
An Array Partitioning Analysis for
Parallel Loop Distribution

Marc Le Fur, Jean-Louis Pazat and Fran~oise Andrd *

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, FRANCE

Abst rac t . This paper presents the compilation techniques implemented
in a compiler for a HPF-like language. The stress is especially put on the
description of an optimized scheme which is dedicated to the compilation
of parallel nested loops. The generation of the SPMD code is based on the
polyhedral model and allows for the partitioning of the arrays involved in
the loop in order to achieve symbolic restriction of iteration domains and
message aggregation. Experimental results for some well-known kernels
are shown.

1 I n t r o d u c t i o n a n d M o t i v a t i o n

The data parallel model is often shown as a promising way to easily write pro-
grams for distributed memory computers or clusters of workstations.

Among data parallel languages, High Performance Fortran [12] and its pre-
cursors embed data partitioning features in a sequential language as a means to
drive the parallelization and the distribution of programs. With this paradigm,
the programmer is still provided with a familiar uniform logical address space
and a sequential flow of control. The compiler generates code according to the
SPMD model and the links between the code execution and the data distribu-
tion are enforced by the ownerocomputes rule: each processor executes only the
statements that modify the data assigned to it by the user-specified distribution.

This approach constitutes the basis of several compilers [17, 6] and is also
applied in the PANDORE environment [4].

A simple scheme called runlime resolution [5] permits the translation of any
sequential program into communicating processes. The first experiments have
shown that aggressive optimization techniques are needed to generate efficient
code.

The paper presents an optimized translation scheme, implemented in the
PANDORE compiler, dedicated to the compilation of parallel loop nests with
one statement. The importance of parallel loop nests in scientific applications is
manifest. On the one hand, these loops form most computation-intensive parts
of scientific programs. On the other hand, these loops can be produced thanks
to automatic parallelization techniques such as affine-by-statement scheduling
[10, 9] or automatic vectorization [1].

* mlefur@irisa.fr, pazat@irisa.fr, fandre@irisa.fr

352

We address the problem of determining the communication and computation
sets induced by the user-supplied distribution of arrays. The work presented in
the paper is related to [2, 18], [17] and [6] that use respectively polyhedrons,
regular sections and overlaps (rectangular sections) to represent these sets. The
problem has also been studied in the framework of the compilation of array
statements in [7] and [11]; this time, a finite state machine and triplets permit
the characterization of the different sets.

The paper is organized as follows. We first give the principles of the optimized
compilation scheme in section 2 and then illustrate the technique in section 3.
Notations and definitions are posed in section 4 in order to present code gen-
eration in 5. Experimental results for well-known kernels are shown in section
6.

2 Principles of the Optimized Scheme

The optimized compilation scheme separates the generated SPMD code into a
communication part and a computation part. The generation of each part relies
on a domain analysis that takes advantage of the user-partitioning of the arrays
into rectangular blocks in order to achieve symbolic restriction of iteration do-
mains and message aggregation. Furthermore, this domain analysis is symbolic,
i .e . independent of the number of blocks of each array involved in the parallel
loop nest.

Our optimized compilation method applies to parallel loop nests where array
references and loop bounds are affine functions of the enclosing indices and where
each loop stride is equal to one. As regards data distribution, we assume that an
array is either replicated on all processors (the array is owned by each processor)
or distributed, that is partitioned into rectangular blocks with constant sizes
(known at compile-time), each block being assigned to exactly one processor.
Scalar elements are systematically replicated.

Because we assume that the loop bounds and the array access functions are
afflne, the data access domains can be characterized by polyhedrons and the
generated code execution will consist in scanning these polyhedrons. Indeed, a
loop nest performing the enumeration of its integer vectors can be associated
with any non empty bounded polyhedron. Different algorithms can be used to
solve the polyhedron scanning problem [13, 8, 14]; the algorithm implemented
in the PANDORE compiler is detailed in [15].

