
Posters: Extended Abstracts

Parallelising Programs with Algebraic
Programming Tools

Anatoly E. Doroshenko and Alexander B. Godlevsky

Glushkov Institute of Cybernetics
National Academy of Sciences of Ukraine
Glushkov prosp., 40, Kiev 252650, Ukraine

E-mail: dor@d105.icyb.kiev.ua

Abstrac t . A rewriting based approach to dynamical parallelization of a gen-
eral class of sequential imperative programs by means of the algebraic pro-
gramming system APS is proposed, It gives advantages of rapid prototyping
and evolutionary development of efficient parallelizers. The paper shows ma-
jor features of a dynamical parailelizer implemented in the APS as well as
techniques for designing efficient parallellzers.

1 Introduct ion

The dominant trend in automating programming for parallel computers is con-
nected with compiler technology and remarkable achievements have been made in
last decade in this area. (e.g. [3]). Nevertheless to develop a compiler for paral-
lel computer system is still a difficult and expensive task that imposes a lot of
restrictions and language simplifications for compiler to be practical and efficient.
Therefore prototyping is an important tool to save efforts and time especially in
its declarative form [1]. We follow an integrated compiler/interpreter approach to
parallel software design having in mind that writing interpreter is much easier task
than developing compiler but interpreters are commonly known to be inefficient. The
emphasize is maden on program transformations and dynamical issues of paralleliza-
tion that can be solved in compile-time and run-time respectively at low cost. Such
approach that we call dynamical parallelizafioa has been proved to be acceptable in
large-grained computations for macroconveyer parallel multicomputers [6]. Recently
likely approach was undertaken for run-time parallelization of functional languages
[4].

In this paper we report on exploiting the approach of dynamical parallelization
of programs on a new platform of the algebraic programming system APS [5] based
on rewriting rules programming techniques. Early experience of application of the
APS system for this purposes is described in [2]. It was not our goal to propose
a new method of data dependence analysis and in this part we follow well known
decisions adopted in parallelizing compilers. What is significant and new is to pro-
vide declarative treatment of programs analysis and transformations by means of
rewriting techniques in the system of algebraic programming. It gives a great deal of
flexibility of parallelizers and allows extracting parallelism independently on multi-
processor architecture and number of processors available in parallel system, Besides
of rapid prototyping the advantages consist in controlability and verifiablity of the
whole process of evolutionary program development.

688

2 T h e A P S M a i n F e a t u r e s

The APS is an integrated rewriting rule based programming system. A methodology
of the system application consists in flexible integration of four main paradigms
of programming: procedural, functional, algebraic and logical that is achieved by
adjusted use of corresponding computational mechanisms. The main objects in the
system are terms of the algebra that is considered as absolutely free algebra of infinite
(but finitely represented) trees. As a values of names these trees may have common
parts and may be used to represent arbitrary labelled graphs. There are three types
of system objects: algebraic programs (ap-modules), algebraic modules (a-modules)
and interpreters.

Algebraic programs are texts in APLAN language syntax [5]. Each program
contains the description of some signature o f underlying algebra with syntax for
constructing algebraic expressions (terms). It defines also the set of names and atoms.
These objects together with numbers and strings constitutes the set of primary
objects. The sets of names and atoms together with the signature of an ap-module
define the type of this ap-module.

Algebraic modules contain internal representation of the data structure~ defined
in ap-modules. They are being created by system commands that refer to ap-modules
as a new object generators. The notion of a-module is dynamical one. It has a
state which may changes in time. The change of the state of a-module takes place
as a result of executing procedures located in it by means of interpreters. System
interpreters are programs destined for the interpretation of the procedures written in
APLAN. They are developing in C language on the base of libraries of functions and
data structures to work with internal representation of system data structures. Each
interpreter is connected with a distinct type which defines the restriction to algebraic
modules which can be executed by the given interpreter. Each interpreter specifies
the operational semantics of APLAN for the given class of a-modules and provides
efficient implementation of the procedures, functions and strategies of rewriting for
the systems located in the given module.

3 R e w r i t i n g T e c h n i q u e s f o r D y n a m i c a l P a r a l l e l i z a t i o n

To give a flavor of the APS and to demonstrate the rewriting style programming for
parallelization we consider a short fragment of ap-modules that realises a piece of
data dependency analysis implemented in our dynamical parallelizer - - evaluation
of the fact that two sets of array variables are disjoint.

