
Machine Learning 2:319 342, 1988
(~) 1988 Kluwer Academic Publishers, Boston Manufactured in The Netherlands

Queries and Concept Learning

DANA ANGLUIN {ANGLUIN@YALE.EDU)

Department of Computer Science, Yale University, P.O. Box 2158,
New Haven, CT 06520, U.S.A.

(Received: July 20, 1987)

(Revised: January 26, 1988)

Keywords : Concept learning, supervised learning, queries

Abs t r ac t . We consider the problem of using queries to learn an unknown concept.
Several types of queries are described and studied: membership, equivalence, subset, su-
parser, disjointness, and exhaustiveness queries. Examples are given of efficient learning
methods using various subsets of these queries for formal domains, including the regular
languages, restricted classes of context-free languages, the pattern languages, and re-
stricted types of propositional formulas. Some general lower bound techniques are given.
Equivalence queries are compared with Valiant's criterion of probably approximately
correct identification under random sampling.

1. I n t r o d u c t i o n

A successful learning component in an expert system will probably rely
heavily on queries to its instructors. For example, Sammut and Banerji's
(1986) system uses queries about specific examples as part of its strategy
for efficiently learning a target concept. Shapiro's (1981, 1982, 1983) Algo-
rithmic Debugging System uses a variety of types of queries to the user to
pinpoint errors in Prolog programs. In this paper we use a formal frame-
work to study the power of several types of queries for concept-learning
tasks.

We consider the problem of identifying an unknown set L, from some
finite or countable hypothesis space L~, L~, . . . of subsets of a universal set
U. The usual assumption is that one is given an arbitrarily or stochastically
generated sequence of elements of U, each classified as to whether it is in
L,. 1 Instead, we will assume that the learning algorithm has access to
a fixed set of oracles that will answer specific kinds of queries about the
unknown concept L,. The types of queries we consider are the following:

1 We direct the reader to Angluin and Smith (1983) for a survey of inductive inference.

320 D. ANGLUIN

• Membership . The input is an element x ~ U and the output is yes if
x E L , and no if x ~ L,.

• Equivalence. The input is a set L and the output is yes if L = L, and
no if L ~= L,. If the answer is no, an element x E L G L, is returned.
(L ® L, is the symmetric difference of L and L,, that is, the set of
elements in one but not both of the sets.)

• Subset. The input is a set L and the output is yes if L C L, and no
otherwise. If the answer is no, an element x E L - L, is returned.

• Superset . The input is a set L and the output is yes if L ___ L, and no

otherwise. If the answer is no, an element x E L, - L is returned.

,, Dis jo in tness . The input is a set L and the output is yes if L N L, is
empty and no otherwise. If the answer is no, an element x E L N L, is
returned.

• Exhaustivenes.~. The input is a set L and the output is yes if L U L,
is U and no otherwise. If the answer is no, an element x ~ L U L, is
returned.

For the queries other than membership, the returned element x is called
a counterexample. The particular selection of a counterexample is assumed
to be arbitrary, that is, a successful identification method must work no
matter what counterexample is returned. We shall also consider restricted
versions of each of these queries, for which the responses are just yes and
no, with no counterexample provided.

Except in Section 2.2, we assume that if the input to a query is a set L,
then it must be one of the elements Li of the original hypothesis space. In
particular, our lower bounds are strongly dependent on this requirement.
The issue of how hypotheses are represented is very important, too im-
portant to be given any detailed t reatment in this paper. We assume the
hypotheses are simply represented as indices: the index i represents the
hypothesis L~.

1.1 An example: Poker hands

To illustrate the definitions above, we consider a concrete example from
the game of poker. Let the target concept L, be the set of all ordered pairs
of poker hands such that the first hand beats the second hand. We choose
a representation of a card that gives its value and suit, for example, Q H
or 2C. A hand is an unordered set of five cards. A pair of hands is an
ordered pair of hands with no cards in common. Then the universal set U
is simply all pairs of hands, and the target concept is the subset consisting

QUERIES AND CONCEPT LEARNING 321

of those pairs in which the first hand beats the second. Thus,

({2S, IOH, QH, 2D, 5C}, {JS, 3H, 4H, JH, 2C})

is an element of U that is not an element of L,, since a pair of twos does
not beat a pair of jacks.

We must also choose a description language to express subsets of U. This
choice is crucial to the success of a learning method, but it is not the focus
of this paper. We assume that the description language contains at least
one expression for the target concept; the goal of learning is to find one
such expression. We now give some examples of queries for this domain.

A membership query gives a specific pair of hands, for example,

({2S, 10H, QH, 2D,5C}, {JS, 3H, 4H, JH, 2C}).

The reply in this case is no, because the first hand does not beat the second.

An equivalence query specifies an expression in the description language,
for example, "all pairs of hands in which the first hand contains two or
three cards with equal value." This is not a correct description of the
target concept, so the reply is no combined with a counterexample, i.e.,
a specific pair of hands that is a positive example of the target concept
and a negative example of the queried expression, or vice versa. Thus the
counterexample could be the pair of hands

({2S, 10H, QH, 2D, 5C}, {JS, 3H, 4H, JH, 2C}).

This pair satisfies the description, but is not in the target concept L.. Or
the counterexample might be

({2S, 10H, QH, 3D, 5C}, {7S, 3H, 4H, JH, 2C}),

which does not satisfy the description, but is nonetheless in the target
concept.

1.2 Exact and probabilistic identification

The abstract examples we consider include sets of strings generated by
grammars or recognized by automata and sets of truth-value assignments
that satisfy certain classes of propositional formulas. We consider two
criteria of successful identification, exact and probabilistic.

An identification method exactly identifies a set L. with access to certain
types of queries if it always halts and outputs an index i such that Li - L,.
Note that this is not a limiting criterion of identification - the identification
method is allowed one guess, and that guess must be exactly right.

322 D. ANGLUIN

In contrast, Valiant (1984) has introduced a criterion of probabilistic
identification, and here we give a definition suitable for this paper. There
is some probability distribution D on the universal set U. The probability
of element x with respect to D is denoted Pr(x). There is a sampling oracle
EX() , which has no input. Whenever EX() is called, it draws an element
x E U according to the distribution D and returns the element x, together
with an indication of whether or not x is in the target set L,.

