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Abs t r ac t .  We consider the problem of using queries to learn an unknown concept. 
Several types of queries are described and studied: membership, equivalence, subset, su- 
parser, disjointness, and exhaustiveness queries. Examples are given of efficient learning 
methods using various subsets of these queries for formal domains, including the regular 
languages, restricted classes of context-free languages, the pattern languages, and re- 
stricted types of propositional formulas. Some general lower bound techniques are given. 
Equivalence queries are compared with Valiant's criterion of probably approximately 
correct identification under random sampling. 

1. I n t r o d u c t i o n  

A successful learning component in an expert system will probably rely 
heavily on queries to its instructors. For example, Sammut and Banerji's 
(1986) system uses queries about specific examples as part of its strategy 
for efficiently learning a target concept. Shapiro's (1981, 1982, 1983) Algo- 
rithmic Debugging System uses a variety of types of queries to the user to 
pinpoint errors in Prolog programs. In this paper we use a formal frame- 
work to study the power of several types of queries for concept-learning 
tasks. 

We consider the problem of identifying an unknown set L, from some 
finite or countable hypothesis space L~, L~, . . .  of subsets of a universal set 
U. The usual assumption is that one is given an arbitrarily or stochastically 
generated sequence of elements of U, each classified as to whether it is in 
L,. 1 Instead, we will assume that the learning algorithm has access to 
a fixed set of oracles that will answer specific kinds of queries about the 
unknown concept L,. The types of queries we consider are the following: 

1 We direct the reader to Angluin and Smith (1983) for a survey of inductive inference. 
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• Membership .  The input  is an element x ~ U and the output  is yes if 
x E L ,  and no if x ~ L,.  

• Equivalence.  The input is a set L and the output  is yes if L = L, and 
no if L ~= L,.  If the answer is no, an element x E L G L,  is returned. 
(L ® L, is the symmetric difference of L and L,,  that  is, the set of 
elements in one but not both of the sets.) 

• Subset.  The input is a set L and the output  is yes if L C L,  and no 
otherwise. If the answer is no, an element x E L - L,  is returned. 

• Superset .  The input is a set L and the output  is yes if L ___ L,  and no 

otherwise. If the answer is no, an element x E L,  - L is returned. 

,, Dis jo in tness .  The input is a set L and the output  is yes if L N L,  is 
empty and no otherwise. If the answer is no, an element x E L N L, is 
returned. 

• Exhaustivenes.~. The input is a set L and the output  is yes if L U L, 
is U and no otherwise. If the answer is no, an element x ~ L U L, is 
returned. 

For the queries other than membership, the returned element x is called 
a counterexample.  The particular selection of a counterexample is assumed 
to be arbitrary, that  is, a successful identification method must work no 
matter  what counterexample is returned. We shall also consider restricted 
versions of each of these queries, for which the responses are just yes and 
no, with no counterexample provided. 

Except in Section 2.2, we assume that  if the input to a query is a set L, 
then it must be one of the elements Li of the original hypothesis space. In 
particular, our lower bounds are strongly dependent on this requirement. 
The issue of how hypotheses are represented is very important,  too im- 
portant  to be given any detailed t reatment  in this paper. We assume the 
hypotheses are simply represented as indices: the index i represents the 
hypothesis L~. 

1.1 An example:  Poker hands  

To illustrate the definitions above, we consider a concrete example from 
the game of poker. Let the target concept L, be the set of all ordered pairs 
of poker hands such that  the first hand beats the second hand. We choose 
a representation of a card that  gives its value and suit, for example, Q H  
or 2C. A hand is an unordered set of five cards. A pair of hands is an 
ordered pair of hands with no cards in common. Then the universal set U 
is simply all pairs of hands, and the target concept is the subset consisting 
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of those pairs in which the first hand beats the second. Thus, 

({2S, IOH, QH, 2D, 5C}, {JS, 3H, 4H, JH, 2C}) 

is an element of U that is not an element of L,, since a pair of twos does 
not beat a pair of jacks. 

We must also choose a description language to express subsets of U. This 
choice is crucial to the success of a learning method, but it is not the focus 
of this paper. We assume that the description language contains at least 
one expression for the target concept; the goal of learning is to find one 
such expression. We now give some examples of queries for this domain. 

A membership query gives a specific pair of hands, for example, 

({2S, 10H, QH, 2D,5C}, {JS, 3H, 4H, JH, 2C}). 

The reply in this case is no, because the first hand does not beat the second. 

An equivalence query specifies an expression in the description language, 
for example, "all pairs of hands in which the first hand contains two or 
three cards with equal value." This is not a correct description of the 
target concept, so the reply is no combined with a counterexample, i.e., 
a specific pair of hands that is a positive example of the target concept 
and a negative example of the queried expression, or vice versa. Thus the 
counterexample could be the pair of hands 

({2S, 10H, QH, 2D, 5C}, {JS, 3H, 4H, JH, 2C}). 

This pair satisfies the description, but is not in the target concept L.. Or 
the counterexample might be 

({2S, 10H, QH, 3D, 5C}, {7S, 3H, 4H, JH, 2C}), 

which does not satisfy the description, but is nonetheless in the target 
concept. 

1.2 Exact and probabilistic identification 

The abstract examples we consider include sets of strings generated by 
grammars or recognized by automata and sets of truth-value assignments 
that satisfy certain classes of propositional formulas. We consider two 
criteria of successful identification, exact and probabilistic. 

An identification method exactly identifies a set L. with access to certain 
types of queries if it always halts and outputs an index i such that Li - L,. 
Note that this is not a limiting criterion of identification - the identification 
method is allowed one guess, and that guess must be exactly right. 
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In contrast, Valiant (1984) has introduced a criterion of probabilistic 
identification, and here we give a definition suitable for this paper. There 
is some probability distribution D on the universal set U. The probability 
of element x with respect to D is denoted Pr(x). There is a sampling oracle 
EX() ,  which has no input. Whenever EX( ) is called, it draws an element 
x E U according to the distribution D and returns the element x, together 
with an indication of whether or not x is in the target set L,.  