3 Example

For the sake of concreteness, let us consider the following (contrived) parallel
nest:

f o r i l =1 , 1000
for i2 = il , 2 . i 1 + 1

S (i l , is): X [i l , is - i l] := V[i2, 2 �9 il - 2]

353

where arrays X and Y are part i t ioned into 8 blocks numbered from 0 to 7, as
indicated in figure I.

X 0

l

2

4

5

6

3999 7

3 ~ y
5OO

3999 0 Illtlt
1 2 3 4 5 6 7

399~

Fig. 1. Partitioning of Arrays

C o m m u n i c a t i o n C o d e G e n e r a t i o n .

a - The set of vectors (jx j r il i2) where j x (resp. jY) E 0..7 is a block of X
(resp. Y), (il i2) an iteration vector such that S(i,, i2) writes in j x and reads
in i f , can be characterized by the polyhedron P l defined by the system:

0_< ix_<7
o < j Y <7
1 < i l < 1000
i~ < i}< 2 , i l + l
5 0 0 , j y <_ il <_500.jx+499
500. < 2 . il - 2 < 500. jr_4_ 499

b - The enumerat ion code of polyhedron 7~ can be computed by one of the algo-
r i thms [15, 13, 8, 14]; for instance, the algorithm implemented in PANDORE
[15] yields the following nested loop:

for jX = o , 2
for jY = m a x (0 , 2 . j x - 1) , r a i n (3 , 2 . i x 4 1)

for il = max(250*jY41, 500.j X) ,
min(250*j v,4,4,250, 500.j x,4,499)

for i2 = i l , 2 . i141

It is impor tan t to notice that the first two loops of this enumeration code do
not scan the whole cartesian product 0..7 x 0..7, as it can be seen in figure
2. The subset of 0..7 x 0..7 described by the (jx , jY)-loop is defined as the
convex-hull of the integer projection of polyhedron Pl along the il , i2 axes.

c - We then insert two masks and a communication instruction in this enumer-
ation code in order to generate the SPMD send code and then a dual SPMD
receive code. The send code is generated as follows:

354

j Y

7 - T - ~ - . , . . e . r - ~ - 9
I I I I , i I

6 , - * - a . . I . . ~ . L - a - ~
t I I I , i I

5 . _ x _ J _ _ I _ _ ~ . L _ ~ _ j
I I I ~ , i I

4 ._~ i--',--,'--:--'-"
3 . -e-e , - ' , - -~- ~- ~- ~

~_&_ :__',__'_ ;.. :_"
i i , i , i i

0 ==.t====.t=== ~ ~ , . _ , _~ I ====~ it

0 1 2 3 4 5 6 7 ~ X , /

Fig. 2. Restriction of Iteration Domains

for j x = 0 , 2
i f myself ~ owner of block j x of X t h e n

for jY = max(0 , 2 . j x - 1) , rain(3, 2 . i x + l)
i f mysel] = owner of block jY of Y t h e n

for il = m a x (2 5 0 * j Y + l , 500*j x) ,
min(250*j Y + 2 5 0 , 5 0 0 . j x +499)

for i2 = il , 2 . i 1+1
pack Y[i2, 2 * il - 2] in buffer

send buffer to the owner of block j x of X

The runt ime l ibrary routine pack performs da t a elements aggregation. Al-
though the previous loop contains masks, the reader should note tha t these
masks are evaluated at the block level and not at the i terat ion vector level as
in the run t ime resolution. Furthermore, the (jx , jY)-Ioop enumerates only
a few vectors, as seen in figure 2, and the locat ion of the first mask prevents
f rom enumera t ing all these vectors.