Successflfl identification is parameterized with respect to two positive
quantities, the accuracy parameter e and the confidence parameter 5. We
define a notion of the difference between two sets L and U with respect to
the probability distribution as

d(L,L')= ~ Pr(x).
x C L Q L p

The probability of getting an element in one but not the other of the two
sets L and L r in one call to EX() is precisely d(L, Lr).

An identification method is said to probably approximately correctly iden-
tify L. if it always halts and outputs an index i such that

Pr(d(Li, L,) < ~) > 1 - 6.

That is, with high probability (quantified by 5) there is not too much
difference (quantified by ~) between the conjectured set and the target set.

Probably approximately correct identification (abbreviated pac-identifi-
cation) is the criterion of success if the sampling oracle EX() is available,
otherwise we use exact identification. For more on pac-identification, see
Blumer, Ehrenfeucht, Haussler. and Warmuth (1986, 1987) or Angluin and
Laird (1987).

2. Equivalence queries

We now consider the different types of queries in more detail. This
section concerns equivalence queries.

2.1 Exhaustive search

Given only equivalence queries, then one strategy is exhaustive search:
enumerate the indices i = 1 ,2 , . . . , querying each Li until one gets an
answer of yes, at which point one halts and outputs index i. This achieves
exact identification.

If the queries are restricted to the hypothesis space, L~,L~,..., then
exhaustive search is sometimes the best that can be done. Suppose the

QUERIES AND CONCEPT LEARNING 323

hypothesis space is the set of singleton subsets of the set of all 2 '~ binary
strings of length n. Then it is clear that a strategy using equivalence
queries can only eliminate one hypothesis with each query, and so may use
as many as 2 n -- 1 queries.

We can strengthen this result: the following adversary forces any method
of exact identification using equivalence, membership, subset, and disjoint-
ness queries to make 2 ~ - 1 queries in the worst case. (However, the coun-
terexample re turned by a single superset query will disclose the unknown
set.)

The adversary maintains a set S of all the uneliminated binary strings
of length n. Initially S contains all 2 ~ binary strings of length n. As
long as S contains at least two distinct strings, the adversary proceeds as
follows. If the next query is a membership query with the string x, then the
adversary answers with no. If the next query is an equivalence or subset
query with the singleton set {x}, then the adversary answers no along with
the counterexample x. If the next query is a disjointness quet~ with the
singleton set {x}, then the adversary answers with ,yes. In each case, if x
is a member of S, the adversary removes it fl'om S.

It is not difficult to see that the responses of the adversary are compatible
with the unknown hypothesis being {x} for any element x still in S, and at
most one element is removed from S with each query. Thus to be correct
the algorithm must make at least 2 ~ - 1 queries.

2.2 A logarithmic strategy: Majority vote

If the input L to an equivalence query is not required to be a member
of the hypothesis space, a strategy based on "majority vote" can achieve
exponentially fewer queries than exhaustive search. In this case we assume
that the inputs to equivalence queries are arbi t rary subsets of the universal
set U, and the hypothesis output can also be an arbitrary subset of U.
Suppose the hypothesis space is finite: L1, . . •, LN. Then instead of making
N - 1 queries, we may make [log N] queries, as follows. (Note: we use log
to denote the base 2 logarithm, and In to denote the natural logarithm.)

A set 5 is maintained of all the indices of hypotheses compatible with all
the counterexamples seen so far. S initially contains all N indices. I terate
the following process until it halts.

If S contains just one element, i, then halt and output Li. Otherwise
define Ms to be the set of all elements x such that for more than ISI/2
elements i of S, x ~ Li. Make an equivalence query with Ms as input. If the
answer is yes, halt and output Ms. Otherwise, there is a counterexample
z. If x E Ms, remove from S all i such that x E L i ; otherwise, remove
from S all i such that x ~ Li.

324 D. ANGLUIN

A query is made only if IS[> 1, and every query answered no must
reduce the cardinality of C by at least one half. Thus, a total of [log NJ
queries suffices. This result is a special case of the results of Barzdin and
Freivald (1972).

A direct implementation of the majority-vote strategy, keeping an ex-
plicit list of all uneliminated hypotheses, is infeasible for most domains.
In Section 2.5 we show that a simple algorithm indirectly implements the
majority-vote strategy for k-CNF formulas. Approximating the majority
vote leads to questions of how to sample "fairly" from the space of unelimi-
nated hypotheses. Littlestone (1987) shows that the majority-vote method
may not be query-optimal in some domains.

2.3 Some general lower bound techniques

Since in this paper we restrict the inputs to the queries to be elements of
the hypothesis space, we now develop some simple lower bound techniques
that generalize the lower bound proof in Section 2.1.

L e m m a 1 Suppose the hypothesis space contains a class of distinct sets
L 1 , . . . , LN, and a set Ln such that for any pair of distinct indices i and j ,

Li n Lj = Ln.

Then any algorithm that exactly identifies each of the hypotheses Li using
restricted equivalence, membership, and subset queries' must make at least
N - 1 queries in the worst case.

PROOF: We describe an adversary. Initially S contains 1 , 2 , . . . , N . If
ISI > 1 the adversary proceeds as follows. For a restricted equivalence
query with the hypothesis L, the reply is no, and the (at most one) i such
that Li = L is removed from S. For a membership query with the demen t
z, if x ~ Ln then the reply is yes. Otherwise, the reply is no, and the (at
most one) element i of S such that x E L i is removed from S. For a subset
query with the hypothesis L, if L is a subset of Ln then the reply is yes.
Otherwise, the reply is no and any element x E L - Ln is selected as the
counterexample. The (at most one) element i of S such that x E Li is
removed from S.

At any point, for each i E S, Li is compatible with the replies to the
queries so far. A correct exact identification algorithm must reduce the
cardinality of S to at most one. Each query removes at most one element
from the set S, so N - 1 queries are required in the worst case, which
Droves Lemma 1. •

QUERIES AND CONCEPT LEARNING 325

If the "intersection set" LN is not itself an element of the hypothesis
space, then Lemma 1 can be strengthened as follows.

L e m m a 2 Suppose the hypothesis space contains a class of distinct sets
L1 , LN, and there exists a set Ln which is not a hypothesis, such that
for any pair of distinct indices i and j ,

Li (3 Lj = Ln.

Then any algorithm that exactly identifies each of the hypotheses Li using
equivalence, membership, and subset queries must make at least N - 1
queries in the worst case.