Successflfl identification is parameterized with respect to two positive 
quantities, the accuracy parameter e and the confidence parameter 5. We 
define a notion of the difference between two sets L and U with respect to 
the probability distribution as 

d(L,L')= ~ Pr(x). 
x C L Q L  p 

The probability of getting an element in one but not the other of the two 
sets L and L r in one call to EX( ) is precisely d(L, Lr). 

An identification method is said to probably approximately correctly iden- 
tify L. if it always halts and outputs  an index i such that  

Pr(d(Li, L,) < ~) > 1 - 6. 

That  is, with high probability (quantified by 5) there is not too much 
difference (quantified by ~) between the conjectured set and the target set. 

Probably approximately correct identification (abbreviated pac-identifi- 
cation) is the criterion of success if the sampling oracle EX( ) is available, 
otherwise we use exact identification. For more on pac-identification, see 
Blumer, Ehrenfeucht, Haussler. and Warmuth (1986, 1987) or Angluin and 
Laird (1987). 

2. Equivalence queries 

We now consider the different types of queries in more detail. This 
section concerns equivalence queries. 

2.1 Exhaustive search 

Given only equivalence queries, then one strategy is exhaustive search: 
enumerate the indices i = 1 ,2 , . . . ,  querying each Li until one gets an 
answer of yes, at which point one halts and outputs  index i. This achieves 
exact identification. 

If the queries are restricted to the hypothesis space, L~,L~,..., then 
exhaustive search is sometimes the best that  can be done. Suppose the 
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hypothesis space is the set of singleton subsets of the set of all 2 '~ binary 
strings of length n. Then  it is clear that  a strategy using equivalence 
queries can only eliminate one hypothesis with each query, and so may use 
as many as 2 n -- 1 queries. 

We can strengthen this result: the following adversary forces any method 
of exact identification using equivalence, membership, subset, and disjoint- 
ness queries to make 2 ~ - 1 queries in the worst case. (However, the coun- 
terexample re turned by a single superset query will disclose the unknown 
set.) 

The adversary maintains a set S of all the uneliminated binary strings 
of length n. Initially S contains all 2 ~ binary strings of length n. As 
long as S contains at least two distinct strings, the adversary proceeds as 
follows. If the next query is a membership query with the string x, then the 
adversary answers with no. If the next query is an equivalence or subset 
query with the singleton set {x}, then the adversary answers no along with 
the counterexample x. If the next query is a disjointness quet~ with the 
singleton set {x}, then the adversary answers with ,yes. In each case, if x 
is a member  of S, the adversary removes it fl'om S. 

It is not difficult to see that  the responses of the adversary are compatible 
with the unknown hypothesis being {x} for any element x still in S, and at 
most one element is removed from S with each query. Thus to be correct 
the algorithm must make at least 2 ~ - 1 queries. 

2.2 A logarithmic strategy: Majority vote 

If the input L to an equivalence query is not required to be a member  
of the hypothesis space, a strategy based on "majority vote" can achieve 
exponentially fewer queries than exhaustive search. In this case we assume 
that  the inputs to equivalence queries are arbi t rary subsets of the universal 
set U, and the hypothesis output  can also be an arbitrary subset of U. 
Suppose the hypothesis space is finite: L1, . .  •, LN. Then instead of making 
N - 1 queries, we may make [log N] queries, as follows. (Note: we use log 
to denote the base 2 logarithm, and In to denote the natural  logarithm.) 

A set 5 is maintained of all the indices of hypotheses compatible with all 
the counterexamples seen so far. S initially contains all N indices. I terate 
the following process until it halts. 

If S contains just  one element, i, then halt and output  Li. Otherwise 
define Ms  to be the set of all elements x such that  for more than ISI/2 
elements i of S, x ~ Li. Make an equivalence query with Ms as input. If the 
answer is yes, halt and output  Ms.  Otherwise, there is a counterexample 
z. If x E Ms,  remove from S all i such that  x E L i ;  otherwise, remove 
from S all i such that  x ~ Li. 
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A query is made only if IS[ > 1, and every query answered no must 
reduce the cardinality of C by at least one half. Thus, a total of [log NJ 
queries suffices. This result is a special case of the results of Barzdin and 
Freivald (1972). 

A direct implementation of the majority-vote strategy, keeping an ex- 
plicit list of all uneliminated hypotheses, is infeasible for most domains. 
In Section 2.5 we show that  a simple algorithm indirectly implements the 
majority-vote strategy for k-CNF formulas. Approximating the majority 
vote leads to questions of how to sample "fairly" from the space of unelimi- 
nated hypotheses. Littlestone (1987) shows that  the majority-vote method 
may not be query-optimal in some domains. 

2.3 Some general lower bound techniques 

Since in this paper we restrict the inputs to the queries to be elements of 
the hypothesis space, we now develop some simple lower bound techniques 
that  generalize the lower bound proof in Section 2.1. 

L e m m a  1 Suppose the hypothesis space contains a class of distinct sets 
L 1 , . . . ,  LN, and a set Ln such that for any pair of distinct indices i and j ,  

Li n Lj = Ln. 

Then any algorithm that exactly identifies each of the hypotheses Li using 
restricted equivalence, membership, and subset queries' must make at least 
N - 1 queries in the worst case. 

PROOF: We describe an adversary. Initially S contains 1 , 2 , . . . , N .  If 
ISI > 1 the adversary proceeds as follows. For a restricted equivalence 
query with the hypothesis L, the reply is no, and the (at most one) i such 
that  Li = L is removed from S. For a membership query with the demen t  
z, if x ~ Ln then the reply is yes. Otherwise, the reply is no, and the (at 
most one) element i of S such that  x E L i  is removed from S. For a subset 
query with the hypothesis L, if L is a subset of Ln then the reply is yes. 
Otherwise, the reply is no and any element x E L - Ln is selected as the 
counterexample. The (at most one) element i of S such that  x E Li is 
removed from S. 