If we designate the property of intersection nonemptyness of two sets of array
variables V and W with predicate Int(V, W) and a function evaluating the number
of dimensions of array variable z with ar t (z) then we can write following recurrence
relations:

Int(V,W) ~, 'z (3z, i,j)(x(i) E V,x(j) E W)

a (n = ~rt(z) a Xndz(~, j, n)

Indz(i , j ,n) ~ (i - - (i l ,in),

j = (j ~ , . . . , j , ,))

689

(Vl : 1 < l < n)(Noneomp(iz,j~) = O)

Noneomp(k, m) r (k # m) & (k, m are integers)

Informally, these relations mean that intersection is nonempty iff both sets V and
W comprise two elements of the same array that in every component of index sets
have expressions or coinsided integers.

The following fragment of APLAN code realises these relations using rewriting
rules (abbreviated rs) in functional style to which standard interpreter is applied.

I n t : = t s (x , x l , i, y,yl , j) (
(nil,x) = 1, (x,nil) = I,

);

IndxCx(i) I I x l , x C j)) ->
((x C i) I I x l , xC j) I I y l) =

I n t (x (i) I I x~ j 1)) ,
(xCi) I I x l , xC j) I I y l) = o,

compaxe(x,y) ->
((x C i) II x l , y (j) II y l)=

I n t (x l , y (j) II y l)) ,
(x (i) II x l , y (j) II yl) =

I n t (x (i) I I x l , y l)

Its formal parameters x, i and j meaningly stand for just the same variables that
in relation system of Int, others are additional. Fragment contains logical connection
-> (implication), logical constants 0 and i and use ordered list representation of vari-
able sets with nil standing for empty list and J I for concatenation of list elements.
These rewriting rules essentially consist of two parts. The second part prefixed with
predicate compare(x, y) is to seive two array variable sets and deleting from them
all the variables whose names are different. The first part is to test index expressions
of array variables with the same name for compatibility in the sense of Int.

4 T e c h n i q u e s f o r P a r a l l e l i z e r s D e v e l o p m e n t

To enhance dynamical parallelizers based on data dependency analysis some addi-
tional computational mechanisms aimed to breaking data dependences and trans-
forming source programs to improve locality of computational activities for paral-
lelization are developed. They are not new and are commonly used in compilers
but we try to treat them as rewriting rules. Below are enumerated some of such
techniques being intensively used in our parallelizer.

Concretization of variables. This rewriting technique consists in substituing val-
ues in algebraic expression instead of variables to reduce data dependences. Special
but very important case of this technique is achieved when variables to be con-
cretisized are indeed variables that body and/or condition of a loop are dependent
O1"1.

Localization of variables. This technique belongs to preliminary program trans-
formations. The meaning of a localization constructs loc(x) consists in generating
a new copy of variable x whose scope is delimited syntactically by loc(x) itself and

690

the nearest construct endloc. This gives a possibility to delete data dependence of
constructs embraced on variable z with purely syntactic tools.

Coarse-grained computations. Defining some piece of computations as a basic
operator we thereby represent it as a single operator (perhaps depending on param-
eters) in program dynamic parallelization. This technique of computations consoli-
dation may be preferable due to at least two reasons. Firstly, it is tightly connected
with coarse-grained parallelism in distributed memory multiprocessor systems and
networks. Secondly, it is extremely agreed with dynamical mode of parallelization
because it provides reducing parallelizer's workload, assists in transfering purely
computational activity from parallelizer to processors of parallel system.

References

1. M. Chen, J. Cowie, Prototyping Fortran 90 Compilers for Massively Parallel Ma-
chines, ACM SIGPLAN'9~ Conf. on Programming Language Design and]mplemen.
tation, ACM Press, pp. 94o105, 1992.

2. A. B. Godlevsky, A. E. Doroshenko, Parallelizing Programs with APS, ISSAC'93: Prac.
A CM SIGSAM Int. Syrup. on Symbolic and Algebraic Computation, ACM Press, 1993,
pp. 55-62.

3. S. Hirsnandani, K. Kennedy, C.-W. Tseng, Compiling Fortran D for MIMD
Distributed-Memory M~chines, Commun. ACM, vol. 35(8), pp. 66-80, 1992.

4. L. Huelsbergen, J. Larus, Dynamic program parallelization, Proc. 199~ ACM Conf.
Lisp and Functional Programming, ACM Press, pp. 311-323, 1992.

5. A.A.Letichevsky, J.V.Kapitonova, S.V.Konozenko, Computations in APS, Theoretical
Computer Science 119, 1993, pp.145-171.

6. V.S.Mikhalevich, Ju.V.Kapitonova, A.A.Letichevsky, On models of macroconveyer
computations, in: Information Processing 86 (IFIP, Amsterdam, 1986) 975-980.