PROOF: The proof of Lemma 1 may be modified as follows. The replies
to queries are the same, except that a counterexample must be provided
when an equivalence query is answered no. Let L be the input to an
equivalence query. Since Ln is not in the hypothesis space, L ~ Ln. The
counterexample is any element x of L ® Ln. If x is from Ln, there is nothing
further to do, but if x is from L - Ln, the (at most one) element i in S
such that x E L i is removed from S. The rest of the proof is unchanged,
proving Lemma 2. •

There are dual results for equivalence, membership, and superset queries~
which we state without proof.

L e m m a 3 Suppose the hypothesis space contains a class of distinct sets
L1 , LN, and a set Lu such that for any pair of distinct indices i and j ,

Li U Lj = Lu.

Then any algorithm that exactly identifies each of the hypotheses Li using
restricted equivalence, membership, and superset queries must make at least
N - 1 queries in the worst case.

L e m m a 4 Suppose the hypothesis space contains a class of distinct sets
L 1 , . . . , LN, and there exists a set Lu which is not a hypothesis, such that
for any pair of distinct indices i and j ,

Li [-J Lj = Lu.

Then any algorithm that exactly identifies each of the hypotheses Li using
equivalence, membership, and superset queries must make at least N - 1
queries in the worst case.

326 D. ANGLUIN

2.4 Equivalence queries and stochastic equivalence

If the source of information about the unknown concept L, is a domain
expert, then it may be unreasonable to expect correct answers to equiva-
lence queries, but the stochastic equivalence testing described below may
be a practical substitute. Stochastic testing is a feature of Knobe and
Knobe's (1976) method for identifying context-free grammars.

An identification method that uses equivalence queries and achieves ex-
act identification may be modified to achieve pac-identification using calls
to EX() instead of equivalence queries. The idea is instead of asking an
equivalence query about L, the identification method calls EX() a num-
ber of times and checks to see that L is compatible with the element x
returned and classified by E X () . If not, then the identification method
proceeds as though the equivalence query had returned the answer no with
x as a counterexample. If L is compatible with all the samples drawn, then
the identification method proceeds as though the equivalence query had
returned the answer yes.

Suppose that when an equivalence query returns yes, the identification
method simply halts and outputs the index j such that Lj = L,. If the
identification method makes

1 (ln 1

calls to the EX() oracle in place of the i th equivalence query, then the
probability that the identification method will output an index j such that
d(Lj, L,) >_ ~ is at most (1 - e) q~. Thus, the probability that at any
stage the identification method will outpfit a hypothesis that is not an
~-approximation of L, is at most

oo oo

i = 1 i = 1

5

i=1

< 5.

Thus the modified method achieves pac-identification of L,.

What about the converse? Can the E X () oracle and pac-identification
be replaced by equivalence queries and exact identification? Not if effi-
ciency must be preserved. Consider the hypothesis space of all singleton
subsets of the set of binary strings of length n. An identification algorithm
using only equivalence queries must make 2 n - 1 queries in the worst case.

QUERIES AND CONCEPT LEARNING 327

However, for pac-identification in this domain, it suffices to make

q = [(ln + ln2?

calls to EX() . (This quantity grows linearly in n for fixed e and 5.) If at
least one of these calls returns a positive example z, output the set {z}. If
all the calls return negative examples, output any set {y} such that y has
not appeared among the negative examples.

Let D(z) denote the probability of string z with respect to the unknown
distribution D. The probability that after q calls to EX() there exists a
string z with D(z) > ~/2 that has not been drawn is easily shown to be at
most 5.

If all the strings z such that D(z) > ~/2 have been drawn, then either we
output the correct set {x}, or x was not drawn and and we output some
set {y} such that y was not drawn, in which case,

{x}) < D(y) + D(x) < + <

Hence this method achieves pac-identification.
Littlestone (1987) shows that in certain circumstances equivalence queries

and errors of prediction are very closely related. His proof gives methods
of converting identification algorithms that use equivalence queries into
prediction algorithms and vice versa. Combined with the transformation
above, Littlestone's result gives a method of converting prediction algo-
ri thms into algorithms for pac-identification.

2.5 Equivalence queries: k - C N F a n d k - D N F f o r m u l a s

We now show that k-CNF and k-DNF formulas can be efficiently iden-
tified using only equivalence queries.

Let k-CNF denote the set of propositional formulas in conjunctive normal
form over the n variables xl , ~n with at most k literals per clause. If
X is a formula and a is an assignment of truth-values to the n variables,
a(X) denotes the truth-value assigned to X.

We assume that there is an unknown k-CNF formula ¢, and that the
EX() oracle returns pairs {a, s) where a is a truth-value assignment and
8 = + if a(¢,) is true and s = - otherwise.

Upper bounds.
Valiant (1984) gives a method that runs in time polynomial in n k, l /e ,

and ln(1/~) that achieves pac-identification of k-CNF formulas. A sim-
ple modification of this algorithm uses equivalence queries, achieves exact
identification of the k-CNF formulas, and runs in time polynomial in n k.

328 D. ANGLUIN

Initially let ¢ be the conjunction of all clauses C over n variables with
at most k iiterals per clause. (There are no more than (2n + l) k such
clauses.) At every point the Set of assignments satisfying ¢ will be a subset
of these t of assignments satisfying ¢,. Iterate the following process until
the equivalei~ce query returns yes, a t which point halt and output ¢.

Test ¢ f0r equivalence with ¢,. If it is not equivalent, let a be the
counterexamp!e. Then a(¢,) is true and a(¢) is false. Remove from ¢ all
clauses C such that a(C) is false.

At' least, one clause is removed from ¢ for each negative answer to an
equiv.a.lence ' query. By the t~me one removes all clauses from ¢ that are not
implied by ¢,, ¢ is equivalent to ¢,~ so the claim follows. The number of
equivalence queries is bounded by (2n + 1) k.

The algorithm given above implements the majority vote method de-
scribed in Section 2.2 for the class of k-CNF formulas. The set S of hy-
potheses consistent With the examples seen so far consists of every formula
that is a conjunction of some subset of the uneliminated clauses. If an as-
signment assigns true to all the uneliminated clauses, then it assigns true
to every hypothesis in S, so the majority vote is true. If an assignment
assigns false to some uneliminated clause c, then for every hypothesis in S
that is assigned true, there is another hypothesis in S (obtained by con-
joining c) that is assigned false, so the majority vote is false. Hence the
conjunction of all the Uneliminated Clauses gives the majority vote value
for all assignments.