At any point, for each i E S, Li is compatible with the replies to the 
queries so far. A correct exact identification algorithm must reduce the 
cardinality of S to at most one. Each query removes at most one element 
from the set S, so N - 1 queries are required in the worst case, which 
Droves Lemma 1. • 
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If the "intersection set" LN is not itself an element of the hypothesis 
space, then Lemma 1 can be strengthened as follows. 

L e m m a  2 Suppose the hypothesis space contains a class of distinct sets 
L1 . . . .  , LN, and there exists a set Ln which is not a hypothesis, such that 
for any pair of distinct indices i and j ,  

Li (3 Lj = Ln. 

Then any algorithm that exactly identifies each of the hypotheses Li using 
equivalence, membership, and subset queries must make at least N - 1 
queries in the worst case. 

PROOF: The proof of Lemma 1 may be modified as follows. The replies 
to queries are the same, except that  a counterexample must be provided 
when an equivalence query is answered no. Let L be the input to an 
equivalence query. Since Ln is not in the hypothesis space, L ~ Ln. The 
counterexample is any element x of L ® Ln. If x is from Ln, there is nothing 
further to do, but  if x is from L - Ln, the (at most one) element i in S 
such that  x E L i  is removed from S. The rest of the proof is unchanged, 
proving Lemma 2. • 

There are dual results for equivalence, membership, and superset queries~ 
which we state without proof. 

L e m m a  3 Suppose the hypothesis space contains a class of distinct sets 
L1 . . . .  , LN, and a set Lu such that for any pair of distinct indices i and j ,  

Li U Lj = Lu. 

Then any algorithm that exactly identifies each of the hypotheses Li using 
restricted equivalence, membership, and superset queries must make at least 
N -  1 queries in the worst case. 

L e m m a  4 Suppose the hypothesis space contains a class of distinct sets 
L 1 , . . . ,  LN, and there exists a set Lu which is not a hypothesis, such that 
for any pair of distinct indices i and j ,  

Li [-J Lj = Lu. 

Then any algorithm that exactly identifies each of the hypotheses Li using 
equivalence, membership, and superset queries must make at least N - 1 
queries in the worst case. 
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2.4 Equivalence queries and stochastic equivalence 

If the source of information about the unknown concept L, is a domain 
expert, then it may be unreasonable to expect correct answers to equiva- 
lence queries, but the stochastic equivalence testing described below may 
be a practical substitute. Stochastic testing is a feature of Knobe and 
Knobe's (1976) method for identifying context-free grammars. 

An identification method that uses equivalence queries and achieves ex- 
act identification may be modified to achieve pac-identification using calls 
to EX(  ) instead of equivalence queries. The idea is instead of asking an 
equivalence query about L, the identification method calls EX(  ) a num- 
ber of times and checks to see that L is compatible with the element x 
returned and classified by E X ( ) .  If not, then the identification method 
proceeds as though the equivalence query had returned the answer no with 
x as a counterexample. If L is compatible with all the samples drawn, then 
the identification method proceeds as though the equivalence query had 
returned the answer yes. 

Suppose that when an equivalence query returns yes, the identification 
method simply halts and outputs the index j such that Lj = L,. If the 
identification method makes 

1 (ln 1 

calls to the EX(  ) oracle in place of the i th equivalence query, then the 
probability that the identification method will output an index j such that 
d(Lj, L,) >_ ~ is at most ( 1 -  e) q~. Thus, the probability that at any 
stage the identification method will outpfit a hypothesis that is not an 
~-approximation of L, is at most 

oo oo 

i = 1  i = 1  

5 

i=1 

< 5. 

Thus the modified method achieves pac-identification of L,. 

What about the converse? Can the E X (  ) oracle and pac-identification 
be replaced by equivalence queries and exact identification? Not if effi- 
ciency must be preserved. Consider the hypothesis space of all singleton 
subsets of the set of binary strings of length n. An identification algorithm 
using only equivalence queries must make 2 n - 1 queries in the worst case. 
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However, for pac-identification in this domain, it suffices to make 

q = [  (ln  + ln2? 

calls to EX() .  (This quantity grows linearly in n for fixed e and 5.) If at 
least one of these calls returns a positive example z, output  the set {z}. If 
all the calls return negative examples, output  any set {y} such that  y has 
not appeared among the negative examples. 

Let D(z) denote the probability of string z with respect to the unknown 
distribution D. The probability that  after q calls to EX( ) there exists a 
string z with D(z) > ~/2 that has not been drawn is easily shown to be at 
most 5. 

If all the strings z such that D(z) > ~/2 have been drawn, then either we 
output  the correct set {x}, or x was not drawn and and we output  some 
set {y} such that  y was not drawn, in which case, 

{x}) < D(y) + D(x) < + < 

Hence this method achieves pac-identification. 
Littlestone (1987) shows that  in certain circumstances equivalence queries 

and errors of prediction are very closely related. His proof gives methods 
of converting identification algorithms that  use equivalence queries into 
prediction algorithms and vice versa. Combined with the transformation 
above, Littlestone's result gives a method of converting prediction algo- 
ri thms into algorithms for pac-identification. 

2.5 Equivalence queries: k - C N F  a n d  k - D N F  f o r m u l a s  

We now show that k-CNF and k-DNF formulas can be efficiently iden- 
tified using only equivalence queries. 

Let k-CNF denote the set of propositional formulas in conjunctive normal 
form over the n variables xl . . . .  , ~n with at most k literals per clause. If 
X is a formula and a is an assignment of truth-values to the n variables, 
a(X) denotes the truth-value assigned to X. 

We assume that  there is an unknown k-CNF formula ¢, and that  the 
EX( ) oracle returns pairs {a, s) where a is a truth-value assignment and 
8 = + if a(¢,)  is true and s = - otherwise. 