C o m p u t a t i o n C o d e G e n e r a t i o n .

a - As before, the set of vectors (jx il i2) where j x E 0..7 is a block of X, (il i2)
an i teration vector such tha t S(it, i2) writes in j x , can be characterized by
the polyhedron P2 defined by the following system:

0 < i x < 7
1 < il < 1 0 0 0

il <_i2<_2.i1+1 jx
500 �9 j x < {1 <__ 500 �9 -t- 499

b - The vectors of 7)2 can be enumera ted by the nested loop:

for j x = 0 , 2
for il = m a x (5 0 0 . j x , 1) , m in (500 , j x +499, 1000)

for i2 ~ il , 2 . i lq-1

which shows tha t the blocks 3..7 of X are not wri t ten during the computa t ion
(the iX- loop scans the convex-hull of the integer project ion of polyhedron
7)~ along the i l , i2 axes).

355

c - Finally, a mask is inserted to produce the SFMD computa t ion code:

for j x = 0 , 2
i f myself -=- owner of block j x of X t h e n

for ia -=- max(500*j x , 1) , m in (500 . j x +499, 1000)
for i2 = ia , 2*ia +1

X[ia , i2 - i l] := Y[i2, 2 �9 i~ - 2]

4 N o t a t i o n s a n d D e f i n i t i o n s

If x is a row or column vector with n components , zq (1 < q < n) stands for
the qth componen t of x. Given a row or column vector u with n components
Ul,. . . , u=, X[u] d e n o t e s the reference X[ul,...~ u,] to array X. If the access
funct ion associated with an array reference is affine, for instance X[i+3 , 2 i + j + l] ,
the reference m a y be noted in ma t r ix form as follows:

Finally, for row vectors u and v with n and p components respectively, (u v)
s tands for the vector with (n + p) components (U l . . . un v l . . . vp). This nota t ion
can be extended to an arbi t rary number of vectors.

N o t a t i o n s r e l a t e d t o D i s t r i b u t e d A r r a y s . In order to simplify the nota-
tions, we assume that the lower bound is 0 in each dimension of an array. Let
X be a m-dimensional dis tr ibuted array and let h x (resp. s x) be the number of

elements (resp. the block size) of array X in the pth dimension (p E 1 . . m).
We note Part(X) = {p e 1 . . m / s X < h X) the set of par t i t ioned dimensions

of X and d(X, q) the qth par t i t ioned dimension of X if q E 1 . . IPart(X)l. For
arrays Y and Z given in figure 3 for instance:

h ~ = 400 h ~ = soo h z = 500 h z = 700

~ = 200 ~ = 250 s ~ = 500 ~ = 300
Part(Y) = {1, 2} Part(Z) = {2}
d(Y, 1)=l d(Y, 2)=2 d(Z, 1)=2

,I
2

y z
0 0 250 399

2011

39~ 499

3OO
699

Fig. 3. Partitioning of Arrays

356

Let n be the number of par t i t ioned dimensions of ar ray X. We term block
of X indexed by the vector j , where j is a row vector with n components such
tha t Vq E 1. n 0 < jq < x x �9 [hd(x,q)/Sd(x,q)] -- 1, and we note Block (X , j) , the

block X[lbndl . . u b n d l , . . . , lbndm., ubndm] of array X defined by
�9 X X lbndd(x ,q) = 3qSd(X,q) a n d ubndd(x ,q) = min(jqsXa(X,q) --b 8d(X,q)X _ 1, hd(x ,q) - - 1) f o r

each partitioned dimension d(X, q) of Z (q �9 1.. n),
lbndv = 0 and ubndv = h x - 1 for each dimension p of X which is not partitioned.

Intuitively, the components of j are related to the coordinates of Block(X, j) in
the space of the blocks of array X when all the dimensions of X are part i t ioned.
In the general case, j mus t be related only to the coordinates of B l o c k (X , j)
associated with the par t i t ioned dimensions of X. For arrays Y and Z for instance:

Block(Y, (0 1)) = Y[0. .199,250. .499], Block(Y,(1 3)) = Y[200. .399,750. . 799].
Block(Z, (0)) = Z[O.. 499, 0. . 299], Block(Z, (2)) = Z[O.. 499,600.. 699].

and more generally:

Block(Y, (jl j2)) = Y[2OOjl.. 200jl + 199,250j~.. min(250j2 + 249,799)] Vjl �9
0.01 Vj2 �9 0 . .3 ,
Block(Z, (j l))= Z[O..499,300ja..min(300ja +299,699)] Vjl � 9

Finally, for a vector u with rn components and a vector j with n components ,
we note Belong(X, u, j) the set of inequalities tha t mus t be satisfied by vector
u so tha t the reference X[u] belongs to the block B l o c k (X , j) of X:

�9 x - x x - 1 for each q � 9 1 . .n , JqSa(x,q) <_ ua(x,q) <_ Jqsd(x,q) + Sa(x,q)
X X X up < [h v / %] - 1 for each partitioned dimension p of X such that h v is not a

multiple of spX.

Indeed, if p is a par t i t ioned dimension of X, the constraints up < [hex/s x] - 1
where h x is a mult iple of seX are implicit in this sys tem and thus useless. For
instance, for the vector u = (il + 1 il + 2i2):

Belong(Y,u,(ja j2)) = {20011 _< il + 1 < 200j1 + 199, 2503"2 < il + 2i2 <
250j2 + 249, il + 2i2 < 799},
Belong(Z, u, (jl)) = {300jl <__ il + 2i2 < 300jl + 299, ia + 2i2 < 699}.

N o t a t i o n s r e l a t e d t o N e s t e d L o o p s . In the following, a perfectly nested loop
whose (row) i teration vector is i, i terat ion domain :D and body B will be noted

for i i n /) or for i : Ai T + b > 0
B B

if the i teration domain of the nested loop is a polyhedron defined by the set of
affine constraints Ai T + b > O.

P o l y h e d r o n s f o r C o d e G e n e r a t i o n . Let us consider a parallel loop nest
whose i teration vector is i and whose i teration domain is defined by the sys-
tem of affine constraints Ai T + b > O. The generat ion of the communica t ion and
computa t ion codes for the loop nest lies in the synthesis of polyhedrons called
P l and 7~2 which are functions of the references to dis t r ibuted arrays appear ing
in the nest assignment.

357

(:liven two references x [c x i T -k d x] and X ' [c X ' i T Jr d x'] to distributed
arrays in the parallel nest assignment, 1)1 (X[CXiT q-dX], X'[CX'iT q-dX']) is

. X I
the set of (row) vectors of the form ((jx)vel..[pa~t(x)l (3q)qel..[Part(X')l i)
and satisfying the system of inequalities:

Vp E 1. IPart(X)l o ~ jX ~_ x x �9 [hd(x,v)/Sd(x,p)] -- 1
. X I X I X I Vq E 1..[Part(X')[0 <_ 3q <_ [hd(x,,q)/Sd(X,,q)] -- 1

Ai T q- b >_ 0
. X Belong(X, c X i T q- d X, (3v)re1.. [Part(X)])

. X ! Belong(X', cX ' i T + d x', (lq)qe,..IP~t(x')l)

One can easily check that this system defines a polyhedron because all its con-
straints are affine (the references to arrays X and X I are affine). In other terms,
~PI(x[cXi T + dX], X ' [c X ' i T + dX']) is the set of vectors ((iX)pea.. IPart(X)l

. X I
(3 q) q E 1 . . [P a r t (X ') [i) such that the references x [c X i T q- d X] and Xt[CX' i T +

�9 X I
d x'] belong to Block(X, (j x)p~l . . IPart(X)[) and Block(X' , (3q)qe l . . Igart(X')l)
respectively.

