
Cryptanalysis of Ladder-DES

Eli Biham

Computer Science Department
Technion - Israel Institute of Technology

Haifa 32000, Israel
Email: biham@cs.technion, ac.il

WWW: http://www.cs.technion.ac.il/-biham/

Abs t rac t . Feistel ciphers are very common and very important in
the design and analysis of blockciphers, especially due to four reasons:
(1) Many (DES-like) ciphers are based on Feistel's construction. (2) Luby
and Rackoff proved the security of a four-round Feistel construction when
the round functions are random. (3)Recently several provably secure
ciphers were suggested, which use other (assumed secure) ciphers as the
round function. (4) Other such ciphers use this construction as attempts
to improve the security of other ciphers (e.g., to improve the security of
DES).
In this paper we cryptanalyze Ladder-DES, a four-rounds Feistel cipher
using DES in the round function, and show that its security is smaller
than expected.

1 In troduct ion

Feistel ciphers are very common and well known. In particular, Feistel's con-
struction is used in the Data Encryption Standard[8], Lucifer[12] and their many
successors (such as Feal[ll,7], GDES[10], and many others). This construction
was studied from the theoretical point of view by Luby and Rackoff[4], who con-
cluded that four rounds suffice to prove its security when the round function is
random. Many suggested cryptosystems were designed with this construction,
using another cipher as the round function: some examples are Bear and Lion[2],
Beast[6], and Ladder-DES[9]. Many other works had generalized or adopted the
Feistel/Luby-Rackoff construction (some of them are [5,1]).

In this paper we cryptanalyze Ladder-DES, a four-round Feistel cipher, whose
aim is to increase the security of DES, using DES in the round function. We
describe the attack on Ladder-DES, and show that the security of Ladder-DES
is smaller than expected. This attack can be generalized to many similar Feistel
ciphers whose two parts (halves) are of the same size and whose round functions
are permutations. This attack uses a novel application of the birthday paradox.

Cryptanalysis of Ladder-DES

2 D e s c r i p t i o n O f L a d d e r - D E S

135

First we describe ladder-DES. It consists of four Feistel rounds, each applies
DES as the round function. The four keys of the four DES applications serve as
the key of Ladder-DES. The following figure describes Ladder-DES:

A=L_O B=L_ 1
i kl l
v F_I v [

XOR <- DESI [L_I
I I
I k 2 I
[v F_2 v

L 2 [. . . . DES2 -> X0R
I I
I k 3 J
v F_3 v [

X0R <- DES3 [L_3
I I
I k 4 I
[v F _ 4 v

L_4 [.... DES4 -> XOR

I [
V V

C=L_4 D=L_5

The rounds are numbered f rom 1 to 4, Li is the 64-bit input of DES in round
i, and Fi is the output of DES in round i. L0 and L5 are the left halves of the
plaintext and the ciphertext, respectively.

3 A c h o s e n P l a i n t e x t A t t a c k

The main tool of the attack is the birthday paradox, which is used in a very
unusual way. Usually the birthday paradox is used to find a collision (two equal
values) in a set of v ~ random values. Our attack uses the birthday paradox to
identify whether given values are calculated by a pseudo-random function or a
pseudo-random permutation. In the first case, the birthday paradox predicts the
existence of a collision given x/~ values. In the later case, collision cannot occur
even given all the n values. In our attack the key is found only when we identify
that there is no collision. This is the only use of the birthday paradox in this way
which we are aware of.

136 Eli Biham

In the attack we choose 236 plaintexts of the form (A,B) where B is your
favorite (or random) 64-bit fixed constant, and A gets 236 different 64-bit values.

In this context, L1 is fixed in all the 236 encryption runs, and L0 gets 236
different values in the 236 encryption runs. for simplicity, we will call this property
of L0 a permutation (i.e., there is no collision; this property holds even in all the
264 possible plaintexts with a fixed B). F1 is L1 encrypted under a fixed (but
unknown) key, thus it is fixed in all the runs. A permutation XORed with a
fixed value is also a permutation, and thus L2 is a permutation, and F2 is also a
permutation. L] is fixed, and thus L3 and F3 are permutations as well. L4 is not a
permutation: it is a mix of two permutation, which behaves like a pseudo-random
function.

Our aim is to find the permutation in L3, given the ciphertext (C, D) =
(L4, Ls).

When the 236 ciphertexts are given, we try all the 256 possible keys k4, one
by one, using the following algorithm:

for each possible key k4 (in range 0 to 256 - 1)
for each ciphertext (Ci, Di) (i = 1 , . . . , 236)

compute Lw 'k4 = DESk4 z (C,) @ D,
if a collision occurs (i.e., Lw 'k4 = -3rJ'k4 for some j < i)

conclude that k4 is wrong, and try next k4
end for
- We reach here only when k4 is the right key!!
conclude that k4 is the key

end for

When we decrypt the ciphertext with a wrong candidate for k4, the one-round
decryption function (that computes L3) is expected to behave like a random
function. For each candidate key we decrypt the fourth round of all the 236
ciphertexts, or till we get two equal values of L3. If two equal values of L3 are
found, L3 is not a permutation, and thus the candidate for k4 is not the key.
In average about 232 candidates are required to discard a wrong candidate. The
real value of k4 does not imply any collision of L3 even if all the 264 possible
ciphertexts are decrypted by one round, and thus it can be identified.