Upper bounds. 
Valiant (1984) gives a method that  runs in time polynomial in n k, l /e ,  

and ln(1/~) that  achieves pac-identification of k-CNF formulas. A sim- 
ple modification of this algorithm uses equivalence queries, achieves exact 
identification of the k-CNF formulas, and runs in time polynomial in n k. 
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Initially let ¢ be the conjunction of all clauses C over n variables with 
at most k iiterals per clause. (There are no more than (2n + l) k such 
clauses.) At every point the Set of assignments satisfying ¢ will be a subset 
of these t  of assignments satisfying ¢,. Iterate the following process until 
the  equivalei~ce query returns yes, a t  which point halt and output ¢. 

Test  ¢ f0r equivalence with ¢,. If  it is not equivalent, let a be the 
counterexamp!e. Then a(¢,)  is true and a(¢) is false. Remove from ¢ all 
clauses C such that a(C) is false. 

At' least, one clause is removed from ¢ for each negative answer to an 
equiv.a.lence ' query. By the t~me one removes all clauses from ¢ that are not 
implied by ¢,, ¢ is equivalent to ¢,~ so the claim follows. The number of 
equivalence queries is bounded by (2n + 1) k. 

The algorithm given above implements the majority vote method de- 
scribed in Section 2.2 for the class of k-CNF formulas. The set S of hy- 
potheses consistent With the examples seen so far consists of every formula 
that is a conjunction of some subset of the uneliminated clauses. If an as- 
signment assigns true to all the uneliminated clauses, then it assigns true 
to every hypothesis in S, so the majority vote is true. If an assignment 
assigns false to some uneliminated clause c, then for every hypothesis in S 
that is assigned true, there is another hypothesis in S (obtained by con- 
joining c) that is assigned false, so the majority vote is false. Hence the 
conjunction of all the Uneliminated Clauses gives the majority vote value 
for all assignments. 

There is a logically dual method for k-DNF formulas, that is, formulas 
in disjunctive normal form over n variables with at most k literals per 
term. Haussler (1986, in press) and Littlestone (1987) have described other 
methods of identifying k 'CNF and k-DNF formulas that may use many 
fewer queries. 

Lower bounds. 

Lemma 1 may be applied to the class of 1-CNF formulas. Consider the 
class of all formulas of the form 

P1 . P 2 .  . .  P n  , 

where each P/ i s  either zi or ~xi. There are 2 n such formulas, each one a 
1-CNF formula satisfied bY exactly one assignment, and no two formulas 
are satisfied b y  the same assignment. Thus, the hypothesis space of 1- 
CNP formulas satisfies the conditions of Lemma 1, which implies that any 
algorithm that exactly identifies every 1-CNF formula over n variables 
using restricted equivalence, membership, and subset queries must make 
2 n - 1 queries in the worst case. 
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Dually, we may consider the class of 1-DNF formulas of the form 

PI + P2 + . . .  + Pn, 

where each Pi is either xi or -~xi, to see that the hypothesis space of 1- 
DNF formulas satisfies the conditions of Lemma 3. Thus any algorithm 
that exactly identifies every 1-DNF formula using restricted equivalence, 
membership, and superset queries must make 2 n - 1 queries in the worst 
case. 

3. Membersh ip  queries 

A membership query returns one bit of information: whether or not the 
queried element is a member of the unknown set L,. The learning systems 
of both Shapiro (1981, 1982, 1983) and Sammut and Banerji (1986) use 
membership queries. 

If the source of information is a domain expert, it seems reasonable to ask 
the expert to classify cases generated by the learning systems. However, in 
a practical case, say X-rays of potential tumors, it may be difficult for the 
system to generate fully instantiated cases (simulated X-rays) that embody 
the particular features the system has decided are relevant. In such a case, 
subset, superset, or disjointness queries using a higher-level description 
language may actually prove more reasonable. 

In this section, we give some examples of learning algorithms using mem- 
bership and equivalence queries, a combination termed a minimally ade- 
quate teacher by Angluin (1987d). 

3.1 Monotone DNF formulas 

We consider the class of monotone DNF formulas, that is, disjunctive 
normal form formulas over n variables that contain no negative literals. 
The main result to be proved in this section is the following. 

Theorem 1 There is an algorithm that exactly identifies every monotone 
DNF formula ¢, over n variables that uses equivalence and membership 
queries and runs in time polynomial in n and the number of terms of ~,. 

PROOF: This theorem is proved by modifying an algorithm given by Valianl 
(1984) that pac-identifies any DNF formula ¢, over n variables using sam- 
pling and restricted subset queries and runs in time polynomial in n and 
the number of prime implicants of ¢,.  

A prime implicant of a propositional formula ¢ is a satisfiable product 
t of literals such that t implies ¢, but no proper subterm of t implies 
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¢. The number of prime implicants of a general DNF formula may be 
exponentially larger than the number of terms of the formula. However, 
for a monotone DNF formula, the number of prime implicants is bounded 
by the number of terms of the formula. Thus to prove Theorem 1 it suffices 
to replace sampling by equivalence queries and restricted subset queries by 
membership queries in Valiant's algorithm. 

The algorithm keeps a current hypothesis ¢, initially the empty formula 
(equivalent to false). The hypothesis ¢ always consists of a sum of prime 
implicants of ¢, and therefore implies ¢, .  

The algorithm tests ¢ using an equivalence query. If the reply is yes, 
the algorithm outputs ¢ and halts. Otherwise, the counterexample is an 
assignment a that satisfies ¢,  but not ¢. 

From a the algorithm searches for a new prime implicant of ¢,.  Let t be 
the product of all those variables xi such that a(xi) is true. Clearly a(t) is 
true. The following procedure is used to reduce t to a prime implicant. 

For each t' obtained by deleting one literal from t, determine whether t r 
implies ¢, as follows. Let a ~ be the assignment that assigns true to those 
variables in t r and false to the others. Make a membership query with a ~. 
It is not difficult to see that a~(¢,) is true if and only if t ~ implies ¢, .  