For the references Y[il + 1,il + 2i2] and Z[i2 - i l ,3 i l - 2] to the arrays
shown in figure 3, located in a parallel nest whose iteration domain is defined
by {1 < il < 230, il + 1 < i2 < 350}, the constraints satisfied by the vectors
(JY1 JY JZl iT i2) of I ' l(Y[i~-+ 1,-il + 2i2], Z[i2 - il, 3il - 2]) are the following:

O _ < j ~ < l , o < j Y < 3
0_<jz_<2
1 < i l _<230, i l - k l _<i2 ~350
200jff _< il + l _< 200jff +199, 250j Y_<il +2i2_<250j~'+249, i1+2i2_<799
300j z_<3i l -2_<300j1 z+299, 3i~ -- 2 _< 699

For a reference X[Ci T +a~ in the parallel nest, the polyhedron "P2(X[CiT+a~)
denotes.the set of (row) vectors of thc form ((Jp)pel.. IPart(X)l i) satisfying the
set of affine inequalities:

X X Vp E 1.. IPart(X)] 0 < jv <_ [hd(X,p)/Sd(xm)] -- 1
Ai T + b >_ 0
Belong(X, Ci T + d, (Jp)vel..Ip~rt(X)l)

More simply, each vector ((Jv)v~l..IPart(X)l i) of 7~2(X[Ci T + a~) defines an
iteration vector i such that the reference X [c i T + d] belongs to the block
Block(X, (Jp)pE1.. [Part(X)[) of X.

With the same iteration domain as previously, P~(Y[il + 1, ix -4- 2i2]) is the
set of vectors (jl j2 il i.~) satisfying:

O___jl_< 1, 0_< i2_<3
1 _~ il _~ 230, il + 1 ~ i2 < 350
200jl _~i1+1 _~200j1+199, 250j2_~il +2i2_~250j2+249, il +2i2_~799

and each vector (J l i l i2) of ~o2(Z[i2 - il, 3il - 2]) is such that:

0 < j 1 ~ 2
I _< il _< 230, il + 1 _~ i2 < 350
300jl < 3 i l - 2 < 3 0 0 j 1 + 2 9 9 , 3 i l - 2 < 6 9 9

358

5 C o d e G e n e r a t i o n

Actually, two compilation schemes are defined depending on whether the left
hand side (lhs) of the assignment refers to a distributed array or a replicated
array.

5.1 C o m p i l a t i o n S c h e m e i f t h e lhs r e f e r s t o a D i s t r i b u t e d A r r a y

In this case, the parallel loop nest is of the form

for i : A i T + b)_ 0

x[vXi T +d x] : = Exp(Vist U ~epZ)

where the array X referenced in the lhs is a distributed array, 7)ist the set
of references to distributed arrays in the expression Exp and ~epl the set of
references to replicated variables (arrays or scalar variables) in Exp.

C o m m u n i c a t i o n C o d e G e n e r a t i o n . Let us note Corn = 7)ist - { x [c X i T §
dX]} the set of references in 7)ist that may generate communications between
processors (it is clear indeed that, if X[cXiT+dX] belongs to 7)ist, this reference
does not lead to any interprocessor communication). It should be highlighted
that the set Corn can be reduced still further if some references in 7)ist are aligned
(in a HPF-manner) with x [c X i T + dX]. In the following code for instance:

!HPF$ ALIGN X(K,L) WITH Y(L+I,K)

DO I = 0, N-I

DOJ=O,N-I

X(2*I,2*J) = X(2*I,2*J) + Y(2*J+I,2*I) * Z(I+J)

END DO

END DO

the set Corn is only composed of the reference Z(I+J) . Actually, the communica-
tion code generated by the compiler is a sequence of communication codes, one
code being produced for each reference Y[cY i T + d Y] in Corn as follows:

a - Compute the code enumerating the vectors (jx jY i) of polyhedron 7~1 (x[cXiT-} -
X Y T Y d], Y[C i + d]) by one of the algorithms [15, 13, 8, 14]. This yields the

nested loop:

for j x in 1)1
for jY in D2(j x)

for i in •3(jx,j v)

where 7)1, 7)2(j X) and 7)3(j X, jY) denote the iterations domains associated
with the iteration vectors j x , jY and i respectively.

b - Insert two masks and communication instructions in this nested loop to
produce the SPMD send code:

359

for j x in l)1
if myself # owner of Block(X,j X) then

for jY in 1)2(j X)
if myself = owner of Block(Y, jY) then

for i in 7)3(jx,j v)
pack Y[cY i v + d Y] in buffer

send buffer to the owner of Block(X,j x)

c - Produce the dual SPMD receive code:

for jx in D1
if myself-~ owner of BIock(X,j x) then

for jY in l)2(j X)
if myself ~ owner of Block(Y, jY) then

receive buffer from the owner of Block(Y, jY)
for i in 7)3(jx,j Y)

unpack Y[cY i T + d Y] from buffer

The runtime library routine unpack extracts data elements from the buffer
and copies them in the local memory of the processor.

C o m p u t a t i o n C o d e G e n e r a t i o n . The computation code is produced depend-
ing only on the Ihs reference x [c X i T q- dX].

a - Compute the enumeration code of polyhedron 7~2(X[CXi T + dX]):

for j x in 1)4
for i in "D~(j X)

In this loop, 7)4 and 7)s(j X) stand for the iteration domains associated with
j x and i respectively.

b - Produce the SPMD computation code by inserting an adequate mask:

for j x in/)4
if myself = owner of Block(X,j x) then

for i in 79~(j X)
z[cXi T + d x] := Exp (7)ist ~J 7~epl)

5.2 C o m p i l a t i o n S c h e m e if t h e lhs re fe rs to a R e p l i c a t e d V a r i a b l e

The communication code generated by the compiler can be simplified and also
optimized, by taking advantage of collective communication routines, when the
lhs of the parallel loop nest:

for i : Ai T -k b > 0
r := Exp (Dist ~J T~epl)

refers to a variable (array or scalar variable) which is replicated in the local
memories.

360

C o m m u n i c a t i o n C o d e G e n e r a t i o n . One communication code is produced
for each Y [c Y i T + d y] in 2)ist as follows:

a - Compute the enumeration code of polyhedron P2(Y[CYi T + dY]):
for jY in/)1

for i in l)2(j Y)

b - Produce the SPMD send code:

for j r in /)x
if myself -- owner of Block(Y,j v) t hen

for i in /)2 (j Y)
pack Y[cY i T d- d Y] in buffer

broadcas t buffer

c - Produce the dual SPMD receive code:

for jY in D1
if myself ~ owner of Block(Y,j Y) t hen

receive buffer
for i in ~I)2(j Y)

unpack Y[cYi T Jr d Y] from buffer

C o m p u t a t i o n C o d e G e n e r a t i o n . According to the owner-computes rule, the
parallel loop nest is replicated on all the processors:

for i : Ai T + b > 0
r := Exp (l)ist ~J Repl)

5.3 C o m p i l i n g P a r a m e t e r i z e d L o o p s

The method previously presented allows the compilation of parameterized par-
allel loop nests, that is to say parallel loop nests depending on variables (not
assigned in the loop nest) or surrounding loop counters�9 Let us note k the vector
of parameters associated with the loop nest and M k T + h ~ 0 the system of
constraints, that may be empty, satisfied by k. In this case, the parameterized
loop nest is of the form:

for i : Ai T + Bk T + c ~_ 0
lhs_r# := Exp (Wst ~ nepZ)

where Ai T + Bk T -b c ~ 0 defines the iteration domain of the loop parameterized
by the vector k. In the following code for instance, the inner / - loop is a parallel
loop nest parameterized by the surrounding loop counter k:

f o r k = 1 , 100

f o r i = 1 , k
A[i + k] := B[i] + (:[2 �9 k + if

361

For these parameterized loops, the SPMD code is generated the same way, the
polyhedrons ~1 and ~2 defined in section 4 being now parameterized by k.