Later, the values of k3 can be found with the same data, because L2 is a
permutation, but if a wrong value of k3 is used during decryption, the resultant
value of L2 would not be a permutation. A simpler method to find k3 takes two
of the plaintexts, compute the difference of the output of F3 as the XOR of the
differences of L0 and of L4. Then, it searches exhaustively for the key k3 which
satisfies this difference. False alarms can be identified and discarded using a third
plaintext.

Cryptanalysis of Ladder-DES 137

The remaining key kl and k2 can then be found by exhaustive search, which
would require only one plaintext/ciphertext sample, taken from the data we
already have. Each of kl and k2 would be found with complexity 256, after
k3 and k4 are known.

Some notes on the birthday paradox:

About X/2. log~ 2.264 -- 1.177.232 ~ 232 random values are required to
find two equal 64-bit values with probability 1/2, and X/2-log~ 2 .264 . m =
x/-m. 1.177-232 random values are required to find such a pair with probability
1 - 2 -m. In particular, in the interesting case when m=56, and we have an error
probability of 2 -56, we need only v/-~ �9 1.177 �9 232 -- 8.1 �9 232 -- 235 values to
identify whether they are the result of a random function or a permutation. Thus
given 235 ciphertexts we can identify the key almost without mistakes, and with
236 ciphertexts we can be almost ensured to have no mistakes (error probability
about e-128 = 2-185, which causes probability 2-129 for a false alarm). In average
we need only 232 trys, and only in a few cases we need more than 234 trys for a
key (except for the real key).

Complexity:

We try 256 keys, for each we calculate in average 232 single DES's before
we discard it. Thus our complexity is about 288 to find k4. The complexity to
find k3 is 257. kl and k2 can then be found with complexity 256 each. Thus,
the total complexity is about 288. Only 235-236 chosen plaintexts are required.
This complexity is much less than the expected 2112 complexity of a meet in the
middle attack[3], which was claimed for this cryptosystem.

4 A K n o w n P l a i n t e x t A t t a c k

The complexity and number of required plaintexts of this known plaintext attack
are about the same as of the chosen plaintext attack (290 complexity, 236 known
plaintexts). The amount of required memory is however much larger than the
chosen plaintext attack requires.

When the plaintexts/ciphertexts are given, we try all the 256 possible keys k4
one by one. For each k4 we search for collisions in L3 as in the chosen ciphertext
attack, but this time collisions should occur for all the keys. We keep the first two
collisions we find (in lexicographic order of the index of the plaintexts) in a table
(of size 2 �9 256, each keeps only the index of the pair). Similarly, we try all the
values of kl and search for collisions in F3 (F3 = A @ C @ DESK1 (B)). Clearly,
a pair collides in L3 iff it collides in F3. We then search for pairs in the first
table which have the same indices as pairs in the second table: only such pairs
can suggest the right kl and k4. It is expected that only the right kl and k4 will

138 Eli Biham

collide in two same pairs (average of 2-16 false alarms; additional safety margins
can be added by keeping three colliding pairs in the tables, which reduces the
rate of false alarms to 2-80).

The remaining k2 and k3 are easily found later with complexity 2 sT.

This attack requires 236 known plaintext, 290 work (in average to find the first
two colliding pairs for each key) and requires 2 ~7 space (about 260-261 bytes).

5 Acknowledgements

We are very grateful to Don Coppersmith for his various comments which im-
proved the results of this paper. This research was supported by the fund for the
promotion of research at the Technion.

References

1. William Aiello, Ramarathnam Venkatesan, Foiling Birthday Attacks in Length-
Doubling Transformations, Lecture Notes in Computer Science, Advances in
Cryptology, proceedings of EUROCRYPT'96, pp. 307-320, 1996.

2. Ross Anderson, Eli Biham, Two Practical and Provably Secure Block C~phers:
BEAR and LION, proceedings of Fast Software Encryption, Cambridge, Lecture
Notes in Computer Science, pp. 113-120, 1996.

3. W. Diffie, M. E. Hellman, Exhaustive Cryptanalysis of the NBS Data Encryptzon
Standard, Computer, Vol. 10, No. 6, pp. 74-84, June 1977.

4. M. Luby, C. Rackoff, How to construct pseudorandom permutations from
pseduorandom functions, SIAM Journal on Computing, Vol. 17, No. 2, pp. 373-
386, 1988.

5. Stefan Lucks, Faster Luby-Rackoff Ciphers, proceedings of Fast Software Encryption,
Cambridge, Lecture Notes in Computer Science, pp. 189-203, 1996.

6. Stefan Lucks, BEAST: A Fast Block Cipher for Arbitrary Blocksizes, 1996.
7. Shoji Miyaguchi, Akira Shiraishi, Akihiro Shimizu, Fast Data Encryption

Algorithm FEAL-8, Review of electrical communications laboratories, Vol. 36,
No. 4, pp. 433-437, 1988.

8. National Bureau of Standards, Data Encryption Standard, U.S. Department of
Commerce, FIPS pub. 46, January 1977.

9. Terry Ritter, Ladder-DES: A Proposed Candidate to Replace DES, appeared in the
Usenet newsgroup sci.crypt, February 1994.

10. Ingrid Schaumuller-Bichl, On the Design and Analysis of New Cipher Systems
Related to the DES, technical report, Linz university, 1983.

11. Akihiro Shimizu, Shoji Miyaguchi, Fast Data Encryption Algorithm FEAL,
Lecture Notes in Computer Science, Advances in Cryptology, proceedings of
EUROCRYPT'87, pp. 267-278, 1987.

12. Arthur Sorkin, Lucifer, a Cryptographic Algorithm, Cryptologia, Vol. 8, No. 1,
pp. 22-41, January 1984.