If t ~ implies ¢,,  then t is replaced by t ~ and the reduction process is 
continued. Eventually the algorithm arrives at a term t such that t implies 
¢,,  but no term obtained from t by deleting one literal implies ¢,.  In other 
words, t is a prime implicant of ¢,.  

Note that the counterexample a still satisfies t, so t is not already in ¢. 
The algorithm now replaces the hypothesis ¢ by ~ + t and iterates from 
the equivalence test. 

Let m denote the number of terms in the unknown formula ¢,.  Each 
prime implicant added to the formula requires one equivalence query and at 
most n membership queries, so the running time of the algorithm is clearly 
bounded by a polynomial in m and n. The total number of equivalence 
queries is bounded by m + 1 and the total number of membership queries 
is bounded by ran. This concludes the proof of Theorem 1. • 

The counterexamples provided by the equivalence queries are essential to 
the efficiency of the above algorithm. (Recall that a restricted equivalence 
query returns only yes or no with no counterexample.) 

T h e o r e m  2 For each positive integer n there is a class P of monotone 
DNF formulas with 2n variables and n + 1 terms such that any algorithm 
that exactly identifies every formula in P using restricted equivalence, mere- 
bership, and subset queries must make at least 2 n - 1 queries in the worst 
c a s e .  
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PROOF: Let n > 0 be given. Let 

Cn = x l y l  + x2Y2 -~- . . .  -1- XnYn. 

The class I? consists of the 2 n formulas of the form 

T +  Cn, 

where T is any product 

T =  P1 " P2" " Pn,  

where each P/ is  either xi  or Y.i. 

Note that for any formula ¢ = T + 6 n  from P there is just one assignment 
that satisfies ¢ and does not satisfy Cn, namely the assignment that assigns 
true to exactly one member of each pair {x i ,  Yi} and makes all the variables 
in the term T true. Thus, for any pair of distinct formulas ¢1 and ¢2 from 
D, the assignments that satisfy both formulas are exactly those that satisfy 
Cn. 

Thus the class I? satisfies the hypotheses of Lemma 1, so any algorithm 
that exactly identifies every formula in i? using restricted equivalence, mem- 
bership, and subset queries must make at least 2 n - 1 queries in the worst 
case, proving Theorem 2. • 

Raymond Board (personal communication) has noted that Theorem 2 
can be strengthened to include disjointness and exhaustiveness queries. 
Any two monotone DNF formulas are both satisfied by the "all true" as- 
signment, and both falsified by the "all false" assignment. The adversary 
can answer every disjointness query with the "all true" assignment and ev- 
ery exhaustiveness query with the "all false" assigmnent without revealing 
any information about ¢,. 

3.2 Other methods using membership and equivalence queries 

We briefly describe some other domains in which exact identification can 
be done efficiently using membership and equivalence queries. 

The  regular ~ete. Angluin (1987d) has described an algorithm for iden- 
tifying regular sets using equivalence and membership queries. If L, is 
an unknown regular set whose canonical minimum deterministic acceptor 
(dfa) has n states, then the algorithm runs in time polynomial in n and 
rn, where rn is the maximum length of any counterexample returned by an 
equivalence query. 

There are nice generalizations of this result for the classes recognized by 
deterministic one counter automata (Berman & Roos, 1987), deterministic 
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bottom-up tree automata (Sakakibara, 1987a), and deterministic skeletal 
automata (Sakakibara, 1987b). 

The set consisting of one string of length n is recognized by a dfa with 
n + 2 states. The hypothesis space of dfa's with n + 2 states satisfies the 
conditions of Lemma 1, so there is a lower bound of 2 n - 1 on the number of 
queries needed by any exact identification algorithm for this domain using 
restricted equivalence, membership, and subset queries. 

Context-free grammars with full non-terminal information. The domain 
described by Angluin (1987a) is a special case of identifying context-free 
languages modeled on Shapiro's (1981, 1982, 1983) approach to diagnosing 
errors in Prolog programs. 

Let k be a positive integer and G, be a context-free grammar with termi- 
nal alphabet T, nonterminal alphabet V, start symbol S, and productions 
P. Each production in P has at most k nonterminal symbols (and any 
number of terminal symbols) on the right hand side. Such a grammar is 
called k-bounded. 

Only P is unknown, that is, k, T, V, and S are all known to the iden- 
tification algorithm. Equivalence queries take as input a grammar G and 
return either yes or no combined with a counterexample x, i.e., a string 
in L(G) ® L(G,). Nonterminal membership queries take as input a string 
x and a nonterminal symbol A and return yes or no according to whether 
the string x can be generated from the nonterminal A using the grammar 
G,. 

Angluin (1987a) gives an algorithm that uses equivalence and nontermi- 
hal membership queries, runs in time polynomial in the size of G, and the 
length of the longest counterexample, and exactly identifies any k-bounded 
context-free language. 

k-term DNF and k-clause CNF formulas. The set of k-term DNF formulas 
is the set of formulas in disjunctive normal form over n variables with 
at most k terms. Dually, the set of k-clause CNF formulas is the set 
of formulas in conjunctive normal form over n variables with at most k 
clauses. 

Angluin (1987b) shows that there is an algorithm that uses equivalence 
and membership queries, runs in time polynomial in n k, and exactly iden- 
tifies any k-term DNF formula. A dual result holds for k-clause CNF 
formulas. 

A simple modification of a proof due to Pitt  and Valiant 2 (1986) shows 
that for each k greater than 1, the class of k-term DNF or k-clause CNF 
formulas cannot be exactly identified by any algorithm that uses just equiv- 

2See also Kearns, Li, Pitt, and Valiant (1987). 
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alenee queries and runs in time polynomial in .n k unless P = Np.3  ThuS, 
membership queries seem to be essential to the efficient exact identification 
of k-term DNF formulas. 

These negative results depend on the restJ:iction that  the hypothesis come 
from the original hypothesis space, that  is, be expressed in DNF with a t 
most k terms. If that  restriction is dropped, k-term D N F  formulas can 
be learned by using the larger hypothesis space of k-CNF formulas, since 
every k-term DNF formula is equivalent to a k-CNF formula. 