There is a logically dual method for k-DNF formulas, that is, formulas
in disjunctive normal form over n variables with at most k literals per
term. Haussler (1986, in press) and Littlestone (1987) have described other
methods of identifying k 'CNF and k-DNF formulas that may use many
fewer queries.

Lower bounds.

Lemma 1 may be applied to the class of 1-CNF formulas. Consider the
class of all formulas of the form

P1 . P 2 . . . P n ,

where each P/ i s either zi or ~xi. There are 2 n such formulas, each one a
1-CNF formula satisfied bY exactly one assignment, and no two formulas
are satisfied b y the same assignment. Thus, the hypothesis space of 1-
CNP formulas satisfies the conditions of Lemma 1, which implies that any
algorithm that exactly identifies every 1-CNF formula over n variables
using restricted equivalence, membership, and subset queries must make
2 n - 1 queries in the worst case.

QUERIES AND CONCEPT LEARNING 329

Dually, we may consider the class of 1-DNF formulas of the form

PI + P2 + . . . + Pn,

where each Pi is either xi or -~xi, to see that the hypothesis space of 1-
DNF formulas satisfies the conditions of Lemma 3. Thus any algorithm
that exactly identifies every 1-DNF formula using restricted equivalence,
membership, and superset queries must make 2 n - 1 queries in the worst
case.

3. Membersh ip queries

A membership query returns one bit of information: whether or not the
queried element is a member of the unknown set L,. The learning systems
of both Shapiro (1981, 1982, 1983) and Sammut and Banerji (1986) use
membership queries.

If the source of information is a domain expert, it seems reasonable to ask
the expert to classify cases generated by the learning systems. However, in
a practical case, say X-rays of potential tumors, it may be difficult for the
system to generate fully instantiated cases (simulated X-rays) that embody
the particular features the system has decided are relevant. In such a case,
subset, superset, or disjointness queries using a higher-level description
language may actually prove more reasonable.

In this section, we give some examples of learning algorithms using mem-
bership and equivalence queries, a combination termed a minimally ade-
quate teacher by Angluin (1987d).

3.1 Monotone DNF formulas

We consider the class of monotone DNF formulas, that is, disjunctive
normal form formulas over n variables that contain no negative literals.
The main result to be proved in this section is the following.

Theorem 1 There is an algorithm that exactly identifies every monotone
DNF formula ¢, over n variables that uses equivalence and membership
queries and runs in time polynomial in n and the number of terms of ~,.

PROOF: This theorem is proved by modifying an algorithm given by Valianl
(1984) that pac-identifies any DNF formula ¢, over n variables using sam-
pling and restricted subset queries and runs in time polynomial in n and
the number of prime implicants of ¢,.

A prime implicant of a propositional formula ¢ is a satisfiable product
t of literals such that t implies ¢, but no proper subterm of t implies

330 D. ANGLUIN

¢. The number of prime implicants of a general DNF formula may be
exponentially larger than the number of terms of the formula. However,
for a monotone DNF formula, the number of prime implicants is bounded
by the number of terms of the formula. Thus to prove Theorem 1 it suffices
to replace sampling by equivalence queries and restricted subset queries by
membership queries in Valiant's algorithm.

The algorithm keeps a current hypothesis ¢, initially the empty formula
(equivalent to false). The hypothesis ¢ always consists of a sum of prime
implicants of ¢, and therefore implies ¢, .

The algorithm tests ¢ using an equivalence query. If the reply is yes,
the algorithm outputs ¢ and halts. Otherwise, the counterexample is an
assignment a that satisfies ¢, but not ¢.

From a the algorithm searches for a new prime implicant of ¢,. Let t be
the product of all those variables xi such that a(xi) is true. Clearly a(t) is
true. The following procedure is used to reduce t to a prime implicant.

For each t' obtained by deleting one literal from t, determine whether t r
implies ¢, as follows. Let a ~ be the assignment that assigns true to those
variables in t r and false to the others. Make a membership query with a ~.
It is not difficult to see that a~(¢,) is true if and only if t ~ implies ¢, .

If t ~ implies ¢,, then t is replaced by t ~ and the reduction process is
continued. Eventually the algorithm arrives at a term t such that t implies
¢,, but no term obtained from t by deleting one literal implies ¢,. In other
words, t is a prime implicant of ¢,.

Note that the counterexample a still satisfies t, so t is not already in ¢.
The algorithm now replaces the hypothesis ¢ by ~ + t and iterates from
the equivalence test.

Let m denote the number of terms in the unknown formula ¢,. Each
prime implicant added to the formula requires one equivalence query and at
most n membership queries, so the running time of the algorithm is clearly
bounded by a polynomial in m and n. The total number of equivalence
queries is bounded by m + 1 and the total number of membership queries
is bounded by ran. This concludes the proof of Theorem 1. •

The counterexamples provided by the equivalence queries are essential to
the efficiency of the above algorithm. (Recall that a restricted equivalence
query returns only yes or no with no counterexample.)

T h e o r e m 2 For each positive integer n there is a class P of monotone
DNF formulas with 2n variables and n + 1 terms such that any algorithm
that exactly identifies every formula in P using restricted equivalence, mere-
bership, and subset queries must make at least 2 n - 1 queries in the worst
c a s e .

QUERIES AND CONCEPT LEARNING 331

PROOF: Let n > 0 be given. Let

Cn = x l y l + x2Y2 -~- . . . -1- XnYn.

The class I? consists of the 2 n formulas of the form

T + Cn,

where T is any product

T = P1 " P2" " Pn,

where each P/ is either xi or Y.i.

Note that for any formula ¢ = T + 6 n from P there is just one assignment
that satisfies ¢ and does not satisfy Cn, namely the assignment that assigns
true to exactly one member of each pair {x i , Yi} and makes all the variables
in the term T true. Thus, for any pair of distinct formulas ¢1 and ¢2 from
D, the assignments that satisfy both formulas are exactly those that satisfy
Cn.

Thus the class I? satisfies the hypotheses of Lemma 1, so any algorithm
that exactly identifies every formula in i? using restricted equivalence, mem-
bership, and subset queries must make at least 2 n - 1 queries in the worst
case, proving Theorem 2. •

Raymond Board (personal communication) has noted that Theorem 2
can be strengthened to include disjointness and exhaustiveness queries.
Any two monotone DNF formulas are both satisfied by the "all true" as-
signment, and both falsified by the "all false" assignment. The adversary
can answer every disjointness query with the "all true" assignment and ev-
ery exhaustiveness query with the "all false" assigmnent without revealing
any information about ¢,.