Given two references x [c X i T + D X k T + e X] and X ' [c X ' i T + D x ' + e x ']
to distributed arrays in the parallel nest assignment, " P l (X [C X i T + D X k T +
e X] , x ' [c x ' i T + D X ' k T + eX']) is the set of vectors ((jX)p~l..IPart(x)l

. X t (3q)qel . . IPart(x ') l i) satisfying the system of inequalities:

V p E 1 . IPart(X) l O<_jx < x x �9 [h d (x m) / S d (x m)] -- 1
.X I X I X I

Vq �9 1. . IPart(X') l o < 3q <-~ Fh~(x,,q)/sd(x,,q)] -- 1
Ai T + Bk T + c >_ 0

.X Belong(X, c X i T + D X k T + e X , (? p) p E 1 . . I P a r t (x) l)

X I .X I Belong(X', CX'i T + D X ' k T + e , 0q)qel.. IP,~t(x')l)

For a reference X [C i T -4- D k T -4- e] in the parallel nest, the polyhedron
~ 2 (X [C i T + O k T + e]) denotes the set of vectors ((jp)pel .. IPart(X)l i) satisfying
the set of inequalities:

X X Vp �9 1 . . IPart(X) l o <_ jp <_ [hd(x,p)/S~(x,p)] - 1
A i T -b B k T + c > 0

Belong(X~ Ci T -4- Dk T A-e, (Jp)pel.. IP~t(X)l)

Again, the algorithms [15, 13, 8, 14] permit the generation of a nested loop
scanning these parameterized polyhedrons in the context M k T + h > O.

6 E x p e r i m e n t s

6.1 R u n t i m e S u p p o r t

The runtime resolution and the optimized scheme rely on the implementation of a
paged array management I16] which tries to balance the speed of accesses and the
memory requirements�9 The runtime library routine pack used in the optimized
scheme performs several communication optimizations. Direct communication is
performed whenever possible; what is transferred in this case is a memory zone
that is contiguous both on the sender and the receiver, thus eliminating any
need of coding/decoding between message buffers and local memories�9 Message
aggregation is also carried out and reduces the effect of latency by grouping
small messages into a large message. Furthermore, the routine pack eliminates
redundant communications that may occur with non injective access functions
or when several references to the same distributed array appear in the right hand
side.

Because of these optimizations (messages exchanged between processors are
generally composed of contiguous memory zones), it should be noted that the
compiler does not exactly produce the receive codes given in 5.1 and 5.2; the
array el6ments are not element-wise unpacked from the received buffer.

362

6.2 E x p e r i m e n t a l R e s u l t s

Some results of experiments with the optimized compilation scheme are pre-
sented in this section. Performance results are shown in figure 4 for two kernels:
Cholesky factorization and Jacobi relaxation; the description of the paralleliza-
tion of a wave propagation application can be found in [3].

32

24

16

8

0

Cholesky Faetorization

i , , , J 2 s 6 o / -
~5ii2 : [] :

! d i l ii' i i ii i i ! '

I I I I

0 8 16 24 32

32

24

16

8

0

Jacobi
I I I

5 i2 o ,
1024:/x : Y / ~ -

J ii i iii V,

0 8 16 24 32

Fig. 4. Speedup

Measurements have been performed on a 32-node iPSC/2. The presented
graphs show the speedup against the number processors for several input sizes.
Speedup is defined as the parallel time over the time of the original sequential
program measured on one node. The obtained efficiencies are satisfactory, rang-
ing from 85% to 95% on 8 processors and reaching around 80% on 32 processors
for the largest data size.

7 C o n c l u s i o n

In this paper, we have presented an optimized compilation technique for parallel
loop nests expressed in HPF-like languages. This scheme has been fully imple-
mented in the PANDORE compiler and cohabits with the runtime resolution, thus
permitting the compilation of the whole input language. The optimized method
performs a symbolic polyhedron-based domain analysis that exploits the parti-
tioning of the arrays involved in the computation in order to achieve restriction
of iteration domains and message aggregation. The scope of this scheme can
be extended to more general regular loops by integrating parallelization tech-
niques that produce automaticMly the parallel loops that can be handled by our
technique.