Every 1-term DNF formula is also a 1-CNF formula, and vice versa. 
Thus the lower bound for 1-CNF formulas p~ioved in Section 2.5 applies to 
the 1-term DNF formulas. The same holds for l-clause CNF formulas and 
1-DNF formulas. 

4. Subset and superset queries 

Membership queries are reducible to restricted subset queries if the space 
of hypotheses includes all the singleton subsets of the universal set/if. 

Valiant (1984) postulates a necessity-oracle for the problem of identifying 
DNF formulas. Given a term t, the necessity-oracle tests whether t implies 
the unknown formula ~b,, i.e., whether the set of assignments satisfying t is 
a subset of the set of assignments satisfying ¢,. The question of whether a 
DNF formula implies ¢, can be reduced to whether each of its terms implies 
¢, ,  so in the terminology of this paper, the necessity-oracle is polynomially 
equivalent to restricted subset queries in the domain of DNF formulas. 

For the problem of identifying CNF formulas, the dual question, whether 
or not the unknown formula ¢,  implies a given clause c, is polynomia!ly 
equivalent to a restricted superset query. 

4.1 The pattern languages 

Angluin (1980) introduced the class of pat tern languages. Let A be 
a finite alphabet of constant symbols and let X be a countably infinite 
alphabet of variable symbols. We assume that  A contains at least two 
distinct symbols. A pattern is a nonempty finite string of symbols from 
A t_) X. The language of a pattern p, denoted L(p), is the set of all strings 
over the alphabet A obtained by substituting non-empty strings of constant 
symbols for the variable symbols of p. For example, if p = 122x5yyx3, then 
the language of p includes the strings 12205111103 and 122001512120013, 
but not the strings 12253 or 1221560601113. 

ap is the class of sets recognizable in deterministic polynomial time and NP is the 
class of sets recognizable in nondeterministie polynomial time. P is contained in NP, but 
it is unknown whether the containment is proper. 
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The following result shows that superset queries alone suffice for efficient 
identification of the pattern languages; equivalence queries are not required 
for correct termination. 

T h e o r e m  3 There is an algorithm that exactly identifies the class of lan- 
guages defined by patterns of length n that uses restricted superset queries 
and runs in time polynomial in n. 

PROOF: We assume that there is an unknown pattern p,. The goal is 
to find a pattern equivalent to p, by asking queries of the form "L(p) _~ 
L(p,)?" for any pattern p. The replies will be either yes or no, with no 
countere×ample supplied. 

Note that if p is a pattern of length n, then L(p) contains at least one 
string of length n and contains only strings of length n or greater. Also, 
L(x lx2 . . .  xn) is precisely all those strings of symbols from A of length n 
or greater. Thus we can determine the length of the unknown pattern p, 
by using superset queries on the patterns xl, xlx2, XlX2X3, and so on, to 
find the least /~ + 1 such that L(x lx2 . . .  xk+l) is not a superset of L(p,). 
Then the length of p, is k. 

Having determined that the length of p, is k, we can determine the 
positions and values of its constant symbols as follows. For each a E A and 
i = 1, 2 , . . . ,  k, query whether 

L ( X l ' "  Xi- laXi+l '"  Xk) D L(p,), 

If so, then the i th symbol of p, is the constant symbol a. If for no a is this 
query answered yes, then the i th symbol of L(p,) is a variable symbol. 

Knowing the length of p, and the positions and values of its constant 
symbols, it remains only to determine for each pair of positions containing 
variables whether the variables are the same or not. For each pair i < j of 
positions of variable symbols in p,, we query whether L(pi,j) is a superset 
of L(p,), where Pi,j is obtained from x l x 2 . . . x k  by substituting the new 
variable x for both xi and xj. If the answer is yes, then positions i and j 
of p, contain the same variable; otherwise, they contain different variables. 

Once all these tests have been completed, a pattern p equivalent to p, 
can be constructed and output. The computation time for this method is 
clearly bounded by a polynomial in k, where k is the length of p,. The 
number of queries used is bounded by (k + 1) + klA I + k(k - 1)/2. This 
concludes the proof of Theorem 3. • 

T h e o r e m  4 Any algorithm that exactly identifies all the patterns of length 
n using equivalence, membership, and subset queries must make at least 
2 n - 1 queries in the worst case. 
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PROOF: If p is a pat tern that  contains no variables, then L(p) = {p}. 
Thus, the class of singleton sets of binary strings is a subclass of the class 
of languages of patterns of length n. Moreover, the intersection language 
(the empty set) is not a pat tern  language, so we may apply Lemma 2 
to conclude that  any algorithm that  exactly identifies all the patterns of 
length n using unrestricted equivalence, membership, and subset queries 
must make at least 2 n - 1 queries, which proves Theorem 4. • 

5. Disjointness queries 

Valiant (1984) describes a possibility-oracle, which takes as input a term 
t and determines whether or not t has any satisfying instances in common 
with the unknown formula ¢..  The possibility-oracle answers restricted 
disjointness queries. 

Shapiro (1981, 1982, 1983) has also made use of disjointness queries in 
his work on automatic debugging of Prolog programs. A brief description 
will give some idea of the uses of queries in his system; we direct the reader 
to the original papers for full details. 

5.1 Queries in Shapiro~s debugging system 

In Shapiro's system the user is assumed to have in mind a model of the 
correct behavior of his or her program, consisting of a collection of named 
procedures and, for each procedure, the set of tuples of ground terms on 
which it is true. For example, the user might be writing a procedure 
member(X, Y) that  should be true whenever X is a member of the list Y, 
or a procedure reverse(X, Y) that  should be true whenever the list Y is 
the reverse of the list X. 

In addition, there is a current program, represented as a set of axioms in 
Prolog, which may or may not be correct for the intended model. It is as- 
sumed that  if the program is not correct, this will eventually be discovered 
and a counterexample provided. This is in essence an equivalence query. 