3.2 Other methods using membership and equivalence queries

We briefly describe some other domains in which exact identification can
be done efficiently using membership and equivalence queries.

The regular ~ete. Angluin (1987d) has described an algorithm for iden-
tifying regular sets using equivalence and membership queries. If L, is
an unknown regular set whose canonical minimum deterministic acceptor
(dfa) has n states, then the algorithm runs in time polynomial in n and
rn, where rn is the maximum length of any counterexample returned by an
equivalence query.

There are nice generalizations of this result for the classes recognized by
deterministic one counter automata (Berman & Roos, 1987), deterministic

332 D. ANGLUIN

bottom-up tree automata (Sakakibara, 1987a), and deterministic skeletal
automata (Sakakibara, 1987b).

The set consisting of one string of length n is recognized by a dfa with
n + 2 states. The hypothesis space of dfa's with n + 2 states satisfies the
conditions of Lemma 1, so there is a lower bound of 2 n - 1 on the number of
queries needed by any exact identification algorithm for this domain using
restricted equivalence, membership, and subset queries.

Context-free grammars with full non-terminal information. The domain
described by Angluin (1987a) is a special case of identifying context-free
languages modeled on Shapiro's (1981, 1982, 1983) approach to diagnosing
errors in Prolog programs.

Let k be a positive integer and G, be a context-free grammar with termi-
nal alphabet T, nonterminal alphabet V, start symbol S, and productions
P. Each production in P has at most k nonterminal symbols (and any
number of terminal symbols) on the right hand side. Such a grammar is
called k-bounded.

Only P is unknown, that is, k, T, V, and S are all known to the iden-
tification algorithm. Equivalence queries take as input a grammar G and
return either yes or no combined with a counterexample x, i.e., a string
in L(G) ® L(G,). Nonterminal membership queries take as input a string
x and a nonterminal symbol A and return yes or no according to whether
the string x can be generated from the nonterminal A using the grammar
G,.

Angluin (1987a) gives an algorithm that uses equivalence and nontermi-
hal membership queries, runs in time polynomial in the size of G, and the
length of the longest counterexample, and exactly identifies any k-bounded
context-free language.

k-term DNF and k-clause CNF formulas. The set of k-term DNF formulas
is the set of formulas in disjunctive normal form over n variables with
at most k terms. Dually, the set of k-clause CNF formulas is the set
of formulas in conjunctive normal form over n variables with at most k
clauses.

Angluin (1987b) shows that there is an algorithm that uses equivalence
and membership queries, runs in time polynomial in n k, and exactly iden-
tifies any k-term DNF formula. A dual result holds for k-clause CNF
formulas.

A simple modification of a proof due to Pitt and Valiant 2 (1986) shows
that for each k greater than 1, the class of k-term DNF or k-clause CNF
formulas cannot be exactly identified by any algorithm that uses just equiv-

2See also Kearns, Li, Pitt, and Valiant (1987).

QUERIES AND CONCEPT LEARNING 333

alenee queries and runs in time polynomial in .n k unless P = Np.3 ThuS,
membership queries seem to be essential to the efficient exact identification
of k-term DNF formulas.

These negative results depend on the restJ:iction that the hypothesis come
from the original hypothesis space, that is, be expressed in DNF with a t
most k terms. If that restriction is dropped, k-term D N F formulas can
be learned by using the larger hypothesis space of k-CNF formulas, since
every k-term DNF formula is equivalent to a k-CNF formula.

Every 1-term DNF formula is also a 1-CNF formula, and vice versa.
Thus the lower bound for 1-CNF formulas p~ioved in Section 2.5 applies to
the 1-term DNF formulas. The same holds for l-clause CNF formulas and
1-DNF formulas.

4. Subset and superset queries

Membership queries are reducible to restricted subset queries if the space
of hypotheses includes all the singleton subsets of the universal set/if.

Valiant (1984) postulates a necessity-oracle for the problem of identifying
DNF formulas. Given a term t, the necessity-oracle tests whether t implies
the unknown formula ~b,, i.e., whether the set of assignments satisfying t is
a subset of the set of assignments satisfying ¢,. The question of whether a
DNF formula implies ¢, can be reduced to whether each of its terms implies
¢, , so in the terminology of this paper, the necessity-oracle is polynomially
equivalent to restricted subset queries in the domain of DNF formulas.

For the problem of identifying CNF formulas, the dual question, whether
or not the unknown formula ¢, implies a given clause c, is polynomia!ly
equivalent to a restricted superset query.

4.1 The pattern languages

Angluin (1980) introduced the class of pat tern languages. Let A be
a finite alphabet of constant symbols and let X be a countably infinite
alphabet of variable symbols. We assume that A contains at least two
distinct symbols. A pattern is a nonempty finite string of symbols from
A t_) X. The language of a pattern p, denoted L(p), is the set of all strings
over the alphabet A obtained by substituting non-empty strings of constant
symbols for the variable symbols of p. For example, if p = 122x5yyx3, then
the language of p includes the strings 12205111103 and 122001512120013,
but not the strings 12253 or 1221560601113.

ap is the class of sets recognizable in deterministic polynomial time and NP is the
class of sets recognizable in nondeterministie polynomial time. P is contained in NP, but
it is unknown whether the containment is proper.

334 D. ANGLUIN

The following result shows that superset queries alone suffice for efficient
identification of the pattern languages; equivalence queries are not required
for correct termination.

T h e o r e m 3 There is an algorithm that exactly identifies the class of lan-
guages defined by patterns of length n that uses restricted superset queries
and runs in time polynomial in n.

PROOF: We assume that there is an unknown pattern p,. The goal is
to find a pattern equivalent to p, by asking queries of the form "L(p) _~
L(p,)?" for any pattern p. The replies will be either yes or no, with no
countere×ample supplied.

Note that if p is a pattern of length n, then L(p) contains at least one
string of length n and contains only strings of length n or greater. Also,
L(x lx2 . . . xn) is precisely all those strings of symbols from A of length n
or greater. Thus we can determine the length of the unknown pattern p,
by using superset queries on the patterns xl, xlx2, XlX2X3, and so on, to
find the least /~ + 1 such that L(x lx2 . . . xk+l) is not a superset of L(p,).
Then the length of p, is k.