The performances obtained on a series of numerical kerne]s are satisfactory
even though enhancements can be made along several axes. First, we plan to

363

improve the compilation technique in order to avoid the multiple enumerations
of the same memory location that may occur with non injective access functions
or when several references to the same array appear in the right hand side.
At the moment , the runt ime support prevents from translating these multiple
enumerat ions into multiple sends. This problem can be handled at compile-
t ime by scanning directly the polyhedron affine image, or at least a superset,
associated with a right hand side array reference. Moreover, this scanning can be
reorganized to exploit the contiguity in the local representation of the distributed
arrays in order to maximize direct communication~ that is the communication of
contiguous memory zones.

R e f e r e n c e s

1. R. Allen and K. Kennedy. Automatic Translation of Fortran Programs to Vector
Form. ACM TOPLAS, 9(4), October 1987.

2. C. Ancourt, F. Coelho, F. Irigoin, and R. Keryello A Linear Algebra Framework for
Static HPF Code Distribution. In Fourth International Workshop on Compilers
for Parallel Computers, Delft, The Netherlands, December 1993.

3. F. Andre, M. Le Fur, Y. Mah~o, and J.-L. Pazat. Parallelization of a Wave Propa-
gation Application using a Data ParMlel Compiler. In Nineth International Parallel
Processing Symposium, Santa Barbara~ California, April 1995.

4. F. Andre, M. Le Fur, Y. Mah~o, and J.-L. Pazat. The Pandore Data-Parallel Com-
piler andits Portable Runtime. In High-Performance Computing and Networking,
LNCS 919, Springer Verlag, Milan, Italy, May 1995.

5. D. Callahan and K. Kennedy. Compiling Programs for Dis tributed-Memory Mul-
tiprocessors. Journal of Supercomputing, 2, 1988.

6. B.M. Chapman and H.P. Zima. Compiling for Distributed-Memory Systems. Re-
search Report ACPC/TR 92-17, Austrian Center for Parallel Computation, Uni-
versity of Vienna, November 1992.

7. S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H Teng. Gener-
ating Local Addresses and Communication Sets for Data-Parallel Programs. In
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, San Diego, California, May 1993.

8. J.-F. Collard, P. Feautrier, and T. Risset. Construction of DO Loops from Systems
of Affine Constraints. Research Report 93-15, LIP, Lyon, France, May 1993.

9. A. Darte and Y. Robert. Constructive Methods for Scheduling Uniform Loop
Nests. IEEE Transactions on Parallel and Distributed Systems, 5(8)1 August 1994.

10. P. Feautrier. Some Efficient Solutions to the Affine Scheduling Problem, Part
I, One-Dimensional Time. International Journal of Parallel Programming, 21(5),
1992.

11. S. K. S. Gupta, S. D. Kaushik, C.-H. ttuang, and P. Sadayappan. Compiling Array
Expressions for Efficient Execution on Distributed-Memory Machines. Technical
Report 19, The Ohio State University, 1994.

12. High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion. Technical Report Version 1.0, Rice University, May 1993.

13. F. Irigoin and C. Ancourt. Scanning Polyhedra with DO Loops. In Third
A CM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 39-50, April 1991.

364

14. H. Le Verge, V. Van Dongen, and D. K. Wilde. Loop Nest Synthesis Using the
Polyhedral Library. Research Report 2288, INRIA, France, May 1994.

15. M. Le Fur. Scanning Parameterized Polyhedron using Fourier-Motzkin Elimina-
tion. In High Performance Computing Symposium, Montreal, Canada, July 1995.

16. Y. Mah6o and J.-L. Pazat. Distributed Array Management for HPF Compilers.
In High Performance Computing Symposium, Montr6al, Canada, July 1995.

17. C.W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory
Machines. PhD thesis, Rice University, January 1993.

18. V. Van Dongen. Compiling Distributed Loops onto SPMD Code. Parallel Pro-
cessing Letter, 4(3), 1994.