The counterexample may be an atom P(tl,..., tk) that  is provable from 
the program and not true in the correct model. In this case, the system 
takes any computat ion that  derives the incorrect a tom from the program 
and, using membership queries, locates an incorrect axiom in the program. 
The membership queries take the form of asking whether ground atoms 
are true or false in the intended model. For example, the user might be 
queried whether member(3, [1, 2]) is true or not. 

If the counterexample is an atom P(tl,... ,tk) that  is true in the in- 
tended model but  is such that  the program terminates without proving 
it, then a different diagnosis algorithm is applied to locate an "incomplete 
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procedure," that is, a procedure that requires further axioms. This diagno- 
sis algorithm uses what Shapiro calls an existential query, which gives the 
user an atom containing variables and asks if there is any instantiation of 
the variables that makes the atom true in the intended model. If the user 
answers yes, he or she is then asked to supply instantiations that make the 
atom true in the intended model. 

An example given by Shapiro (1983) in the course of debugging an incor- 
rect insertion sort is the query: isort([2, 1], Z)? This can be restated as "is 
there any value of Z for which the insertion sort procedure isort([2, 1], Z) 
is true?" The user answers yes and is queried for a value of Z. The user 
then supplies Z = [1, 2], and the diagnosis algorithm continues. 

In our terminology, this is a disjointness query, testing whether the set of 
ground instances of the atom isort([2, 1], Z) has any elements in common 
with the ground atoms making up the correct behavior of isort, and if so, to 
supply one. (In Shapiro's system the user must be prepared to enumerate 
all of the common instances.) 

As thus described, Shapiro's system makes use of equivalence, member- 
ship, and disjointness queries. The system also uses an additional type of 
query in cases where the program fails to terminate, but this is beyond the 
scope of our discussion. 

5.2 k-CNF formulas using disjointness queries 

The following polynomial time algorithm, due to Raymond Board (per- 
sonal communication, 1987), exactly identifies k-CNF formulas using re- 
stricted disjointness queries. 4 

Let Tk denote the set of terms consisting of a conjunction of k or fewer 
literals. The complements of elements of Tk is the set of all clauses that 
contain k or fewer literals. For each term t in :irk, the algorithm makes a 
disjointness query. (Note that each term is a 1-CNF formula, so this is 
allowed.) The final output ¢ is the conjunction of the negations of all the 
terms t found to be disjoint from the unknown formula ¢,.  Note that the 
number of queries made by the algorithm is bounded by (2n + 1) k. 

To see that ¢ is equivalent to ¢,,  first consider any assignment a that 
satisfies ¢,. Then a must falsify every term t found to be disjoint from ¢,,  
so it satisfies all the clauses making up ¢, and hence satisfies O. Conversely, 
consider any clause c from &,. The negation of c is a term in Tk that is 
disjoint from ¢,,  so c must be included in ¢. Hence any assignment that 
satisfies ¢ must satisfy all the clauses of ¢,,  that is, must satisfy ¢,. 

4The dual algorithm for k-DNF formulas uses restricted exhaustiveness queries. 
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5.3 A very small class of context-free languages 

In this section we give an artificial example to illustrate the use of dis- 
jointness queries. Let A be a fixed finite a lphabet  and let A + denote the 
set of nonempty  finite St i~ings over A. Let f be any mapping  of A into the 
integers. We extend f additively to any string w = ala2. . .an  in A + by 
f (w)  = f ( a l )  + f(a2) + . . .  + f(an). 

Now we define a set of strings, L( f )  C_ A +, as follows. The  string w = 
a l a 2 " ' a s  is in L( f )  if and only f (w)  = 0, and for each i = 1 , 2 , . . . , n -  1, 
f (a la2""  ai) > O. Let C denote the class of all languages L( f )  as f ranges 
over all functions from A to the integers. 

Some simple examples follow. If A = {a, b} and f(a) = f(b) = 1, then  
L( f )  is the empty  set. I fA  = {a, b, c} and f(a) = O, f(b) = 0, and f(c) = 1, 
then L( f )  = {a, b} +. If A consists of a left and a right parenthesis  and f 
assigns 1 to the left parenthesis  and - 1  to the right parenthesis,  then L( f )  
is the language of nonempty  strings of balanced parentheses.  

C is a subclass of the determinist ic  one counter  languages, which Berman 
and Roos (1987) show can be learned efficiently using equivalence and 
membersh ip  queries. C does not include any finite subset of A + except the 
empty  set. 

Theorem 5 There is an algorithm that ezaetly identifies every language in 
the class C that uses only disjointness queries and runs in time polynomial 
in [A I and the length of the longest counterezample. 

PROOF: We assume A is known. Let f ,  be an unknown function mapping  
A to the integers. The  input  to a disjointness query is an arbi t rary function 
f mapp ing  A to the integers. If L( f )  A L( f , )  is empty, the reply is yes, 
otherwise the reply is no with a counterexample from L( f )  A L(f , ) .  

The algori thm begins by determining for each a E A whether  f ,  (a) = 0. 
This is t rue if and only if a disjointness query with {a} + is answered no. 
Let Z denote the set of symbols a E A such tha t  f ,(a) = O. 

For every pair al  and a2 of distinct symbols from A - Z, the algori thm 
makes a disjointness query with {al, a2} +. If the reply is yes then f , (al)  
and f ,  (a2) are bo th  positive or both  negative. 

Otherwise, the counterexample  is a nonempty  string w in L(f , )  tha t  
contains r occurrences of al and s occurrences of a2. Wi thout  loss of 
generality, assmne tha t  the first symbol in w is al.  Then  we know tha t  
f , (al)  > 0 and f,(a~) < O, and moreover, 

rf , (al)  = -s f , (a2) ,  

and nei ther  r nor  s is O. 
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If we find any function f such that  f(a) = 0 for all a E Z and f satisfies 
all the inequalities and equations above for all pairs al and a2 from A - Z, 
then L(f)  = L(f,).  Angluin (1986) sketches one way of finding such an f .  