Having determined that the length of p, is k, we can determine the
positions and values of its constant symbols as follows. For each a E A and
i = 1, 2 , . . . , k, query whether

L (X l ' " Xi- laXi+l '" Xk) D L(p,),

If so, then the i th symbol of p, is the constant symbol a. If for no a is this
query answered yes, then the i th symbol of L(p,) is a variable symbol.

Knowing the length of p, and the positions and values of its constant
symbols, it remains only to determine for each pair of positions containing
variables whether the variables are the same or not. For each pair i < j of
positions of variable symbols in p,, we query whether L(pi,j) is a superset
of L(p,), where Pi,j is obtained from x l x 2 . . . x k by substituting the new
variable x for both xi and xj. If the answer is yes, then positions i and j
of p, contain the same variable; otherwise, they contain different variables.

Once all these tests have been completed, a pattern p equivalent to p,
can be constructed and output. The computation time for this method is
clearly bounded by a polynomial in k, where k is the length of p,. The
number of queries used is bounded by (k + 1) + klA I + k(k - 1)/2. This
concludes the proof of Theorem 3. •

T h e o r e m 4 Any algorithm that exactly identifies all the patterns of length
n using equivalence, membership, and subset queries must make at least
2 n - 1 queries in the worst case.

QUERIES AND CONCEPT LEARNING 335

PROOF: If p is a pat tern that contains no variables, then L(p) = {p}.
Thus, the class of singleton sets of binary strings is a subclass of the class
of languages of patterns of length n. Moreover, the intersection language
(the empty set) is not a pat tern language, so we may apply Lemma 2
to conclude that any algorithm that exactly identifies all the patterns of
length n using unrestricted equivalence, membership, and subset queries
must make at least 2 n - 1 queries, which proves Theorem 4. •

5. Disjointness queries

Valiant (1984) describes a possibility-oracle, which takes as input a term
t and determines whether or not t has any satisfying instances in common
with the unknown formula ¢.. The possibility-oracle answers restricted
disjointness queries.

Shapiro (1981, 1982, 1983) has also made use of disjointness queries in
his work on automatic debugging of Prolog programs. A brief description
will give some idea of the uses of queries in his system; we direct the reader
to the original papers for full details.

5.1 Queries in Shapiro~s debugging system

In Shapiro's system the user is assumed to have in mind a model of the
correct behavior of his or her program, consisting of a collection of named
procedures and, for each procedure, the set of tuples of ground terms on
which it is true. For example, the user might be writing a procedure
member(X, Y) that should be true whenever X is a member of the list Y,
or a procedure reverse(X, Y) that should be true whenever the list Y is
the reverse of the list X.

In addition, there is a current program, represented as a set of axioms in
Prolog, which may or may not be correct for the intended model. It is as-
sumed that if the program is not correct, this will eventually be discovered
and a counterexample provided. This is in essence an equivalence query.

The counterexample may be an atom P(tl,..., tk) that is provable from
the program and not true in the correct model. In this case, the system
takes any computat ion that derives the incorrect a tom from the program
and, using membership queries, locates an incorrect axiom in the program.
The membership queries take the form of asking whether ground atoms
are true or false in the intended model. For example, the user might be
queried whether member(3, [1, 2]) is true or not.

If the counterexample is an atom P(tl,... ,tk) that is true in the in-
tended model but is such that the program terminates without proving
it, then a different diagnosis algorithm is applied to locate an "incomplete

336 D. ANGLUIN

procedure," that is, a procedure that requires further axioms. This diagno-
sis algorithm uses what Shapiro calls an existential query, which gives the
user an atom containing variables and asks if there is any instantiation of
the variables that makes the atom true in the intended model. If the user
answers yes, he or she is then asked to supply instantiations that make the
atom true in the intended model.

An example given by Shapiro (1983) in the course of debugging an incor-
rect insertion sort is the query: isort([2, 1], Z)? This can be restated as "is
there any value of Z for which the insertion sort procedure isort([2, 1], Z)
is true?" The user answers yes and is queried for a value of Z. The user
then supplies Z = [1, 2], and the diagnosis algorithm continues.

In our terminology, this is a disjointness query, testing whether the set of
ground instances of the atom isort([2, 1], Z) has any elements in common
with the ground atoms making up the correct behavior of isort, and if so, to
supply one. (In Shapiro's system the user must be prepared to enumerate
all of the common instances.)

As thus described, Shapiro's system makes use of equivalence, member-
ship, and disjointness queries. The system also uses an additional type of
query in cases where the program fails to terminate, but this is beyond the
scope of our discussion.

5.2 k-CNF formulas using disjointness queries

The following polynomial time algorithm, due to Raymond Board (per-
sonal communication, 1987), exactly identifies k-CNF formulas using re-
stricted disjointness queries. 4

Let Tk denote the set of terms consisting of a conjunction of k or fewer
literals. The complements of elements of Tk is the set of all clauses that
contain k or fewer literals. For each term t in :irk, the algorithm makes a
disjointness query. (Note that each term is a 1-CNF formula, so this is
allowed.) The final output ¢ is the conjunction of the negations of all the
terms t found to be disjoint from the unknown formula ¢,. Note that the
number of queries made by the algorithm is bounded by (2n + 1) k.

To see that ¢ is equivalent to ¢,, first consider any assignment a that
satisfies ¢,. Then a must falsify every term t found to be disjoint from ¢,,
so it satisfies all the clauses making up ¢, and hence satisfies O. Conversely,
consider any clause c from &,. The negation of c is a term in Tk that is
disjoint from ¢,, so c must be included in ¢. Hence any assignment that
satisfies ¢ must satisfy all the clauses of ¢,, that is, must satisfy ¢,.

4The dual algorithm for k-DNF formulas uses restricted exhaustiveness queries.

QUERIES AND CONCEPT LEARNING 337

5.3 A very small class of context-free languages

In this section we give an artificial example to illustrate the use of dis-
jointness queries. Let A be a fixed finite a lphabet and let A + denote the
set of nonempty finite St i~ings over A. Let f be any mapping of A into the
integers. We extend f additively to any string w = ala2. . .an in A + by
f (w) = f (a l) + f(a2) + . . . + f(an).

Now we define a set of strings, L(f) C_ A +, as follows. The string w =
a l a 2 " ' a s is in L(f) if and only f (w) = 0, and for each i = 1 , 2 , . . . , n - 1,
f (a la2"" ai) > O. Let C denote the class of all languages L(f) as f ranges
over all functions from A to the integers.

