch, and N. Shtaltovnaya. DPJ:
Java class library for development of data-parallel programs. Institute for System
Programming, Russian Academy of Sciences, 1997.

6. J.-M. J~z~quel and J.-L. Pacherie. Parallel operators. In P. Cointe, editor,
ECOOP'96, number 1098 in LNCS, Springer Verlag, pages 384-405, July 1996.

7. L. V. Kal6, M. Bhandarkar, and T. Wilmarth. Design and implementation of
Parallel Java with a global object space. In Conference on Parallel and Distributed
Processing Technology and Applications, Las Vegas, Nevada, July 1997.

8. P. Launay and J.-L. Pazat. A framework for parallel programming in Java. In
HPCN'98, LNCS, Springer Verlag, Amsterdam, April 1998. To appear.

9. P. Launay and J.-L. Pazat. Generation of distributed parallel Java programs.
Technical Report 1171, Irisa, February 1998.

10. M. Philippsen and M. Zenger. JavaParty - transparent remote objects in Java. In
PPoPP, June 1997.