The number of queries needed to determine f is bounded by the square 
of IAI, and the computations involved are bounded by a polynomial in IAI 
and the lengths of the counterexamples provided. This concludes the proof 
of Theorem 5. • 

6. The  double  sunflower: A lower b o u n d  for all six queries  

The following construction, dubbed the "double sunflower," was devised 
by participants in the learning seminar at the University of California, 
Santa Cruz, in the fall of 1987, and communicated to the present author 
by Michael Kearns. It demonstrates a domain with N concepts in which 
N - 1 queries are necessary, even given the full set of query types, settling 
an open problem posed by Angluin (1986). 

Let n > 0 be given. Let N = 2 n. Let X = {xl ,x~, . . . ,XN} and Y = 
{Yl, Y2,. . . ,  YN}. Let zl and z2 be two special points not contained in X or 
Y. Define the universe as U = X U Y U {z~, z2}. Thus, U contains 2 n+l + 2 
points. For each j = 1 , . . . ,  N, let 

C 5 =  {zl, x~} U (Y - yh). 

The hypothesis space consists of the N sets Cj. Note that  Cj always 
contains zl, never contains z2, contains only xj among the x's, and contains 
all but yj among the y's. 

To see that  N - 1 queries are necessary for any algorithm that  ex- 
actly identifies this class of concepts, even given the full complement of 
equivalence, membership, subset, superset, disjointness, and exhaustive- 
ness queries, we exhibit the following adversary. Let S denote the set of 
indices of hypotheses Cj that  are compatible with all the queries answered 
so far. Initially S is all N indices. As long as S contains at least two 
elements, the adversary answers queries as follows. 

• An equivalence query with Cj is answered no, and the counterexample 
xj is given. The at most one element i (namely i = j)  of S such that  
xj E Ci is removed from S. 

• A membership query with xj is answered no. The at most one element 
i of S such that  xj E Ci is removed from S. A membership query with 
yj is answered yes. The at most one element i of S such that  yj ~ Ci 
is removed from S. A membership query with zl is answered yes, and 
one with z2 is answered no. In either case, no elements are removed 
from S. 
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• A subset query with Cj is answered no, and the counterexample xj is 
given. The at most one element i of S such that  xj E Ci is removed 
from S. 

• A superset query with Cj is answered no, and the counterexample yj 
is given. The at most one element i of S such that  yj ~ Ci is removed 
from S. 

• A disjointness query with Cj is answered no, and the counterexample 
zl is returned. No elements are removed from S. 

• An exhaustiveness query with Cj is answered no, and the counterex- 
ample z2 is returned. No elements are removed from S. 

A correct exact identification algorithm for this domain must reduce the set 
S to one element~ and the adversary guarantees that  at most one element 
will be removed from S by each query. Hence the lower bound of N - 1 
queries is proved. 

7. Summary, remarks, and open questions 

We have described efficient algorithms and lower bounds for the use of 
queries in several specific domains. These results are summarized in Ta- 
ble 1. The first column lists the specific domains we have discussed, and 
the second column gives a reference to the description of the domain. The 
third column, labeled sufficient, states a minimal set of query-types that 
has been shown to suffice for efficient exact identification in the specified 
domain. The fourth column, labeled insufficient, specifies a maximal set of 
query-types for which an exponential lower bound on exact identification 
has been shown for the specified domain. 5 The types of queries are iden- 
tified by numbers according to the following scheme: (1) equivalence, (2) 
membership, (3) subset, (4) superset, (5) disjointness, (6) exhaustiveness. 

A number of open problems are implicit in Table 1. For example, can 
membership queries be shown to be essential to efficient identification of 
the regular sets or monotone DNF formulas? Are disjointness queries of 
any help in identifying the pat tern  languages? 

In any practical setting, the answers to queries of all types are likely 
to be contaminated with errors. The errors may reflect some consistent 
ignorance or bias of the informant, or may be generated by some random 
process. Work by Valiant (1985), Kearns and Li (1987), Angluin and Laird 
(1987), and Laird (1987) on malicious and random errors has begun to 
clarify the effect of errors on identification and learning. 

5A number superscripted with a minus sign denotes the restricted version of tile 
corresponding query, that  is, with no counterexamples returned. For example, 1- denotes 
restricted equivalence queries. The number 2 + denotes nonterminal membership queries. 
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Table 1. Summary of results for specific domains. 

domain reference 8ufficien,t insufficient 

singleton languages 
k-CNF formulas 
k-DNF formulas 
monotone DNF formulas 
regular languages 
k-bounded CFLs 
k-term DNF formulas 
k-clause CNF formulas 
pattern languages 
very restricted CFLs 
double sunflower 

2.1 
2.5, 5.2 

, 

1 or 5~ 
1 ,2 ,3 ,5  
1 - , 2 ,3  
1 - , 2 ,4  

1-, 2, 3, 5, 6 
1 - , 2 , 3  

2.5, 5.2 
3.1 
3.2 
3.2 
3.2 
3.2 
4.1 
5.3 

1 or6-  
1; 2 
1,2. 

1, 2 :~ 
1,2 
1,2 : 
4- 

5 or 1 , 2  
none 

1- ,2 ,3  
1 - ,2 ,4  
1~ 2, 3 

1, 2, 3, 4, 5, 6 

Valiant (1984) makes use of two additional types of queries specific to 
DNF formulas: relevant possibility and relevant accompaniment. Shapiro 
(1981, 1982, 1983) makes use of one additional type of query to help diag- 
nose nonterminating Prolog programs. Still other'sources of information 
will prove to be relevant for other specific domains. 

Angluin (1987c) introduces a new type of query.~ called a "request for a 
hint," for the domain of propositional Horn sentences. The answer to such 
a query is intended to model a partial explanation of how a conclusion 
follows from a set of premises. Formal models of the "explanations" or 
"reasons" that may be supplied by a human expert are an important area 
of research. 
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