Some simple examples follow. If A = {a, b} and f(a) = f(b) = 1, then
L(f) is the empty set. I fA = {a, b, c} and f(a) = O, f(b) = 0, and f(c) = 1,
then L(f) = {a, b} +. If A consists of a left and a right parenthesis and f
assigns 1 to the left parenthesis and - 1 to the right parenthesis, then L(f)
is the language of nonempty strings of balanced parentheses.

C is a subclass of the determinist ic one counter languages, which Berman
and Roos (1987) show can be learned efficiently using equivalence and
membersh ip queries. C does not include any finite subset of A + except the
empty set.

Theorem 5 There is an algorithm that ezaetly identifies every language in
the class C that uses only disjointness queries and runs in time polynomial
in [A I and the length of the longest counterezample.

PROOF: We assume A is known. Let f , be an unknown function mapping
A to the integers. The input to a disjointness query is an arbi t rary function
f mapp ing A to the integers. If L(f) A L(f ,) is empty, the reply is yes,
otherwise the reply is no with a counterexample from L(f) A L(f ,) .

The algori thm begins by determining for each a E A whether f , (a) = 0.
This is t rue if and only if a disjointness query with {a} + is answered no.
Let Z denote the set of symbols a E A such tha t f ,(a) = O.

For every pair al and a2 of distinct symbols from A - Z, the algori thm
makes a disjointness query with {al, a2} +. If the reply is yes then f , (al)
and f , (a2) are bo th positive or both negative.

Otherwise, the counterexample is a nonempty string w in L(f ,) tha t
contains r occurrences of al and s occurrences of a2. Wi thout loss of
generality, assmne tha t the first symbol in w is al. Then we know tha t
f , (al) > 0 and f,(a~) < O, and moreover,

rf , (al) = -s f , (a2) ,

and nei ther r nor s is O.

338 D. ANGLUIN

If we find any function f such that f(a) = 0 for all a E Z and f satisfies
all the inequalities and equations above for all pairs al and a2 from A - Z,
then L(f) = L(f,). Angluin (1986) sketches one way of finding such an f .

The number of queries needed to determine f is bounded by the square
of IAI, and the computations involved are bounded by a polynomial in IAI
and the lengths of the counterexamples provided. This concludes the proof
of Theorem 5. •

6. The double sunflower: A lower b o u n d for all six queries

The following construction, dubbed the "double sunflower," was devised
by participants in the learning seminar at the University of California,
Santa Cruz, in the fall of 1987, and communicated to the present author
by Michael Kearns. It demonstrates a domain with N concepts in which
N - 1 queries are necessary, even given the full set of query types, settling
an open problem posed by Angluin (1986).

Let n > 0 be given. Let N = 2 n. Let X = {xl ,x~, . . . ,XN} and Y =
{Yl, Y2,. . . , YN}. Let zl and z2 be two special points not contained in X or
Y. Define the universe as U = X U Y U {z~, z2}. Thus, U contains 2 n+l + 2
points. For each j = 1 , . . . , N, let

C 5 = {zl, x~} U (Y - yh).

The hypothesis space consists of the N sets Cj. Note that Cj always
contains zl, never contains z2, contains only xj among the x's, and contains
all but yj among the y's.

To see that N - 1 queries are necessary for any algorithm that ex-
actly identifies this class of concepts, even given the full complement of
equivalence, membership, subset, superset, disjointness, and exhaustive-
ness queries, we exhibit the following adversary. Let S denote the set of
indices of hypotheses Cj that are compatible with all the queries answered
so far. Initially S is all N indices. As long as S contains at least two
elements, the adversary answers queries as follows.

• An equivalence query with Cj is answered no, and the counterexample
xj is given. The at most one element i (namely i = j) of S such that
xj E Ci is removed from S.

• A membership query with xj is answered no. The at most one element
i of S such that xj E Ci is removed from S. A membership query with
yj is answered yes. The at most one element i of S such that yj ~ Ci
is removed from S. A membership query with zl is answered yes, and
one with z2 is answered no. In either case, no elements are removed
from S.

QUERIES AND CONCEPT LEARNING 339

• A subset query with Cj is answered no, and the counterexample xj is
given. The at most one element i of S such that xj E Ci is removed
from S.

• A superset query with Cj is answered no, and the counterexample yj
is given. The at most one element i of S such that yj ~ Ci is removed
from S.

• A disjointness query with Cj is answered no, and the counterexample
zl is returned. No elements are removed from S.

• An exhaustiveness query with Cj is answered no, and the counterex-
ample z2 is returned. No elements are removed from S.

A correct exact identification algorithm for this domain must reduce the set
S to one element~ and the adversary guarantees that at most one element
will be removed from S by each query. Hence the lower bound of N - 1
queries is proved.

7. Summary, remarks, and open questions

We have described efficient algorithms and lower bounds for the use of
queries in several specific domains. These results are summarized in Ta-
ble 1. The first column lists the specific domains we have discussed, and
the second column gives a reference to the description of the domain. The
third column, labeled sufficient, states a minimal set of query-types that
has been shown to suffice for efficient exact identification in the specified
domain. The fourth column, labeled insufficient, specifies a maximal set of
query-types for which an exponential lower bound on exact identification
has been shown for the specified domain. 5 The types of queries are iden-
tified by numbers according to the following scheme: (1) equivalence, (2)
membership, (3) subset, (4) superset, (5) disjointness, (6) exhaustiveness.

A number of open problems are implicit in Table 1. For example, can
membership queries be shown to be essential to efficient identification of
the regular sets or monotone DNF formulas? Are disjointness queries of
any help in identifying the pat tern languages?

In any practical setting, the answers to queries of all types are likely
to be contaminated with errors. The errors may reflect some consistent
ignorance or bias of the informant, or may be generated by some random
process. Work by Valiant (1985), Kearns and Li (1987), Angluin and Laird
(1987), and Laird (1987) on malicious and random errors has begun to
clarify the effect of errors on identification and learning.

5A number superscripted with a minus sign denotes the restricted version of tile
corresponding query, that is, with no counterexamples returned. For example, 1- denotes
restricted equivalence queries. The number 2 + denotes nonterminal membership queries.

340 D. ANGLUIN

Table 1. Summary of results for specific domains.

domain reference 8ufficien,t insufficient

singleton languages
k-CNF formulas
k-DNF formulas
monotone DNF formulas
regular languages
k-bounded CFLs
k-term DNF formulas
k-clause CNF formulas
pattern languages
very restricted CFLs
double sunflower

2.1
2.5, 5.2

,

1 or 5~
1 ,2 ,3 ,5
1 - , 2 ,3
1 - , 2 ,4

1-, 2, 3, 5, 6
1 - , 2 , 3

2.5, 5.2
3.1
3.2
3.2
3.2
3.2
4.1
5.3

1 or6-
1; 2
1,2.

1, 2 :~
1,2
1,2 :
4-

5 or 1 , 2
none

1- ,2 ,3
1 - ,2 ,4
1~ 2, 3

1, 2, 3, 4, 5, 6

Valiant (1984) makes use of two additional types of queries specific to
DNF formulas: relevant possibility and relevant accompaniment. Shapiro
(1981, 1982, 1983) makes use of one additional type of query to help diag-
nose nonterminating Prolog programs. Still other'sources of information
will prove to be relevant for other specific domains.

Angluin (1987c) introduces a new type of query.~ called a "request for a
hint," for the domain of propositional Horn sentences. The answer to such
a query is intended to model a partial explanation of how a conclusion
follows from a set of premises. Formal models of the "explanations" or
"reasons" that may be supplied by a human expert are an important area
of research.

Acknowledgements

I have enjoyed conversations about this material with Manuel Blum,
Bill Gasarch, David Haussler, Mike Kearns, PHil Laird, Lenny Pitt, Udi
Shapiro, and Carl Smith. I thank the National Science Foundation for their
support through grant number IRI-8404226. This paper is a revision of an
earlier report (Angluin, 1986), but is not identical t o it.

References

Angluin, D. (1980). Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21, 46-62.

Angluin, D. (1986). Types of queries for concept learning (Technical Report
YALEU/DCS/RR-479). New Haven, CT: Yale University, Department of
Computer Science.

QUERIES AND CONCEPT LEARNING 341

Angluin, D. (1987a). Learning k-bounded context-free grammars (Technical Report
YALEU/DCS/RR-557). New Haven. CT: Yale University, Department of
Computer Science.

Angluin, D. (1987b). Learning k-term DNF formulas using queriee and counterex-
staples (Technical Report YALEU/DCS/RR-559). New Haven, CT: Yale
University, Department of Computer Science.

Angluin, D. (1987@ Learning propositional Horn sentences with hints (Technical
Report YALEU/DCS/RR-590). New Haven, CT: Yale University, Depart-
ment of Computer Science.

Angluin, D. (1987d). Learning regular sells from queries and count, erexamples.
Information and Computation, 75, 87-106.

Angluin, D., & Laird, P. (1987). Learning from noisy examples. Machine Learn-
ing, 2,343-370.

Angluin, D., & Smith, C. (1983). Inductive inference: Theory and methods.
Computing Surveys, 15, 237-269.

Barzdin, J. M., & Freivald, R. V. (1972). On the prediction of general recursive
functions. Soviet Mathematics l)oklady, 13, 1224-1228.

Berman, P., & Roos, R. (1987). Learning one-counter languages in polynomial
time. Proceedings of the Twenty-Eighth IEEE Symposium on Foundations of
Computer Science (pp. 61 67). New York: The Institute of Electrical and
Electronics Engineers.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1986). Classifying
learnable geometric concepts with the Vapnik-Chervonenkis dimension. Pro-
ceedings of the Eighteenth Annual ACM Symposium on Theory of Computing
(pp. 273--282). Berkeley, CA: The Association for Computing Machinery.

Blumer, A., Ehrenfeucht, A., Haussler, D., &; Warmuth, M. (1987). Learnability
and the Vapnik-Chervonenkis dimension (Technical Report
UCSC-CRL-87-20). Santa Cruz: University of California, Computer Re-
search Laboratory.

Haussler, D. (1986). Quantifying the inductive bias in concept learning. Proceed-
ings of the Fifth National Conference on Artificial Intelligence (pp. 485-489).
Philadelphia, PA: Morgan Kaufmann.

Haussler, D. (in press). Quantifying the inductive bias: AI learning algorithms
and Valiant's framework. Artificial Inte.!ligence.

Kearns, M., & Li, M. (1987). Learning in the presence of malicious errors (Tech-
nical Report TR-03-87). Cambridge, MA: Harvard University, Center for
Research in Computing Technology.

Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987). On the learnability of Boolean
formulae. Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing (pp. 285 295). New York: The Association for Computing
Machinery.

Knobe, B., & Knobe, K. (1976). A method fbr inferring context-free grammars.
Information and Control, 31, 129-146.

342 D. ANGLUIN

Laird, P. (1987). Learning from good data and bad. Doctoral dissertation, Depart-
ment of Computer Science, Yale University, New Haven, CT.

Levy, L., & Joshi, A. (1978). Skeletal structural descriptions. Information and
Control, 39,192-211.

Littlestone, N. (1987). Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learning, 2, 285-318.

Pitt, L., & Valiant, L. (1986). Computational limitations on learning from ex-
amples (Technical Report TR-05-86). Cambridge, MA: Harvard University,
Center for Research in Computing Technology.

Sakakibara, Y. (1987a). Inductive inference of logic programs based on algebraic
semantics (Technical Report No. 79). Numazu, Japan: Fujitsu Limited,
International Institute for Advanced Study of Social Information Science.

Sakakibara, Y. (1987b). Inferring parser~ of context-free language8 from struc-
tural examples (Technical Report No. 81). Numazu, Japan: Fujitsu Limited,
International Institute for Advanced Study of Social Information Science.

Saturant, C., & Banerji, R. (1986). Learning concepts by asking questions. In R. S.
Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Shapiro, E. (1981). A general incremental algorithm that infers theories from
facts. Proceedings of the Seventh International Joint Conference on Artificial
Intelligence (pp. 446-451). Vancouver, B.C., Canada: Morgan Kaufman.

Shapiro, E. (1982). Algorithmic program diagnosis. Proceedings of the Ninth
ACM Symposium on Principles of Programming Languages (pp. 299-308).
Albuquerque, NM: The Association for Computing Machinery.

Shapiro, E. (1983). Algorithmic program debugging. Cambridge, MA: MIT Press.
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM,

27, 1134-1142.
Valiant, L. G. (1985). Learning disjunctions of conjunctions. Proceedings of the

Ninth International Joint Conference on Artificial Intelligence (pp. 560-566).
Los Angeles, CA: Morgan Kaufmann.

